BT145 SERIES

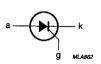
THYRISTORS

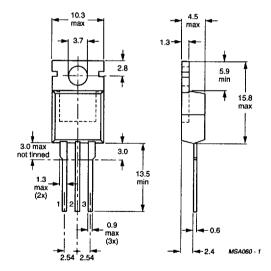
Glass-passivated 25 ampere thyristors intended for use in applications involving high fatigue stress due to thermal cycling and repeated switching. These thyristors feature a high surge current capability. Typical applications include motor and heating control, regulators for transfomerless power supply circuits, relay and coil pulsing and power supply crowbar protection circuits.

QUICK REFERENCE DATA

	V _{DRM} /V _{RRM}	BT145-500R		600R 800R			
Repetitive peak voltages		max.	500	600	800	٧	
Average on-state current	^I T(AV)	max.		16		Α	
R.M.S. on-state current	IT(RMS)	max.		25		Α	
Non-repetitive peak on-state current	^I TSM	max.		300		Α	

MECHANICAL DATA


Dimensions in mm


Fig.1 TO-220AB

Pinning:

1 = Cathode 2 = Anode

3 = Gate

Net mass: 2 g

Note: The exposed metal mounting base is directly connected to the anode.

Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220 envelopes.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Anode to cathode		RT14	5-500R	600R	800R	
Non-repetitive peak voltages	VDSM/VRSM	max.	500	600	800	V*
Repetitive peak voltages	VDSM/VRSM VDRM/VRRM	max.	500	600	800	v
Crest working voltages	VDWM/VRWM	max.	400	400	400	v
•			400	400	400	V
Continuous voltages	V _D /V _R	max.	400			V
Average on-state current (averaged over any 20 ms period) up to $T_{mb} = 93$ °C	T(AV)	max.		16		Α
RMS on-state current	[[] T(RMS)	max.		25		Α
Repetitive peak on-state current	TRM	max.		300		Α
Non-repetitive peak on-state current; t = 10 ms; half sinewave; $T_j = 110 ^{\circ}\text{C}$ prior to surge; with reapplied VRWM max	^I TSM	max.		300		Α
1 ² t for fusing (t = 10 ms)	' I SIVI I ² t	max.		450		A ² s
<u>*</u>	1 1	max.		450		7,3
Rate of rise of on-state current after triggering with $I_G = 160 \text{ mA}$ to $I_T = 50 \text{ A}$; $dI_G/dt = 160 \text{ A/ms}$	dl _T /dt	max.		200		A/μs
Gate to cathode						
Reverse peak voltage	v_{RGM}	max.		5		٧
Average power dissipation (averaged over any 20 ms period)	PG(AV)	max.		0.5		w
Peak power dissipation; $t \le 10 \mu s$	P _{GM}	max.		20		w
reak power dissipation, t < το μο	' GIVI	max.		20		**
Temperature						
Storage temperature	T_{stg}		-40 to	+150		оС
Junction temperature	T_{j}	max.		110		oC
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	=		1.0		K/W
From mounting base to heatsink with heatsink compound	R _{th mb-h}	=		0.3		K/W

^{*}Although not recommended, higher off-state voltages may be applied without damage, but the thyristor may switch into the on-state. The rate of rise of on-state current should not exceed 15 A/ μ s.

Rth mb-h

THERMAL RESISTANCE

Thyristors

From junction to mounting base	R _{th i-mb}	=	1.0	K/W
Transient thermal impedance; t = 1 ms	Z _{th j-mb}			

Influence of mounting method

1. Heatsink-mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

·				
a. with heatsink compound	R _{th mb-h}	=	0.3	K/W
b. with heatsink compound and 0.06 mm maximum mica insulator	R _{th mb-h}	=	1.4	K/W
c. with heatsink compound and 0.1 mm maximum mica				

- d. with heatsink compound and 0.25 mm maximum alumina insulator (56367) Rth mb-h 8.0 K/W e. without heatsink compound 1.4 K/W Rth mb-h
- 2. Free-air operation

insulator (56369)

The quoted values of Rth j-a should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length

R_{th j-a} 60 K/W

2.2

K/W

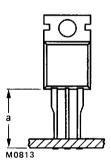


Fig.2.

CHARACTERISTICS

BT145 SERIES

Anode to cathode

On-state voltage (measured under pulse conditions)

$$I_T = 30 \text{ A; } T_i = 25 \text{ }^{\circ}\text{C}$$

Rate of rise of off-sate voltage that will not trigger any device

Reverse current

$$V_R = V_{RWMmax}; T_j = 110 \,^{\circ}C$$

Off-state current

 $V_D = V_{DWMmax}$; $T_j = 110 \, {}^{\circ}C$ Latching current; $T_j = 25$ °C

Holding current; T_i = 25 °C

Gate to cathode

Voltage that will trigger all devices

$$V_D = 12 \text{ V; T}_j = -40 \text{ }^{\circ}\text{C}$$

 $V_D = 12 \text{ V; T}_i = 25 \text{ }^{\circ}\text{C}$

Voltage that will not trigger any device

 $V_D = V_{DRMmax}$; $T_i = 110 \, {}^{\circ}C$

 $V_D = 12V; T_i = -40 \, {}^{\circ}C$

$$V_D = 12 \text{ V}; T_i = 25 \text{ }^{\circ}\text{C}$$

Switching characteristics

Gate-controlled turn-on time $(t_{gt} = t_d + t_r)$ when switched from $V_D = V_{DRMmax}$ to $I_T = 40 A$;

 $I_{GT} = 100 \text{ mA}; dI_{G}/dt = 5 \text{ A}/\mu s; T_{i} = 25 \text{ °C}$

٧T

<

1.5

٧

200 V/μs dV_D/dt <

1.0 mΑ 1_R <

<1.0 mΑ ٦D

< 80 mΑ IL

< 60 mΑ 1н

1.5 ٧ VGT

1.0 V_{GT}

0.25 ٧ V_{GD}

55 mΑ I_GT

> 35 mΑ IGT

typ. 2 μs tgt

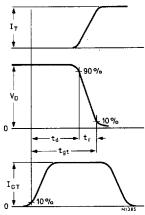


Fig.3 Gate controlled turn-on time definition.

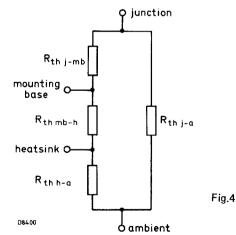
Thyristors

MOUNTING INSTRUCTIONS

- The device may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.
- The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The leads can be bent, twisted or straightened by 90° maximum. The minimum bending radius is 1 mm.
- 3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the heatsink.
- 4. Mounting by means of a spring clip is the best mounting method because it offers:
 - a. a good thermal contact under the crystal area and slightly lower R_{th mb-h} values than screw mounting.
 - b. safe isolation for mains operation.

However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.

- For good thermal contact, heatsink compound should be used between mounting base and heatsink. Values of R_{th mb-h} given for mounting with heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is not recommended.
- 6. Rivet mounting (only possible for non-insulated mounting)


Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole. The maximum recommended hole size for rivet mounting is 3.5 mm. The pre-formed head of the rivet should be on the device side and any rivet tool used should not damage the plastic body of the device.

The heatsink must have a flatness in the mounting area of 0.02 mm maximum per 10 mm. Mounting holes must be deburred.

OPERATING NOTES

Dissipation and heatsink considerations:

 The various components of junction temperature rise above ambient are illustrated in Fig.4.

b. The method of using Fig.5 is as follows:

Starting with the required current on the $I_{T(AV)}$ axis, trace upwards to meet the appropriate form factor curve. Trace right horizontally and upwards from the appropriate value on the I_{amb} scale. The intersection determines the I_{amb} are now be calculated from:

Rth h-a = Rth mb-a - Rth mb-h.

c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

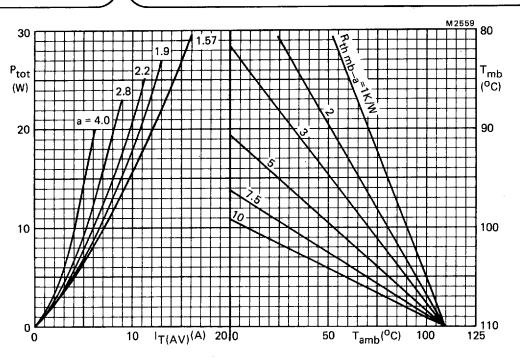


Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

$$\alpha = \text{conduction angle per half cycle}$$

$$\alpha = \text{form factor} = \frac{I_{\text{T (RMS)}}}{I_{\text{T(AV)}}}$$

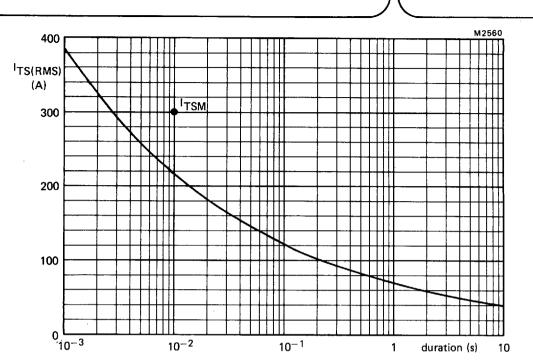
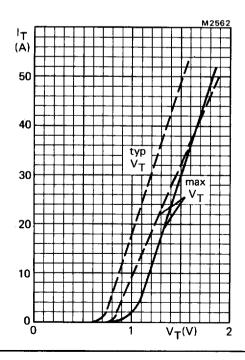



Fig.6 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f=50Hz) with re-applied V_{RWMmax} ; $T_j = 110$ °C prior to surge.

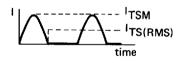


Fig.7 —
$$T_j = 25$$
 °C; $---T_j = 110$ °C.

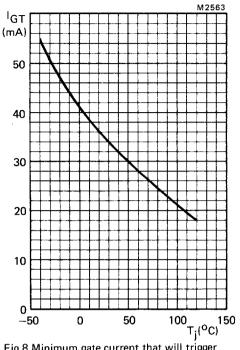


Fig.8 Minimum gate current that will trigger all devices as a function of junction temperature.

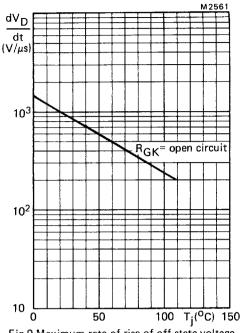


Fig.9 Maximum rate of rise of off-state voltage that will not trigger any device as a function of junction temperature.

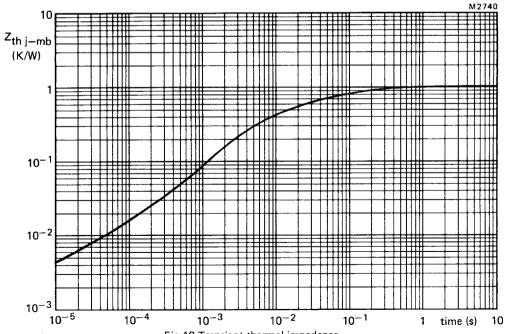


Fig. 10 Transient thermal impedance.