

SGM2904 Dual Operational Amplifier

GENERAL DESCRIPTION

The SGM2904 is a dual operational amplifier which is designed to offer a wide input common mode voltage range and output voltage swing. The device can operate from ± 1.65 V to ± 13 V dual power supplies or from 3.3V to 26V single supply.

The device features low noise, high slew rate, low input bias and offset current, and low offset voltage.

The SGM2904 is available in Green SOIC-8 and MSOP-8 packages. It is specified over the extended -40°C to +125°C temperature range.

FEATURES

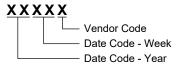
- Wide Input Common Mode and Differential Voltage Ranges
- Low Input Bias and Offset Current
- Output Short-Circuit Protection
- High Input Impedance
- Low Offset Voltage: 4mV (MAX)
- Low Noise: 40nV/√Hz at 1kHz
- Gain-Bandwidth Product: 2MHz
- Slew Rate: 0.6V/μs
- -40°C to +125°C Operating Temperature Range
- Available in Green SOIC-8 and MSOP-8 Packages

APPLICATIONS

High Impedance Sensor Photodiode Amplifier

High End, Professional Audio

DAC Output Amplifier


Medical

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE ORDERING PACKAGE NUMBER MARKING		EMPERATURE ORDERING NUMBER		PACKING OPTION
SCM2004	SOIC-8	-40°C to +125°C	SGM2904XS8G/TR	SGM 2904XS8 XXXXX	Tape and Reel, 4000
SGM2904	MSOP-8	-40°C to +125°C	SGM2904XMS8G/TR	SGM2904 XMS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S 26V
Input/Output Voltage Range(- V_S) - 0.3 V to (+ V_S) + 0.3 V
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
MM400V
CDM 2000V

RECOMMENDED OPERATING CONDITIONS

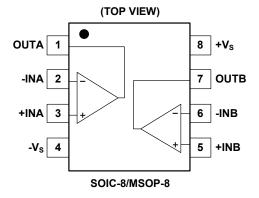
Operating Temperature Range.....-40°C to +125°C

NOTE:

1. Proper power supply sequencing is recommended for the CMOS device. Always sequence V_{S} on first, followed by the inputs and outputs.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

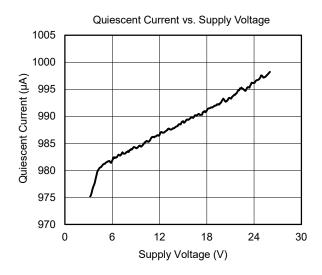

ESD SENSITIVITY CAUTION

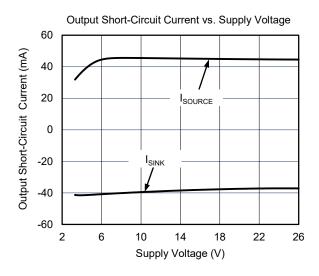
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

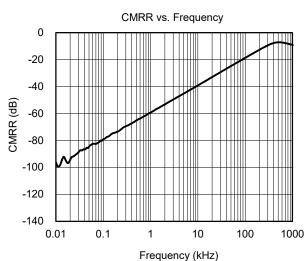
DISCLAIMER

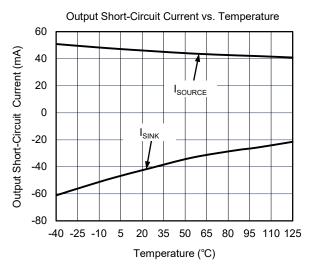
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

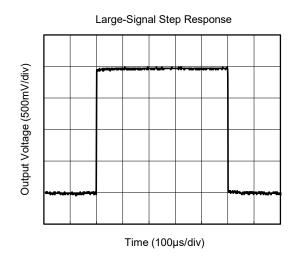
PIN CONFIGURATIONS

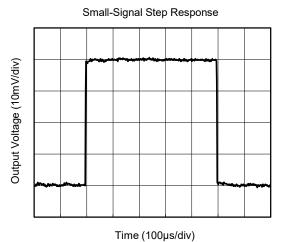

ELECTRICAL CHARACTERISTICS


(At T_A = +25°C, V_S = 3.3V to 26V and R_L = 2k Ω connected to $V_S/2$, Full = -40°C to +125°C, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics			•		•	•	•
Innut Offeet Veltere		V = V /2	+25°C		3	4	
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	Full			5	mV
Input Offset Voltage Drift	ΔV _{OS} /ΔΤ		Full		2		μV/°C
Input Bias Current	I _B	$V_{CM} = V_S/2$	+25°C		20		nA
Input Offset Current	I _{os}	V _{CM} = V _S /2	+25°C		2		nA
Maximum Differential Input Voltage	IV _{ID} I		Full			Vs	V
Maximum Input Difference Biog Current		\/ - 26\/	+25°C		2	3	
Maximum Input Difference Bias Current	II _{ID} I	V _{ID} = 26V	Full			4	μA
Input Common Mode Voltage Range	V _{CM}		Full	0		V _S - 1.5	V
Common Mada Daiastian Datia	CMDD	V = 5V45 20V 0V 4V 4V 4V 4 5V	+25°C	70	80		4D
Common Mode Rejection Ratio	CMRR	$V_S = 5V \text{ to } 26V, 0V < V_{CM} < V_S - 1.5V$	Full	65			dB
Ones Leen Veltere Cein			+25°C	30	100		\
Open-Loop Voltage Gain	A _{OL}	$V_S = 15V, V_{OUT} = 1V \text{ to } 11V$	Full	20			- V/mV
Output Characteristics							
	V _{он}	$V_S = 26V$, $R_L = 10k\Omega$	+25°C		60	80	
Himb Laval Output Valtage			Full			120	\/
High-Level Output Voltage		$V_S = 26V$, $R_L = 2k\Omega$	+25°C		300	400	mV
			Full			540	
		V 20V D 4010	+25°C		20	35	
Lave Laval Outrot Valtage		$V_S = 26V, R_L = 10k\Omega$	Full			60	\/
Low-Level Output Voltage	V _{OL}	V 20V D 01/0	+25°C		110	160	mV
		$V_S = 26V, R_L = 2k\Omega$	Full			280	
Output Short-Circuit Current	I _{sc}	V _S = 5V to 26V	+25°C	±28	±40		mA
Power Supply							
Operating Voltage Range	Vs		Full	3.3		26	V
Quiescent Current	I _Q	I _{OUT} = 0	+25°C		1	1.24	mA
Quiosson Cunon	IQ.	TOUT - 0	Full			1.5	
Power Supply Rejection Ratio	PSRR	V _S = 5V to 26V	+25°C	90	100		dB
11.3			Full	85			
Dynamic Performance	Π	T	1 1		ı	1	T
Gain-Bandwidth Product	GBP	C _L = 50pF	+25°C		2		MHz
Slew Rate	SR	A _V = +1	+25°C		0.6		V/µs
Input Voltage Noise Density	e _n	f = 1kHz	+25°C		40		nV/√ Hz


TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_S = 26V and R_L = 2k Ω , unless otherwise noted.



APPLICATION INFORMATION

The SGM2904 operational amplifier is useful in a wide range of signal conditioning applications.

Typical Application

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

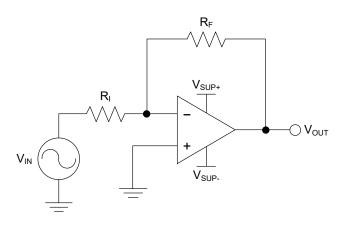


Figure 1. Application Schematic

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ±0.5V to ±1.8V. Setting the supply at ±12V is sufficient to accommodate this application.

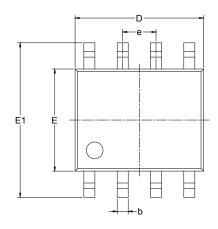
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

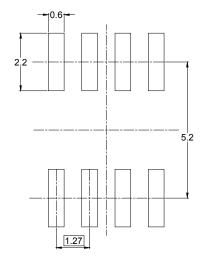
$$A_{V} = \frac{V_{OUT}}{V_{IN}} \tag{1}$$

$$A_{V} = \frac{V_{OUT}}{V_{IN}}$$
 (1)
$$A_{V} = \frac{1.8}{-0.5} = -3.6$$
 (2)

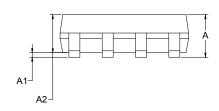
Once the desired gain is determined, choose a value for R_I or R_F . Choosing a value in the $k\Omega$ range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw too much current. This example will choose $10k\Omega$ for R_I which means $36k\Omega$ will be used for R_F . This was determined by Equation 3.

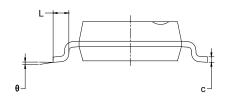
$$A_{V} = -\frac{R_{F}}{R_{I}} \tag{3}$$

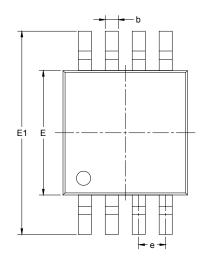

REVISION HISTORY

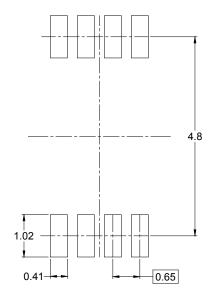

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

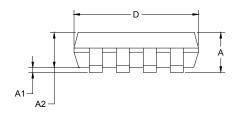
Changes from Original (DECEMBER 2017) to REV.A

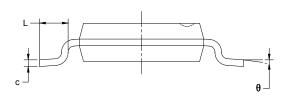

Page


PACKAGE OUTLINE DIMENSIONS SOIC-8

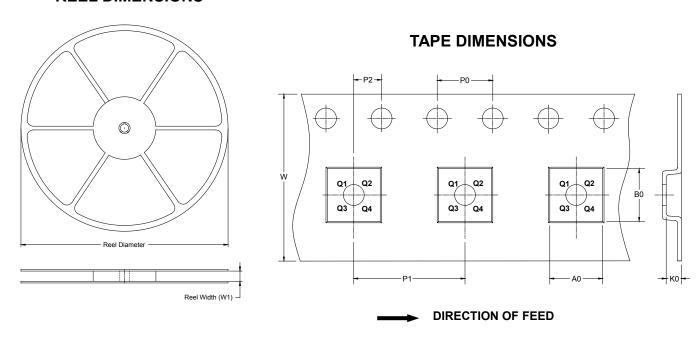

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550 0.510 0.250	0.053 0.013 0.006	0.061	
b	0.330			0.020	
С	0.170			0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC 0.400 1.270 0° 8°		0.050	BSC	
L			0.016	0.050	
θ			0°	8°	


PACKAGE OUTLINE DIMENSIONS MSOP-8

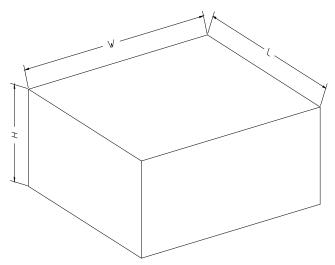
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950 0.380 0.230	0.030 0.010 0.004	0.037 0.015	
b	0.250				
С	0.090			0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050 0.187		0.199	
е	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
13"	386	280	370	5		