ﬁ- adafruit learning system

CircuitPython Essentials

ﬁ- adafruit learning system
CircuitPython Essentials

CIreli

P

You've gone through the Welcome to CircuitPython guide (https://adafru.it/cpy-welcome). You've already gotten
everything setup, and you've gotten CircuitPython running. Great! Now what? CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used libraries available. This guide will
introduce you to these and show you an example of how to use each one.

Each section will present you with a piece of code designed to work with different boards, and explain how to use the
code with each board. These examples work with any board designed for CircuitPython, including Circuit Playground
Express, Trinket MO, Gemma MO, ItsyBitsy MO Express, ItsyBitsy M4 Express, Feather MO Express, Feather M4
Express, Metro M4 Express, Metro MO Express, Trellis M4 Express, and Grand Central M4 Express.

Some examples require external components, such as switches or sensors. You'll find wiring diagrams where
applicable to show you how to wire up the necessary components to work with each example.

Let's get started learning the CircuitPython Essentials!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 5 of 95

file:///welcome-to-circuitpython
https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/562
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/239
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/3448

* adafruit learning system

CircuitPython Built-
Ins

CircuitPython comes 'with the kitchen sink' - @ /ot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

|:| This is not an exhaustive list! It's simply some of the many features you can use.

Thing That Are Built In and Work

Flow Control

All the usual if, elif, else, for, while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)

[' _name_', 'e', 'pi', 'sqrt’, 'pow’, 'exp’, 'log', 'cos', 'sin’, 'tan’, 'acos', 'asin', 'atan’, 'atan2', 'ceil', 'copysign', 'fabs’,
'floor', 'fmod’, 'frexp', 'ldexp', 'modf', 'isfinite’, 'isinf', 'isnan', 'trunc', 'radians’, 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and float whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize datain (), [],and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our many examples like thisMCP9808
library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:
>>> g = lambda x: x*¥*2

>>> g(8)

64

Random Numbers

To obtain random numbers:

import random
random.random() will give a floating point number from 0 to 1.0.

random.randint(min, max) will give you an integer number between min and max.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 6 of 95

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

* adafruit learning system
CircuitPython Digital In &
Out

The first part of interfacing with hardware is being able to manage digital inputs and outputs. With CircuitPython, it's
super easy!

This example shows how to use both a digital input and output. You can use a switch/input with pullup resistor (built in)
to control a digital output - the built in red LED.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

CircuitPython IO demo #1 - General Purpose I/0
import time

import board

from digitalio import DigitalInOut, Direction, Pull

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

For Gemma MO, Trinket MO, Metro MO Express, ItsyBitsy MO Express, Itsy M4 Express
switch = DigitalInOut(board.D2)

switch = DigitalInOut(board.D5) # For Feather MO Express, Feather M4 Express

switch = DigitalInOut(board.D7) # For Circuit Playground Express
switch.direction = Direction.INPUT

switch.pull = Pull.UP

while True:
We could also do "led.value = not switch.value"!
if switch.value:
led.value = False
else:
led.value = True

time.sleep(0.01) # debounce delay
Note that we made the code a little less "Pythonic" than necessary. The if/else block could be replaced with a simple

led.value = not switch.value but we wanted to make it super clear how to test the inputs. The interpreter will read the
digital input when it evaluates switch.value .

For Gemma MO, Trinket MO, Metro MO Express, Metro M4 Express, ItsyBitsy MO Express, ItsyBitsy M4 Express, no
changes to the initial example are needed.

D Note: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # + space

from the beginning of the line.

For Feather MO Express and Feather M4 Express, comment out switch = DigitalinOut(board.D2) (and/or switch =
DigitallnOut(board.D7) depending on what changes you already made), and uncomment switch =
DigitallnOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch = DigitallnOut(board.D2) (and/or switch =
DigitalinOut(board.D5) depending on what changes you already made), and uncomment switch =

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 7 of 95

DigitallnOut(board.D7) .

To find the pin or pad suggested in the code, see the list below. For the boards that require wiring, wire up a switch
(also known as a tactile switch, button or push-button), following the diagram for guidance. Press or slide the switch,
and the onboard red LED will turn on and off.

Note that on the MO/SAMD based CircuitPython boards, at least, you can also have internal pulldowns withPul.DOWN
and if you want to turn off the pullup/pulldown just assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested for use as input, and the location of
the D13 LED.

Circuit Playground Express

We're going to use the switch, which is pin D7, and is
located between the battery connector and the reset
switch on the board. D13 is labeled D13 and is located
next to the USB micro port.

To use D7, comment out the current pin setup line, and
uncomment the line labeled for Circuit Playground
Express. See the details above!

Trinket MO
LI B O H LI B A B R
. & & & & @ - & & @ * % % & & & 8 8B . . A
P %% SRR RE D2 is connected to the blue wire, labeled "2", and
Q 00) . #« » & » » # located between "3V"and "1" on the board. D13 is
s # % ® 8 % % labeled "13" and is located next to the USB micro port.
" % ¥ ¥ ¥ @
& & & & @ @B
& % &% ¥ & ¥ @ @ ¥ ¥ ¥ 8 ¥ B B R B OB B R BB
* % & & @ § ® ¥ ¥ ¥ §F § § @ " @ F F W B "N
. % & @ ‘- - " ® ¥ ¥ 8 @ i' *® % % &% ® & @
& & & @& @ " & & & @ & % & & @ " & @

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 8 of 95

https://learn.adafruit.com/assets/51501
https://learn.adafruit.com/assets/51505

Gemma MO

D2 is an alligator-clip-friendly pad labeled both "D2" and
"A1", shown connected to the blue wire, and is next to
the USB micro port. D13 is located next to the "GND"
label on the board, above the "On/Off" switch.

Use alligator clips to connect your switch to your
Gemma MO!

Feather MO Express and Feather M4 Express

D5 is labeled "5" and connected to the blue wire on the
board. D13 is labeled "#13" and is located next to the
USB micro port.

To use D5, comment out the current pin setup line, and

uncomment the line labeled for Feather MO Express.

See the details above!

fritzing
- ————— ———— ItsyBitsy MO Express and ItsyBitsy M4 Express

D2 is labeled "2", located between the "MISO" and "EN"
labels, and is connected to the blue wire on the board.

& & & & &
L B)
L BN

D13 is located next to the reset button between the "3"
and "4" labels on the board.

& & & &
- .o
L L I

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 9 of 95

https://learn.adafruit.com/assets/51506
https://learn.adafruit.com/assets/51502
https://learn.adafruit.com/assets/51503

Metro MO Express and Metro M4 Express

D2 is located near the top left corner, and is connected
to the blue wire. D13 is labeled "L" and is located next to
the USB micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitallnOut page in Read the
Docs (https://adafru.it/C4c).

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 10 of 95

https://learn.adafruit.com/assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

CircuitPython Analog In * adafruit learning system

This example shows you how you can read the analog voltage on the A1 pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

CircuitPython AnalogIn Demo
import time
import board
from analogio import AnalogIn

analog in = AnalogIn(board.Al)

def get voltage(pin):
return (pin.value * 3.3) / 65536

while True:
print((get voltage(analog in),))
time.sleep(0.1)

Make sure you're running the latest CircuitPython! f you are not, you may run into an error: "AttributeError:

'module’ object has no attribute 'A1". If you receive this error, first make sure you're running the latest version
of CircuitPython!

Creating the analog input

analoglin = Analogin(board.Al)

Creates an object and connects the object to A1 as an analog input.
get _voltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from O (minimum) to 65535
(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling get voltage on our analog object.
Connect to the serial console to see the results.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 11 of 95

LEL K Mu 1.0.0.beta.15 - main.py *

+) (L)L) (@) (M) (Q)Q(0) (b)(?)(0

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial console, try touching a wire from
A1 to the GND pin or 3Vo pin to see the voltage change.

You can also add a potentiometer to control the voltage changes. From the potentiometer to the board, connect the
left pin to ground, the middle pin to A1, and the right pin to 3V. If you're using Mu editor, you can see the changes as
you rotate the potentiometer on the plotter like in the image above! (Click the Plotter icon at the top of the window to
open the plotter.)

|:| When you turn the knob of the potentiometer, the wiper rotates left and right, increasing or decreasing the

resistance. This, in turn, changes the analog voltage level that will be read by your board on A1.

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the potentiometer, and provides more
information about analog pins on your board!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 12 of 95

- & & & & & & & & & & & & & & & & & & &
- 8 8 8 @8 a8 8 8 8 - 8 8 8 8 - 8 8 8 8

& 8 & 8 &

- 8 & & @

& 8 & 8 &

- 8 & & @

& 8 & 8 &

- 8 8 8 8

& 8 & & &

- 8 8 8 8

& 8 & & &

- . o8 88
- - - - - - - - - -
- - - - - - - - - -

© Adafruit Industries

Circuit Playground Express

Alis located on the right side of the board. There are
multiple ground and 3V pads (pins).

Your board has 7 analog pins that can be used for this
purpose. For the full list, see the pinout
page (https://adafru.it/AM9) on the main guide.

Trinket MO

A1is labeled as 2! It's located between "1"" and "3V" on
the same side of the board as the little red LED. Ground
is located on the opposite side of the board. 3V is
located next to 2, on the same end of the board as the
reset button.

You have 5 analog pins you can use. For the full list, see
the pinouts page (https://adafru.it/AMd) on the main
guide.

https://learn.adafruit.com/circuitpython-essentials Page 13 of 95

https://learn.adafruit.com/assets/51607
file:///adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com/assets/51618
file:///adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma MO

Alis located near the top of the board of the board to
the left side of the USB Micro port. Ground is on the
other side of the USB port from A1. 3V is located to the
left side of the battery connector on the bottom of the
board.

Your board has 3 analog pins. For the full list, see the

pinout page (https://adafru.it/AMa) on the main guide.

fritzing

Feather MO Express and Feather M4 Express

L LA B B LI - e LA B B

Alis located along the edge opposite the battery
connector. There are multiple ground pins. 3V is located
along the same edge as A1, and is next to the reset
button.

Your board has 6 analog pins you can use. For the full

list, see the pinouts page (https://adafru.it/AMc) on the

main guide.
fritzing

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 14 of 95

https://learn.adafruit.com/assets/51611
file:///adafruit-gemma-m0/pinouts
https://learn.adafruit.com/assets/51616
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts

[= o

; E\ -|| I.

. I

Reading Analog Pin Values

ItsyBitsy MO Express and ItsyBitsy M4 Express

Alis located in the middle of the board, near the "A" in
"Adafruit". Ground is labled "G" and is located next to
"BAT", near the USB Micro port. 3V is found on the
opposite side of the USB port from Ground, next to RST.

You have 6 analog pins you can use. For a full list, see
the pinouts page (https://adafru.it/BMg) on the main
guide.

Metro MO Express and Metro M4 Express

Alis located on the same side of the board as the barrel
jack. There are multiple ground pins available. 3V is
labeled "3.3" and is located in the center of the board
on the same side as the barrel jack (and as A1).

Your Metro MO Express board has 6 analog pins you
can use. For the full list, see the pinouts
page (https://adafru.it/AMb) on the main guide.

Your Metro M4 Express board has 6 analog pins you
can use. For the full list, see the pinouts
page (https://adafru.it/B10) on the main guide.

The get voltage() helper used in the potentiometer example above reads the raw analog pin value and converts it to

a voltage level. You can, however, directly read an analog pin value in your code by using pin.value . For example, to

simply read the raw analog pin value from the potentiometer, you would run the following code:

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 15 of 95

https://learn.adafruit.com/assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts
https://learn.adafruit.com/assets/52733
file:///adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///adafruit-metro-m4-express-featuring-atsamd51/pinouts

import time
import board
from analogio import AnalogIn
analog in = AnalogIn(board.Al)
while True:

print(analog in.value)
time.sleep(0.1)

This works with any analog pin or input. Use the <pin_name>.value to read the raw value and utilise it in your code.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 16 of 95

CircuitPython Analog Out % adafruit learning system

This example shows you how you can set the DAC (true analog output) on pin AO.

|:| AO is the only true analog output on the MO boards. No other pins do true analog output!

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython I0 demo - analog output
import board
from analogio import AnalogOut

analog out = AnalogOut(board.AQ)
while True:
Count up from 0 to 65535, with 64 increment
which ends up corresponding to the DAC's 10-bit range

for i in range(0, 65535, 64):
analog out.value = i

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to AO, the only DAC pin available on both the MO and the M4
boards. (The M4 has two, AO and A1)

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a resolution of 0.0032 Volts per bit.
To allow CircuitPython to be general-purpose enough that it can be used with chips with anything from 8 to 16-bit
DACs, the DAC takes a 16-bit value and divides it down internally.

For example, writing O will be the same as setting it to O - O Volts out.
Writing 5000 is the same as setting it to 5000 / 64 =78, and 78 /1024 * 3.3V = 0.25V output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to 65535, but increments 64 at a
time so it ends up clicking up one bit for each of the 10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC isn't good for audio outputs as-
is.

Express boards like the Circuit Playground Express, Metro MO Express, ItsyBitsy MO Express, ItsyBitsy M4 Express,
Metro M4 Express, Feather M4 Express, or Feather MO Express have more code space and can perform audio

playback capabilities via the DAC. Gemma MO and Trinket MO cannot!

Check out the Audio Out section of this guide (https://adafru.it/BRj) for examples!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 17 of 95

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

¥ Annotations

P Analyzers

Q= Capture 0 kHz, 50 M Sa... P Decoded Protocols

Find the pin

Use the diagrams below to find the AO pin marked with a magenta arrow!

Circuit Playground Express

AOQ is located between VOUT and A1 near the battery
port.

Trinket MO

AO is labeled "1”" on Trinket! AO is located between "0"
and "2" towards the middle of the board on the same
side as the red LED.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 18 of 95

https://learn.adafruit.com/assets/51696
https://learn.adafruit.com/assets/51697

Gemma MO

AO is located in the middle of the right side of the board
next to the On/Off switch.

Feather MO Express

AO is located between GND and A1 on the opposite side
of the board from the battery connector, towards the
end with the Reset button.

Feather M4 Express

AO is located between GND and A1 on the opposite side
of the board from the battery connector, towards the
end with the Reset button, and the pin pad has left and
right white parenthesis markings around it

=L
‘0

N
5 SCL
L 1
L R
LN
L
L
. e

a=zr
L=

.;JE
'IE=
oz

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 19 of 95

https://learn.adafruit.com/assets/51698
https://learn.adafruit.com/assets/51699
https://learn.adafruit.com/assets/57531

ItsyBitsy MO Express

AO is located between VHI and A1, near the "A" in
"Adafruit", and the pin pad has left and right white
parenthesis markings around it.

ItsyBitsy M4 Express

AO is located between VHI and A1, and the pin pad has
left and right white parenthesis markings around it.

Metro MO Express

AO is between VIN and A1, and is located along the
same side of the board as the barrel jack adapter
towards the middle of the headers found on that side of
the board.

Aralog In

agegaq®

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 20 of 95

https://learn.adafruit.com/assets/51700
https://learn.adafruit.com/assets/57532
https://learn.adafruit.com/assets/51701

i Metro M4 Express

Sheset 11 DHBEOOGOOQ PO000OS
- - Digital =
ﬁ 2 AO is between VIN and A1, and is located along the
adafruit))
m same side of the board as the barrel jack adapter
wwm

towards the middle of the headers found on that side of
the board.

Fég&&":l_“...._. _"_

se¥ 8

On the Metro M4 Express, there are TWO true analog
outputs: AO and A1.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 21 of 95

https://learn.adafruit.com/assets/53100

CircuitPython Audio Out 3 adafruit learning system

CircuitPython 3.0 and higher comes with an updated audioio , which provides built-in audio output support. You can
play generated tones. You can also play, pause and resume wave files. You can have 3V-peak-to-peak analog output
or 12S digital output. In this page we will show using analog output.

This is great for all kinds of projects that require sound, like a tone piano or anything where you'd like to add audio
effects!

ESP8266, Trinket MO and Gemma MO do not support audioio! You must use an MO Express or M4 Express

board for this.

The first example will show you how to generate a tone and play it using a button. The second example will show you
how to play, pause, and resume a wave file using a button to resume. Both will play the audio through an audio jack.
The default volume on both of these examples is painfully high through headphones. So, we've added a potentiometer
and included some code in the tone generation example to control volume.

In our code, we'll use pin AO for our audio output, as this is the only DAC pin available on every Express board. The MO
Express boards have audio output on AO. The M4 Express boards have two audio output pins, AO and A1, however
we'll be using only A0 in this guide.

Play a Tone

Copy and paste the following code into code.py using your favorite editor, and save the file.

import time
import array
import math
import audioio
import board
import digitalio

button = digitalio.DigitalInQut(board.Al)
button.switch to input(pull=digitalio.Pull.UP)

tone volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine wave = array.array("H", [0] * length)
for 1 in range(length):
sine wave[i] = int((1 + math.sin(math.pi * 2 * i / length)) * tone volume * (2 ** 15 - 1))

audio = audioio.AudioOut(board.A0)
sine wave sample = audioio.RawSample(sine wave)

while True:
if not button.value:
audio.play(sine wave sample, loop=True)
time.sleep(1)
audio.stop()

First we create the button object, assign it to pin Al, and set it as an input with a pull-up. Even though the button

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 22 of 95

switch involves digitalio , we're using an A-pin so that the same setup code will work across all the boards.

Since the default volume was incredibly high, we included a tone_volume variable in the sine wave code. You can use
the code to control the volume by increasing or decreasing this number to increase or decrease the volume. You can
also control volume with the potentiometer by rotating the knob.

To set the frequency of the generated tone, change the number assigned to the frequency variable to the Hz of the
tone you'd like to generate.

Then, we generate one period of a sine wave with the math.sin function, and assign it to sine_wave .
Next, we create the audio object, and assign it to pin A0 .
We create a sample of the sine wave by using RawSample and providing the sine_wave we created.

Inside our loop, we check to see if the button is pressed. The button has two states True and False. The
button.value defaults to the True state when not pressed. So, to check if it has been pressed, we're looking for the
False state. So, we check to see if not button.value which is the equivalent of not True, or False.

Once the button is pressed, we play the sample we created and we loop it. The time.sleep(1) tells it to loop (play) for
1second. Then we stop it after 1 second is up. You can increase or decrease the length of time it plays by increasing
or decreasing the number of seconds provided to time.sleep() . Try changing it from 1 to 0.5. Now try changing it to
2 . You can change it to whatever works for you!

That's it!

Play a Wave File

You can use any supported wave file you like. CircuitPython supports mono or stereo, at 22 KHz sample rate (or less)
and 16-bit WAV format. The MO boards support ONLY MONO. The reason for mono is that there's only one analog
output on those boards! The M4 boards support stereo as they have two outputs. The 22 KHz or less because the
circuitpython can't handle more data than that (and also it will not sound much better) and the DAC output is 10-bit so
anything over 16-bit will just take up room without better quality.

Since the WAV file must fit on the CircuitPython file system, it must be under 2 MB.

|:| CircuitPython does not support OGG or MP3. Just WAV!

We have a detailed guide on how to generate WAV files here (https://adafru.it/s8f).
We've included the one we used here. Download it and copy it to your board.
https://adafru.it/BQF
https://adafru.it/BQF

We're going to play the wave file for 6 seconds, pause it, wait for a button to be pressed, and then resume the file to
play through to the end. Then it loops back to the beginning and starts again! Let's take a look.

Copy and paste the following code into code.py using your favorite editor, and save the file.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 23 of 95

https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://cdn-learn.adafruit.com/assets/assets/000/057/463/original/StreetChicken.wav?1531255658

import time
import audioio
import board
import digitalio

button = digitalio.DigitalInOut(board.Al)
button.switch to input(pull=digitalio.Pull.UP)

wave file = open("StreetChicken.wav", "rb")
wave = audioio.WaveFile(wave file)
audio = audioio.AudioOut(board.A0)

while True:
audio.play(wave)

This allows you to do other things while the audio plays!
t = time.monotonic()
while time.monotonic() - t < 6:

pass

audio.pause()
print("Waiting for button press to continue!")
while button.value:
pass
audio.resume()
while audio.playing:
pass
print("Done!")

First we create the button object, assign it to pin Al, and set it as an input with a pull-up.

Next we then open the file, "StreetChicken.wav" as areadable binary and store the file objectin wave_file which is
what we use to actually read audio from: wave_file = open("StreetChicken.wav", "rb").

Now we will ask the audio playback system to load the wave data from the file wave = audioio.WaveFile(wave_file)
and finally request that the audio is played through the AO analog output pin audio = audioio.AudioOut(board.A0) .

The audio file is now ready to go, and can be played at any time with audio.play(wave) !
Inside our loop, we start by playing the file.

Next we have the block that tells the code to wait 6 seconds before pausing the file. We chose to go with using
time.monotonic() because it's non-blocking which means you can do other things while the file is playing, like control
servos or NeoPixels! At any given point in time, time.monotonic() is equal to the number seconds since your board
was last power-cycled. (The soft-reboot that occurs with the auto-reload when you save changes to your CircuitPython
code, or enter and exit the REPL, does not start it over.) When it is called, it returns a number with a decimal. When you
assign time.monotonic() to a variable, that variable is equal to the number of seconds that time.monotonic() was
equal to at the moment the variable was assigned. You can then call it again and subtract the variable from
time.monotonic() to get the amount of time that has passed. For more details, check out this

example (https://adafru.it/BIT).

So, we assign t = time.monotonic() to get a starting point. Then we say pass, or "do nothing" until the difference
between t and time.monotonic() is greater than 6 seconds. In other words, continue playing until 6 seconds passes.
Remember, you can add in other code here to do other things while you're playing audio for 6 seconds.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 24 of 95

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example

Then we pause the audio and print to the serial console, "Waiting for button press to continue!"

Now we're going to wait for a button press in the same way we did for playing the generated tone. We're saying while
button.value , or while the button is returning True, pass. Once the button is pressed, it returns False, and this tells
the code to continue.

Once the button is pressed, we resume playing the file. We tell it to finish playing saying while audio.playing: pass.
Finally, we print to the serial console, "Done!"

You can do this with any supported wave file, and you can include all kinds of things in your project while the file is
playing. Give it a try!

Wire It Up

Along with your microcontroller board, we're going to be using:

Breadboard-Friendly 3.5mm Stereo Headphone Jack

OUT OF STOCK

Tactile Switch Buttons (12mm square, 6mm tall) x 10 pack

$2.50

IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 25 of 95

https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119

Panel Mount 10K potentiometer (Breadboard Friendly)

OUT OF STOCK

Out Of Stock

100uF 16V Electrolytic Capacitors - Pack of 10

$1.95

IN STOCK

Add To Cart

Full sized breadboard

$5.95

IN STOCK

Add To Cart

Premium Male/Male Jumper Wires - 20 x 6" (150mm)

$1.95

IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 26 of 95

https://www.adafruit.com/product/562
https://www.adafruit.com/product/562
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/239
https://www.adafruit.com/product/239
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957

And to make it easier to wire up the Circuit Playground Express:

Small Alligator Clip to Male Jumper Wire Bundle - 6 Pieces

$3.95

IN STOCK

Add To Cart

Button switches with four pins are really two pairs of pins. When wiring up a button switch with four pins, the easiest
way to verify that you're wiring up the correct pins is to wire up opposite corners of the button switch. Then there's no
chance that you'll accidentally wire up the same pin twice.

Here are the steps you're going to follow to wire up these components:

® Connect the ground pin on your board to a ground rail on the breadboard because you'll be connecting all three
components to ground.

® Connect one pin on the button switch to pin A1 on your board, and the opposite pin on the button switch to the

ground rail on the breadboard.

Connect the left and right pin on the audio jack to each other.

Connect the center pin on the audio jack to the ground rail on the breadboard.

Connect the left pin to the negative side of a 100mF capacitor.

Connect the positive side of the capacitor to the center pin on the potentiometer.

Connect the right pin on the potentiometer to pin AO on your board.

Connect the left pin of the potentiometer to the ground rail on the breadboard.

The list below shows wiring diagrams to help with finding the correct pins and wiring up the different components. The
ground wires are black. The wire for the button switch is yellow. The wires involved with audio are blue.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 27 of 95

https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448

Wiring is the same for the M4 versions of the boards as
it is for the MO versions. Follow the same image for both.

Use a breadboard to make your wiring neat and tidy!

TERK

]

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 28 of 95

https://learn.adafruit.com/assets/57479
https://learn.adafruit.com/assets/57576
https://learn.adafruit.com/assets/57577

Circuit Playground Express is wired electrically the
same as the ltsyBitsy/Feather/Metro above but we use
alligator clip to jumper wires instead of plain jumpers

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 29 of 95

https://learn.adafruit.com/assets/57486

CircuitPython PWM ﬁ adafruit learning system

Your board has pulseio support, which means you can PWM LEDs, control servos, beep piezos, and manage "pulse
train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an AO pin which is 'true' analog out and
does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

import time
import board
import pulseio

led = pulseio.PWMOut(board.D13, frequency=5000, duty cycle=0)

while True:
for i in range(100):
PWM LED up and down
if i < 50:
led.duty cycle = int(i * 2 * 65535 / 100) # Up
else:
led.duty cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
time.sleep(0.01)

Create a PWM Output
led = pulseio.PWMOut(board.D13, frequency=5000, duty cycle=0)

Since we're using the onboard LED, we'll call the object led, use pulseio.PWMOut to create the output and pass in
the D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50, it PWMs the LED brightness up,
and when the range is above 50, it PWMs the brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of time. Otherwise it happens too quickly
for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you want to make some beeps with a
piezo, you'll need to vary the frequency.

The following example uses pulseio to make a series of tones on a piezo.

To use with any of the MO boards, no changes to the following code are needed.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 30 of 95

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the
piezo = pulseio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True) line and uncomment
the piezo = pulseio.PWMOut(board.Al, duty cycle=0, frequency=440, variable_frequency=True) line. A2 is not a
supported PWM pin on the M4 boards!

|:| Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +

space from the beginning of the line.

import time
import board
import pulseio

For the MO boards:
piezo = pulseio.PWMOut(board.A2, duty cycle=0, frequency=440, variable frequency=True)

For the M4 boards:
piezo = pulseio.PWMOut(board.Al, duty cycle=0, frequency=440, variable frequency=True)

while True:

for f in (262, 294, 330, 349, 392, 440, 494, 523):
piezo.frequency = f
piezo.duty cycle = 65536 // 2 # On 50%
time.sleep(0.25) # On for 1/4 second
piezo.duty cycle = 0 # Off
time.sleep(0.05) # Pause between notes

time.sleep(0.5)

If you have simpleio library loaded into your /lib folder on your board, we have a nice little helper that makes a tone

for you on a piezo with a single command.
To use with any of the MO boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the
simpleio.tone(board.A2, f, 0.25) line and uncomment the simpleio.tone(board.Al, f, 0.25) line. A2 is not a
supported PWM pin on the M4 boards!

import time
import board
import simpleio

while True:

for f in (262, 294, 330, 349, 392, 440, 494, 523):
For the MO boards:
simpleio.tone(board.A2, f, 0.25) # on for 1/4 second
For the M4 boards:
simpleio.tone(board.Al, f, 0.25) # on for 1/4 second
time.sleep(0.05) # pause between notes

time.sleep(0.5)

As you can see, it's much simpler!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 31 of 95

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo to pin A2 on the MO boards or A1
on the M4 boards, and the other leg to ground. It doesn't matter which leg is connected to which pin. They're
interchangeable!

- & & & a & & & & & A & & & & P T

Circuit Playground Express

Use alligator clips to attach A2 and any one of the GND
to different legs of the piezo.

CPX has PWM on the following pins: A1, A2, A3, A6, RX,
LIGHT, A8, TEMPERATURE, A9, BUTTON_B, D5,
SLIDE_SWITCH, D7, D13, REMOTEIN, IR_RX,
REMOTEOQOUT, IR_TX, IR_PROXIMITY,
MICROPHONE_CLOCK, MICROPHONE_DATA,
ACCELEROMETER_INTERRUPT,
ACCELEROMETER_SDA, ACCELEROMETER_SCL,
SPEAKER_ENABLE.

There is NO PWM on: AO, SPEAKER, A4, SCL, A5, SDA,
A7, TX, BUTTON_A, D4, NEOPIXEL, D8, SCK, MOSI,
MISO, FLASH_CS.

Trinket MO

Note: A2 on Trinket is also labeled Digital "0"!

Use jumper wires to connect GND and DO to different
legs of the piezo.

Trinket has PWM available on the following pins: DO, A2,
SDA, D2, A1, SCL, MISO, D4, A4, TX, MOSI, D3, A3, RX,
SCK, D13, APA102_MOSI, APA102_SCK.

There is NO PWM on: AO, D1.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 32 of 95

https://learn.adafruit.com/assets/51861
https://learn.adafruit.com/assets/51864

Gemma MO

Use alligator clips to attach A2 and GND to different legs
on the piezo.

Gemma has PWM available on the following pins: A1,
D2, RX, SCL, A2, DO, TX, SDA, L, D13, APA102_MOSI,
APA102_SCK.

fritzing

There is NO PWM on: AO, D1.

Feather MO Express

Use jumper wires to attach A2 and one of the two GND
to different legs of the piezo.

Feather MO Express has PWM on the following pins: A2,
A3, A4, SCK, MOSI, MISO, DO, RX, D1, TX, SDA, SCL, D5,
D6, D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: AO, A1, A5.

Feather M4 Express

Use jumper wires to attach A1 and one of the two GND
to different legs of the piezo.

To use A1, comment out the current pin setup line, and
uncomment the line labeled for the M4 boards. See the
details above!

Feather M4 Express has PWM on the following pins: A1,
A3, SCK, DO, RX, D1, TX, SDA, SCL, D4, D5, D6, D9, D10,
D11, D12, D13.

fritzing

There is NO PWM on: AO, A2, A4, A5, MOSI, MISO.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 33 of 95

https://learn.adafruit.com/assets/51866
https://learn.adafruit.com/assets/51868
https://learn.adafruit.com/assets/57590

ItsyBitsy MO Express

Use jumper wires to attach A2 and G to different legs of
the piezo.

ItsyBitsy MO Express has PWM on the following pins: DO,
RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11,
D12, D13, L, A2, A3, A4, MOSI, MISO, SCK, SCL, SDA,
APA102_MOSI, APA102_SCK.

L

There is NO PWM on: AO, A1, A5.

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to different legs of
the piezo.

To use A1, comment out the current pin setup line, and
uncomment the line labeled for the M4 boards. See the
details abovel!

ItsyBitsy M4 Express has PWM on the following pins: A1,
DO, RX, D1, TX, D2, D4, D5, D7, D9, D10, D11, D12, D13,
SDA, SCL.

fritzing

There is NO PWM on: A2, A3, A4, A5, D3, SCK, MOSI,
MISO.

Metro MO Express

Use jumper wires to connect A2 and any one of the
GND to different legs on the piezo.

Metro MO Express has PWM on the following pins: A2,
A3, A4, DO, RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9,
D10, D11, D12, D13, SDA, SCL, NEOPIXEL, SCK, MOSI,
MISO.

There is NO PWM on: AO, A1, A5, FLASH_CS.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 34 of 95

https://learn.adafruit.com/assets/51870
https://learn.adafruit.com/assets/57591
https://learn.adafruit.com/assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any one of the GND
to different legs on the piezo.

To use A1, comment out the current pin setup line, and
uncomment the line labeled for the M4 boards. See the
details above!

Metro M4 Express has PWM on: A1, A5, DO, RX, D1, TX,
D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, SDA,
SCK, MOSI, MISO

There is No PWM on: AO, A2, A3, A4, SCL, AREF,
NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script! It attempts to setup PWM on
every pin available, and lets you know which ones work and which ones don't. Check it out!

import board
import pulseio

for pin name in dir(board):
pin = getattr(board, pin name)
try:
p = pulseio.PWMOut(pin)
p.deinit()
print("PWM on:", pin name) # Prints the valid, PWM-capable pins!
except ValueError: # This is the error returned when the pin is invalid.

print("No PWM on:", pin name) # Prints the invalid pins.
except RuntimeError: # Timer conflict error.
print("Timers in use:", pin name) # Prints the timer conflict pins.

except TypeError: # Error returned when checking a non-pin object in dir(board).
pass # Passes over non-pin objects in dir(board).

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 35 of 95

https://learn.adafruit.com/assets/53102

* adafruit learning system
CircuitPython Servo

In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio calls to set
the frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more elegant and easy!

So, instead we will use adafruit motor which manages servos for you quite nicely! adafruit motor is a library so be
sure to grab it from the library bundle if you have not yet (https://adafru.it/zdx)! If you need help installing the library,
check out the CircuitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

® A standard hobby servo - the horn moves 180 degrees (90 degrees in each direction from zero degrees).

® A continuous servo - the horn moves in full rotation like a DC motor. Instead of an angle specified, you set a
throttle value with 1.0 being full forward, 0.5 being half forward, O being stopped, and -1 being full reverse, with
other values between.

Servo Wiring

|:| Servos will only work on PWM-capable pins! Check your board details to verify which pins have PWM outputs.

The connections for a servo are the same for standard servos and continuous rotation servos.
Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than that, you'll need
an external battery pack. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1 or A2 but you can use any PWM-
capable pin.

For example, to wire a servo to Trinket, connect the
ground wire to GND, the power wire to USB, and the
signal wire to 0.

LE R RN ENEENRN]
. 8 B B B 8 B 8 88

Remember, A2 on Trinket is labeled "0".

LSS I O A O O NN A

E.‘!-___—#"'"""..ZZ

fritzing

LIE
- .
LR
- .
LI

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 36 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/assets/51927

For Gemma, use jumper wire alligator clips to connect
the ground wire to GND, the power wire to VOUT, and
the signal wire to A2.

For Circuit Playground Express and Circuit Playground
Bluefruit, use jumper wire alligator clips to connect the

ground wire to GND, the power wire to VOUT, and the

signal wire to A2.

For boards like Feather MO Express, ItsyBitsy MO
Express and Metro MO Express, connect the ground

wire to any GND, the power wire to USB or 5V, and the
signal wire to A2.

LR I
L B W

- oo - L

" " " ow oW oW L L

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 37 of 95

https://learn.adafruit.com/assets/51928
https://learn.adafruit.com/assets/51991
https://learn.adafruit.com/assets/51929

For the Metro M4 Express, ItsyBitsy M4 Express and
the Feather M4 Express, connect the ground wire to
any G or GND, the power wire to USB or 5V, and the
signal wire to A1.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from O degrees to 180 degrees (-90 to 90 degrees)
and back:

import time

import board

import pulseio

from adafruit motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, duty cycle=2 ** 15, frequency=50)

Create a servo object, my servo.
my servo = servo.Servo(pwm)

while True:
for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
my servo.angle = angle
time.sleep(0.05)
for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
my servo.angle = angle
time.sleep(0.05)

Continuous Servo Code
There are two differences with Continuous Servos vs. Standard Servos:

1. The servo object is created like my_servo = servo.ContinuousServo(pwm) instead of my servo =
servo.Servo(pwm)

2. Instead of using myservo.angle, you use my servo.throttle using a throttle value from 1.0 (full on) to 0.0
(stopped) to -1.0 (full reverse). Any number between would be a partial speed forward (positive) or reverse
(negative). This is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for 2 seconds, then stops for 4
seconds.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 38 of 95

https://learn.adafruit.com/assets/53104

Continuous Servo Test Program for CircuitPython
import time

import board

import pulseio

from adafruit motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, frequency=50)

Create a servo object, my servo.
my servo = servo.ContinuousServo (pwm)

while True:

print("forward")
my servo.throttle
time.sleep(2.0)
print("stop")
my_servo.throttle
time.sleep(2.0)
print("reverse")
my_servo.throttle
time.sleep(2.0)
print("stop")

my servo.throttle
time.sleep(4.0)

1.0

0.0

-1.0

0.0

Pretty simple!

Note that we assume that O degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider than
the official1-2ms pulse widths. If you have a servo that has a different range you can initialize the servo object with a

different min_pulse and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

For more detailed information on using servos with CircuitPython, check out the CircuitPython section of the servo

guide (https://adafru.it/Bei)!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 39 of 95

file:///using-servos-with-circuitpython/circuitpython

* adafruit learning system
CircuitPython Cap Touch

Every CircuitPython designed MO board has capacitive touch capabilities. This means each board has at least one pin
that works as an input when you touch it! The capacitive touch is done completely in hardware, so no external
resistors, capacitors or ICs required. Which is really nice!

|:| Capacitive touch is not supported on the M4 Express boards.

This example will show you how to use a capacitive touch pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

import time

import board
import touchio

touch pad = board.A® # Will not work for Circuit Playground Express!
touch pad = board.Al # For Circuit Playground Express

touch = touchio.TouchIn(touch pad)

while True:
if touch.value:
print("Touched!")
time.sleep(0.05)

Create the Touch Input

First, we assign the variable touch_pad to a pin. The example uses AO, so we assign touch_pad = board.A0 . You can
choose any touch capable pin from the list below if you'd like to use a different pin. Then we create the touch object,
name it touch and attach it to touch_pad.

To use with Circuit Playground Express, comment out touch_pad = board.A0 and uncomment touch_pad =
board.Al .

Main Loop

Next, we create a loop that checks to see if the pin is touched. If it is, it prints to the serial console. Connect to the
serial console to see the printed results when you touch the pin!

|:| Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +

space from the beginning of the line.

No extra hardware is required, because you can touch the pin directly. However, you may want to attach alligator clips
or copper tape to metallic or conductive objects. Try metal flatware, fruit or other foods, liquids, aluminum foil, or other
items lying around your desk!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 40 of 95

You may need to reload your code or restart your board after changing the attached item because the capacitive touch
code "calibrates" based on what it sees when it first starts up. So if you get too many touch responses or not enough,
reload your code through the serial console or eject the board and tap the reset button!

Find the Pin(s)

Your board may have more touch capable pins beyond AO. We've included a list below that helps you find AO (or Alin
the case of CPX) for this example, identified by the magenta arrow. This list also includes information about any other
pins that work for touch on each board!

To use the other pins, simply change the number in AO to the pin you want to use. For example, if you want to use A3
instead, your code would start with touch_pad = board.A3 .

If you would like to use more than one pin at the same time, your code may look like the following. If needed, you can
modify this code to include pins that work for your board.

CircuitPython Demo - Cap Touch Multiple Pins
Example does NOT work with Trinket MO!

import time

import board
import touchio

touch Al touchio.TouchIn(board.Al) # Not a touch pin on Trinket MO!
touch A2 = touchio.TouchIn(board.A2) # Not a touch pin on Trinket MO!

while True:
if touch_Al.value:
print("Touched Al!")
if touch_A2.value:
print("Touched A2!")
time.sleep(0.05)

This example does NOT work for Trinket MO! You must change the pins to use with this board. This example

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 41 of 95

|:| only works with Gemma, Circuit Playground Express, Feather MO Express, Metro MO Express and ltsyBitsy

MO Express.

Use the list below to find out what pins you can use with your board. Then, try adding them to your code and have fun!

Trinket MO
Rst 3 4 GndBat . There are three touch capable pins on Trinket: AO, A3,
L W N and A4.

- adafruit
r T

11 . * Remember, AO is labeled """ on Trinket MO!
11 . 3 E
3V 2 Inn 0 USB

205000

Gemma MO

There are three pins on Gemma, in the form of alligator-
clip-friendly pads, that work for touch input: AO, A1 and
A2.

Feather MO Express

There are 6 pins on the Feather that have touch
capability: AO - A5.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 42 of 95

https://learn.adafruit.com/assets/51773
https://learn.adafruit.com/assets/51774
https://learn.adafruit.com/assets/51775

ItsyBitsy MO Express

There are 6 pins on the ItsyBitsy that have touch
capability: AO - A5.

Metro MO Express

e 000909999 Sodosede

There are 6 pins on the Metro that have touch
capability: AO - A5.

Analog In

Circuit Playground Express

Circuit Playground Express has seven touch capable
pins! You have A1 - A7 available, in the form of alligator-
clip-friendly pads. See the CPX guide Cap Touch
section (https://adafru.it/ANC) for more information on
using these pads for touch!

Remember: AO does NOT have touch capabilities on
CPX.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 43 of 95

https://learn.adafruit.com/assets/51776
https://learn.adafruit.com/assets/51777
https://learn.adafruit.com/assets/51993
file:///adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch

ﬁ adafruit learning system
CircuitPython Internal RGB LED

Every board has a built in RGB LED. You can use CircuitPython to control the color and brightness of this LED. There
are two different types of internal RGB LEDs: DotStar (https://adafru.it/kDg) and NeoPixel (https://adafru.it/Bej). This
section covers both and explains which boards have which LED.

The first example will show you how to change the color and brightness of the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file.

import time
import board

For Trinket MO, Gemma MO, ItsyBitsy MO Express, and ItsyBitsy M4 Express

import adafruit_dotstar

led = adafruit dotstar.DotStar(board.APA102 SCK, board.APA102 MOSI, 1)

For Feather MO Express, Metro MO Express, Metro M4 Express, and Circuit Playground Express
import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:
led[0] = (255, 0, 0)
time.sleep(0.5)
led[0] = (0, 255, 0)
time.sleep(0.5)
led[0] = (0, 0, 255)
time.sleep(0.5)

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a NeoPixel, there is only one pin
necessary, and we have called it NEOPIXEL for easier use. In the case of a DotStar, however, there are two pins
necessary, and so we use the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 44 of 95

file:///adafruit-dotstar-leds/overview
file:///adafruit-neopixel-uberguide/the-magic-of-neopixels

single onboard LED, the last thing we do is tell it that there's only 1 LED!

Trinket MO, Gemma MO, ItsyBitsy MO Express, and ItsyBitsy M4 Express each have an onboard Dotstar LED, so no
changes are needed to the initial version of the example.

Feather MO Express, Feather M4 Express, Metro MO Express, Metro M4 Express, and Circuit Playground Express
each have an onboard NeoPixel LED, so you must comment out import adafruit_dotstar and led =
adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and uncomment import neopixel and led =
neopixel.NeoPixel(board.NEOPIXEL, 1) .

D Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +

space from the beginning of the line.

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with a number between 0 and 1,
representative of a percent from 0% to 100%. So, led.brightness = (0.3) sets the LED brightness to 30%. The default
brightness is 1 or 100%, and at it's maximum, the LED is blindingly bright! You can set it lower if you choose.

Main Loop

LED colors are set using a combination ofred, green, and blue, in the form of an (R, G, B) tuple. Each member of the
tuple is set to a number between 0 and 255 that determines the amount of each color present. Red, green and blue in
different combinations can create all the colors in the rainbow! So, for example, to set the LED to red, the tuple would
be (255, 0, 0), which has the maximum level of red, and no green or blue. Green would be (0, 255, 0), etc. For the
colors between, you set a combination, such as cyan which is (0, 255, 255), with equal amounts of green and blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0), then green using (0, 255, 0), and finally
blue using (0, 0, 255). Next, we give it a time.sleep() so it stays each color for a period of time. We chose
time.sleep(0.5) , or half a second. Without the time.sleep() it'll flash really quickly and the colors will be difficult to
seel

Note that we set led[0]. This means the first, and in the case of most of the boards, the only LED. In CircuitPython,
counting starts at 0. So the first of any object, list, etc will be 0!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 45 of 95

Try changing the numbers in the tuples to change your LED to any color of the rainbow. Or, you can add more lines
with different color tuples to add more colors to the sequence. Always add the time.sleep(), but try changing the
amount of time to create different cycle animations!

Making Rainbows (Because Who Doesn't Love 'Em!)

ALLARRRE= -

b, |

Coding a rainbow effect involves a little math and a helper function called wheel . For details about how wheel works,
see this explanation here (https://adafru.it/Bek)!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 46 of 95

file:///hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#wheel-explained

The last example shows how to do a rainbow animation on the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file. Remember to comment and
uncomment the right lines for the board you're using, as explained above (https://adafru.it/Bel).

import time
import board

For Trinket MO, Gemma MO, ItsyBitsy MO Express and ItsyBitsy M4 Express

import adafruit dotstar

led = adafruit dotstar.DotStar(board.APA102 SCK, board.APA102 MOSI, 1)

For Feather MO Express, Metro MO Express, Metro M4 Express and Circuit Playground Express
import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

def wheel(pos):
Input a value O to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:
return 0, 0, 0

if pos < 85:

return int(255 - pos * 3), int(pos * 3), O
if pos < 170:

pos -= 85

return 0, int(255 - pos * 3), int(pos * 3)
pos -= 170

return int(pos * 3), 0, int(255 - (pos * 3))

led.brightness = 0.3

i=20
while True:
i=(i+1) %256 # run from 0 to 255
led. fill(wheel(i))
time.sleep(0.1)

We add the wheel function in after setup but before our main loop.
And right before our main loop, we assign the variable i = 0, so it's ready for use inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again repeatedly. We use this value to
cycle wheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a higher number for a slower rainbow or a
lower number for a faster onel

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0]. This means it turns on all the LEDs, which in the current code is only
one. So why bother with fill ? Well, you may have a Circuit Playground Express, which as you can see has TEN
NeoPixel LEDs built in. The examples so far have only turned on the first one. If you'd like to do a rainbow on all ten
LEDs, change the 1 in:

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 47 of 95

file:///circuitpython-essentials/circuitpython-internal-rgb-led#create-the-led

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 soitreads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch the rainbow go! You can make

the same 1 to 10 change to the previous examples as well, and use led.fill to light up all the LEDs in the colors you
chose! For more details, check out the NeoPixel section of the CPX guide (https://adafru.it/Bem)!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 48 of 95

file:///adafruit-circuit-playground-express/circuitpython-neopixel

ﬁ adafruit learning system
CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded RGB lights
have the controller inside the LED, so you just push the RGB data and the LEDs do all the work for you. They're a
perfect match for CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs
without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the neopixel.mpy library if you don't already have it in your /lib folder! You can get it from the CircuitPython
Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython Libraries
page (https://adafru.it/ABU).

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA INPUT or DIN side. Plugging into
the DATA OUT or DOUT side is a common mistake! The connections are labeled and some formats have arrows to
indicate the direction the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

® On Gemma MO and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.

® On Trinket MO, Feather MO Express, Feather M4 Express, ItsyBitsy MO Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.

® On Metro MO Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 49 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

If the power to the NeoPixels is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

|:| Do not use the VIN pin directly on Metro MO Express or Metro M4 Express! The voltage can reach 9V and this

can destroy your NeoPixels!

fritzing

|:| Note that the wire ordering on your NeoPixel strip or shape may not exactly match the diagram above. Check

the markings to verify which pin is DIN, 5V and GND

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

CircuitPython demo - NeoPixel
import time

import board

import neopixel

pixel pin = board.Al
num pixels = 8

pixels = neopixel.NeoPixel(pixel pin, num pixels, brightness=0.3, auto write=False)

def wheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:
return (0, 0, 0)

if pos < 85:

return (255 - pos * 3, pos * 3, 0)
if pos < 170:

pos -= 85

return (0, 255 - pos * 3, pos * 3)
pos -= 170

return (pos * 3, 0, 255 - pos * 3)

def color chase(color, wait):
for i in range(num pixels):
pixels[i] = color

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 50 of 95

fime.sleep(wait)
pixels.show()
time.sleep(0.5)

def rainbow cycle(wait):
for j in range(255):
for i in range(num pixels):
rc index = (i * 256 // num pixels) + j
pixels[i] = wheel(rc index & 255)
pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
pixels.fill(RED)
pixels.show()
Increase or decrease to change the speed of the solid color change.
time.sleep(1)
pixels.fill(GREEN)
pixels.show()
time.sleep(1l)
pixels.fill(BLUE)
pixels.show()
time.sleep(1l)

color_chase(RED, 0.1) # Increase the number to slow down the color chase
color chase(YELLOW, 0.1)

color chase(GREEN, 0.1)

color chase(CYAN, 0.1)

color chase(BLUE, 0.1)

color chase(PURPLE, 0.1)

rainbow cycle(0) # Increase the number to slow down the rainbow

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required arguments and two optional
arguments. You are required to set the pin you're using to drive your NeoPixels and provide the number of pixels you
intend to use. You can optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the variable pixel pin to the pin you'd
like to use, in our case board.Al .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this
example, we're using a strip of 8.

We've chosen to set brightness=0.3, or 30%.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 51 of 95

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is
the default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to

set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data
to your pixels. This makes your code more complicated, but it can make your LED animations faster!

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects found in this code. First is wheel()
which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color _chase() which requires you
to provide a color and the amount of time in seconds you'd like between each step of the chase. Next we have
rainbow_cycle() , which requires you to provide the mount of time in seconds you'd like the animation to take. Last,
we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the code,
as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section of the
CircuitPython Internal RGB LED page (https://adafru.it/Bel).

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every NeoPixel we're using to red,
green and blue for 1 second each. Then we call color_chase(), one time for each color on our list with 0.1 second
delay between setting each subsequent LED the same color during the chase. Last we call rainbow_cycle(0) , which
means the animation is as fast as it can be. Increase both of those numbers to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to complete.

|:| We have a ton more information on general purpose NeoPixel know-how at our NeoPixel UberGuide

https://learn.adafruit.com/adafruit-neopixel-uberguide

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and blue. They're also available in
RGBW, which includes four LEDs, red, green, blue and white. The code for RGBW NeoPixels is a little bit different than
RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up and the LEDs will be the incorrect
color even though they may appear to be changing. This is because NeoPixels require a piece of information for each
available color (red, green, blue and possibly white).

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require FOUR pieces of information to work.
So when you create the LED object for RGBW LEDs, you'll include bpp=4, which sets bits-per-pixel to four (the four
pieces of information!).

Then, you must include an extra number in every color tuple you create. For example, red will be (255, 0, 0, 0). This is
how you send the fourth piece of information. Check out the example below to see how our NeoPixel code looks for
using with RGBW LEDs!

CircuitPython demo - NeoPixel RGBW
import time

import board
import neopixel

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 52 of 95

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

pixel pin = board.Al
num pixels = 8

pixels = neopixel.NeoPixel(pixel pin, num pixels, brightness=0.3, auto write=False,

def

def

def

RED

pixel order=(1, 0, 2, 3))

wheel(pos):
Input a value O to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:
return (0, 0, 0, 0)
if pos < 85:
return (255 - pos * 3, pos * 3, 0, 0)
if pos < 170:
pos -= 85
return (0, 255 - pos * 3, pos * 3, 0)
pos -= 170
return (pos * 3, 0, 255 - pos * 3, 0)

color chase(color, wait):

for i in range(num pixels):
pixels[i] = color
time.sleep(wait)
pixels.show()

time.sleep(0.5)

rainbow cycle(wait):
for j in range(255):
for i in range(num pixels):
rc_index = (i * 256 // num pixels) + j
pixels[i] = wheel(rc index & 255)
pixels.show()
time.sleep(wait)

= (255, 0, 0, 0)

YELLOW = (255, 150, 0, 0)

GREEN =
CYAN =
BLUE =
PURPLE

(0, 255, 0, 0)
0, 255, 255, 0)
0, 0, 255, 0)

(
(0,
= (180, 0, 255, 0)

while True:

pixels.fill(RED)

pixels.show()

Increase or decrease to change the speed of the solid color change.
time.sleep(1l)

pixels.fill(GREEN)

pixels.show()

time.sleep(1)

pixels.fill(BLUE)

pixels.show()

time.sleep(1)

color chase(RED, 0.1) # Increase the number to slow down the color chase

color chase(YELLOW, 0.1)
color chase(GRFFN. 0.1)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 53 of 95

- mm o mrrmm — g = e - -

color:chase(CYAN, 0.1)
color chase(BLUE, 0.1)
color chase(PURPLE, 0.1)

rainbow cycle(0) # Increase the number to slow down the rainbow

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the Docs (https://adafru.it/C5m).

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 54 of 95

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

ﬁ- adafruit learning system
CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much faster with
hardware SPI andthey have a faster PWM cycle so they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will automatically switch over to
hardware SPI. If you use hardware SPI then you'll get 4 MHz clock rate (that would mean updating a 64 pixel strand in
about 500uS - that's 0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz, 1000 times as
slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs
without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA INPUT or DI and CLOCK INPUT or CI
side. Plugging into the DATA OUT/DO or CLOCK OUT/CO side is a common mistake! The connections are labeled and
some formats have arrows to indicate the direction the data must flow. Always verify your wiring with a visual
inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

® On Gemma MO and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.

® On Trinket MO, Feather MO Express, Feather M4 Express, ItsyBitsy MO Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.

® On Metro MO Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 55 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

fritzing

Note that the wire ordering on your DotStar strip or shape may not exactly match the diagram above. Check

the markings to verify which pin is DIN, CIN, 5V and GND

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

CircuitPython demo - Dotstar
import time

import adafruit dotstar

import board

num pixels = 30
pixels = adafruit dotstar.DotStar(board.Al, board.A2, num pixels, brightness=0.1, auto write=False)

def wheel(pos):

def

def

Input a value 0 to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:

return (0, 0, 0)

if pos < 85:

return (255 - pos * 3, pos * 3, 0)
if pos < 170:

pos -= 85

return (0, 255 - pos * 3, pos * 3)
pos -= 170

return (pos * 3, 0, 255 - pos * 3)

color fill(color, wait):
pixels.fill(color)
pixels.show()
time.sleep(wait)

slice alternating(wait):

pixels[::2] = [RED] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[1::2] = [ORANGE] * (num pixels // 2)

PR I A

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 56 of 95

def

def

pLixeLs.snowy)

time.sleep(wait)

pixels[::2] = [YELLOW] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[1::2] = [GREEN] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[::2] = [TEAL] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[1::2] = [CYAN] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[::2] = [BLUE] * (num_pixels // 2)
pixels.show()

time.sleep(wait)

pixels[1l::2] = [PURPLE] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[::2] = [MAGENTA] * (num pixels // 2)
pixels.show()

time.sleep(wait)

pixels[1l::2] = [WHITE] * (num_pixels // 2)
pixels.show()

time.sleep(wait)

slice rainbow(wait):

pixels[::6] = [RED] * (num pixels // 6)
pixels.show()

time.sleep(wait)

pixels[1::6] = [ORANGE] * (num pixels // 6)
pixels.show()

time.sleep(wait)

pixels[2::6] = [YELLOW] * (num pixels // 6)
pixels.show()

time.sleep(wait)

pixels[3::6] = [GREEN] * (num pixels // 6)
pixels.show()

time.sleep(wait)

pixels[4::6] = [BLUE] * (num pixels // 6)
pixels.show()

time.sleep(wait)

pixels[5::6] = [PURPLE] * (num pixels // 6)
pixels.show()

time.sleep(wait)

rainbow cycle(wait):
for j in range(255):
for i in range(num pixels):
rc index = (i * 256 // num pixels) + j
pixels[i] = wheel(rc_index & 255)
pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 57 of 95

ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:

Change this number to change how long it stays on each solid color.

color fill(RED, 0.5)

color fill(YELLOW, 0.5)

color fill(ORANGE, 0.5)

color fill(GREEN, 0.5)

color fill(TEAL, 0.5)
color fill(CYAN, 0.5)
color fill(BLUE, 0.5)
color fill(PURPLE, 0.5)
color fill(MAGENTA, 0.5)
color fill(WHITE, 0.5)

Increase or decrease this to speed up or slow down the animation.
slice alternating(0.1)

color fill(WHITE, 0.5)

Increase or decrease this to speed up or slow down the animation.
slice rainbow(0.1)

time.sleep(0.5)

Increase this number to slow down the rainbow animation.
rainbow cycle(0)

|:| We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars respond faster when using

hardware SPI!

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required arguments and two optional
arguments. You are required to set the pin you're using for data, set the pin you'll be using for clock, and provide the
number of pixels you intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To set the pins, include the pin
names at the beginning of the object creation, in this case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this
example, we're using a strip of 72 .

We've chosen to set brightness=0.1, or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is
the default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 58 of 95

set auto write=False . If you set auto write=False , you must include pixels.show() each time you'd like to send data
to your pixels. This makes your code more complicated, but it can make your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in this code.

Firstis wheel() which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color fill() which
requires you to provide a color and the length of time you'd like it to be displayed. Next, are slice_alternating() ,
slice_rainbow() , and rainbow_cycle() which require you to provide the amount of time in seconds you'd between
each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the
code, as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section
of the CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use math to light up LEDs in repeating
patterns. slice_alternating() first lights up the even number LEDs and then the odd number LEDs and repeats this
back and forth. slice_rainbow() lights up every sixth LED with one of the six rainbow colors until the strip is filled. Both
use our handy color variables. This slice code only works when the total number of LEDs is divisible by the slice size, in
our case 2 and 6. DotStars come in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that
you cut them into different sized strips, the code in this example may not work without modification. However, as long
as you provide a total number of LEDs that is divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color _fill() once for each color on our list and sets each to hold for 0.5 seconds. You
can change this number to change how fast each color is displayed. Next, we call slice_alternating(0.1) , which means
there's a 0.1 second delay between each change in the animation. Then, we fill the strip white to create a clean
backdrop for the rainbow to display. Then, we call slice_rainbow(0.1), for a 0.1 second delay in the animation. Last we
call rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or decrease either of these numbers to
speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to complete.

|:| We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide

https://learn.adafruit.com/adafruit-dotstar-leds

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're using hardware SPI. On some of
the boards, there are HW SPI pins directly available in the form of MOSI and SCK. However, hardware SPI is available
on more than just those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on the board you're using, copy and
paste the code into code.py using your favorite editor, and save the file. Then connect to the serial console to see the
results.

To check if other pin combinations have hardware SPI, change the pin names on the line reading: if
is_hardware_SPI(board.Al, board.A2): to the pins you want to use. Then, check the results in the serial console. Super
simple!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 59 of 95

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

import board
import busio

def is hardware spi(clock pin, data pin):
try:
p = busio.SPI(clock pin, data_pin)
p.deinit()
return True
except ValueError:
return False

Provide the two pins you intend to use.
if is hardware spi(board.Al, board.A2):

print("This pin combination is hardware SPI!")
else:

print("This pin combination isn't hardware SPI.")

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the Docs (https://adafru.it/C4d).

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 60 of 95

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

ﬁ adafruit learning system
CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPSs, some sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a GPS! Note that the GPS will give
you UART data without getting a fix on your location. You can use this example right from your desk! You'll have data
to read, it simply won't include your actual location.

You'll need the adafruit_bus_device library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - USB/Serial echo

import board
import busio
import digitalio

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
data = uart.read(32) # read up to 32 bytes
print(data) # this is a bytearray type

if data is not None:
led.value = True

convert bytearray to string
data string = ''.join([chr(b) for b in data])
print(data string, end="")

led.value = False

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and board.RX, and we set the
baudrate=9600 . While these pins are labeled on most of the boards, be aware that RX and TX are not labeled on
Gemma, and are labeled on the bottom of Trinket. See the diagrams below for help with finding the correct pins on
your board.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It
will return a byte array type object if anything was received already. Note it will always return immediately because
there is an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 61 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ".join([chr(b) for b in data]) # convert bytearray to string

Your results will look something like this:

(XX] M 1.0.0.beta 15 - code.py

+)(2) (&) (@ () (@)(@) (o) (w)(2)(®

D13
n. QUTPUT

busio.UART (board . TX. board.RX, baudrate
data uart.read

data
led . value

data_string ''. join
data_string, end-""

For more information about the data you're reading and the Ultimate GPS, check out the Ultimate GPS guide:
|:| https:/learn.adafruit.com/adafruit-ultimate-gps

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma MO and Circuit Playground Express, you can use use alligator clips to connect to the Flora Ultimate GPS
Module.

For Trinket MO, Feather MO Express, Metro MO Express and ItsyBitsy MO Express, you'll need a breadboard and
jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these diagrams, the wire colors match
the same pins on each board.

® The black wire connects between the ground pins.

® The red wire connects between the power pins on the GPS and your board.
® The blue wire connects from TX on the GPS to RX on your board.

® The white wire connects from RX on the GPS to TX on your board.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 62 of 95

https://learn.adafruit.com/adafruit-ultimate-gps

Check out the list below for a diagram of your specific board!

Watch out! A common mixup with UART serial is that RX on one board connects to TX on the other! However,

sometimes boards have RX labeled TX and vice versa. So, you'll want to start with RX connected to TX, but if
that doesn't work, try the other way around!

Circuit Playground Express and Circuit Playground
Bluefruit

Connect 3.3v on your CPX to 3.3v on your GPS.
Connect GND on your CPX to GND on your GPS.
Connect RX/A6 on your CPX to TX on your GPS.

L]
L]
L]
® Connect TX/A7 on your CPX to RX on your GPS.

Trinket MO

Connect USB on the Trinket to VIN on the GPS.
Connect Gnd on the Trinket to GND on the GPS.
Connect D3 on the Trinket to TX on the GPS.
Connect D4 on the Trinket to RX on the GPS.

fritzing

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 63 of 95

https://learn.adafruit.com/assets/52309
https://learn.adafruit.com/assets/52310

Gemma MO

Connect 3vo on the Gemma to 3.3v on the GPS.
Connect GND on the Gemma to GND on the GPS.
Connect A1/D2 on the Gemma to TX on the GPS.

[]
[]
[]
® Connect A2/DO on the Gemma to RX on the GPS.

fritzing

Feather MO Express and Feather M4 Express

® Connect USB on the Feather to VIN on the GPS.
® Connect GND on the Feather to GND on the GPS.
® Connect RX on the Feather to TX on the GPS.

® Connect TX on the Feather to RX on the GPS.

L =
T O e - W

ItsyBitsy MO Express and ItsyBitsy M4 Express

® Connect USB on the ltsyBitsy to VIN on the GPS
® Connect G on the ltsyBitsy to GND on the GPS.

® Connect RX/0 on the ItsyBitsy to TX on the GPS.
® Connect TX/1 on the ltsyBitsy to RX on the GPS.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 64 of 95

https://learn.adafruit.com/assets/52311
https://learn.adafruit.com/assets/52312
https://learn.adafruit.com/assets/52324

Metro MO Express and Metro M4 Express

® Connect 5V on the Metro to VIN on the GPS.

® Connect GND on the Metro to GND on the GPS.
® Connect RX/DO on the Metro to TX on the GPS.
® Connect TX/D1on the Metro to RX on the GPS.

i
E

3

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART. Compare this to some chips like the
ESP8266 with fixed UART pins. The good news is you can use many but not a// pins. Given the large number of SAMD
boards we have, its impossible to guarantee anything other than the labeled 'TX' and 'RX". So, if you want some other
setup, or multiple UARTSs, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of RX and TX pin pairs that you can use.

These are the results from a Trinket MO, your output may vary and it might bevery long. For more details about UARTs
and SERCOMs check out our detailed guide here (https://adafru.it/Ben)

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:

RX pin: board.D2 TX pin: board.DO

RX pin: board.D4 TX pin: board.DO

RX pin: board.D3 TX pin: board.DO

RX pin: board.D13 TX pin: board.DO

RX pin: board.DB TX pin: board.D4
RX pin: board.D2 TX pin: board.D4
RX pin: board.D3 TX pin: board.D4
RX pin: board.DB TX pin: board.D13
RX pin: board.D2 TX pin: board.D13
RX pin: board.D3 TX pin: board.D13

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 65 of 95

https://learn.adafruit.com/assets/52328
file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is hardware uart(tx, rx):
try:
p = busio.UART(tx, rx)
p.deinit()
return True
except ValueError:
return False

def get unique pins():
exclude = ['NEOPIXEL', 'APA102 MOSI', 'APA102 SCK']
pins = [pin for pin in [
getattr(board, p) for p in dir(board) if p not in exclude]
if isinstance(pin, Pin)]
unique = []
for p in pins:
if p not in unique:
unique.append(p)
return unique

for tx pin in get unique pins():
for rx _pin in get unique pins():
if rx_pin is tx pin:
continue
else:
if is_hardware_uart(tx_pin, rx_pin):
print("RX pin:", rx pin, "\t TX pin:", tx pin)
else:
pass

Trinket MO: Create UART before 12C

On the Trinket MO (only), if you are using both busio.UART and busio.l2C, you must create the UART object first, e.g.:

>>> import board,busio
>>> uart = busio.UART(board.TX, board.RX)
>>> j2c¢ = busio.I2C(board.SCL, board.SDA)

Creating busio.l2C first does not work:

>>> import board,busio

>>> j2c¢ = busio.I2C(board.SCL, board.SDA)
>>> uart = busio.UART(board.TX, board.RX)
Traceback (most recent call last):

File "", line 1, in

ValueError: Invalid pins

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 66 of 95

* adafruit learning system
CircuitPython 12C

12C is a 2-wire protocol for communicating with simple sensors and devices, meaning it uses two connections for
transmitting and receiving data. There are many 12C devices available and they're really easy to use with CircuitPython.
We have libraries available for many 12C devices in the library bundle (https://adafru.it/uap). (If you don't see the sensor
you're looking for, keep checking back, more are being written all the time!)

In this section, we're going to do is learn how to scan the 12C bus for all connected devices. Then we're going to learn
how to interact with an 12C device.

We'll be using the TSL2561, a common, low-cost light sensor. While the exact code we're running is specific to the
TSL2561 the overall process is the same for just about any 12C sensor or device.

You'll need the adafruit_tsl2561.mpy library and adafruit_bus_device library folder if you don't already have it in your
/lib folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the
library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2561 lux sensor Flora and breakout. The first thing you'll want to do is get the sensor
connected so your board has 12C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2561 to your board.

For Gemma MO and Circuit Playground Express, you can use use alligator clips to connect to the Flora TSL2561 Lux
Sensor.

For Trinket MO, Feather MO Express, Metro MO Express and ltsyBitsy MO Express, you'll need a breadboard and
jumper wires to connect to the TSL2561 Lux Sensor breakout board.

We've included diagrams show you how to connect the TSL2561 to your board. In these diagrams, the wire colors
match the same pins on each board.

The black wire connects between the ground pins.

The red wire connects between the power pins on the TSL2561 and your board.
The yellow wire connects from SCL on the TSL2561 to SCL on your board.

The blue wire connects from SDA on the TSL2561 to SDA on your board.

Check out the list below for a diagram of your specific board!

Be aware that the Adafruit microcontroller boards do not have 12C pullup resistors built in! All of the Adafruit

breakouts do, but if you're building your own board or using a non-Adafruit breakout, you must add 2.2K-10K
ohm pullups on both SDA and SCL to the 3.3V.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 67 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Circuit Playground Express and Circuit Playground
Bluefruit

® Connect 3.3v on your CPX to 3.3v on your
TSL2561.

® Connect GND on your CPX to GND on your
TSL2561.

® Connect SCL/A4 on your CPX to SCL on your
TSL2561.

® Connect SDL/A5 on your CPX to SDA on your
TSL2561.

Trinket MO

® Connect USB on the Trinket to VIN on the
TSL2561.

® Connect Gnd on the Trinket to GND on the
TSL2561.

® Connect D2 on the Trinket to SCL on the TSL2561.

® Connect DO on the Trinket to SDA on the
TSL2561.

fritzing

Gemma MO

® Connect 3vo on the Gemma to 3V on the
TSL2561.

® Connect GND on the Gemma to GND on the
TSL2561.

® Connect A1/D2 on the Gemma to SCL on the
TSL2561.

® Connect A2/DO on the Gemma to SDA on the
TSL2561.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 68 of 95

https://learn.adafruit.com/assets/52413
https://learn.adafruit.com/assets/52414
https://learn.adafruit.com/assets/52415

Feather MO Express and Feather M4 Express

N e TEee
el & & @

® Connect USB on the Feather to VIN on the
TSL2561.

® Connect GND on the Feather to GND on the
TSL2561.

® Connect SCL on the Feather to SCL on the
TSL2561.

® Connect SDA on the Feather to SDA on the

TSL2561.

fritzing

ItsyBitsy MO Express and ItsyBitsy M4 Express

R R R E R W W
LI B R A

® Connect USB on the ItsyBitsy to VIN on the
TSL2561

® Connect G on the ItsyBitsy to GND on the
TSL2561.

® Connect SCL on the ItsyBitsy to SCL on the
TSL2561.

® Connect SDA on the ltsyBitsy to SDA on the

L]
-
-
-

© Adafruit Industries

LA B B L L TSL2561.

fritzing

https://learn.adafruit.com/circuitpython-essentials Page 69 of 95

https://learn.adafruit.com/assets/57598
https://learn.adafruit.com/assets/52417

L R A T

Metro MO Express and Metro M4 Express

® Connect 5V on the Metro to VIN on the TSL2561.

® Connect GND on the Metro to GND on the
TSL2561.

® Connect SCL on the Metro to SCL on the TSL2561.

® Connect SDA on the Metro to SDA on the
TSL2561.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's wired correctly. We're going to do an
I2C scan to see if the board is detected, and if it is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - I2C scan
import time

import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

while not i2c.try lock():
pass

while True:
print("I2C addresses found:", [hex(device address)

for device address in i2c.scan()])
time.sleep(2)

First we create the i2c object and provide the 12C pins, board.SCL and board.SDA .

To be able to scan it, we need to lock the 12C down so the only thing accessing it is the code. So next we include a
loop that waits until 12C is locked and then continues on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because 12C typically refers to addresses in hex form,
we've included this bit of code that formats the results into hex format: [hex(device_address) for device_address in

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 70 of 95

https://learn.adafruit.com/assets/52419

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses. We've connected the TSL2561
which has a 7-bit 12C address of 0x39. The result for this sensor is 12C addresses found: ['0x39']. If no addresses are
returned, refer back to the wiring diagrams to make sure you've wired up your sensor correctly.

|I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out how to get the data from our
sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - I2C sensor
import time

import adafruit ts12561

import board

import busio

i2c = busio.I2C(board.SCL, board.SDA)

Lock the I2C device before we try to scan
while not i2c.try lock():

pass
Print the addresses found once
print("I2C addresses found:", [hex(device address)

for device address in i2c.scan()])

Unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
ts12561 = adafruit_ts12561.TSL2561(i2c)

Use the object to print the sensor readings
while True:
print("Lux:", ts12561.1lux)
time.sleep(1.0)

This code begins the same way as the scan code. We've included the scan code so you have verification that your
sensor is wired up correctly and is detected. It prints the address once. After the scan, we unlock 12C with
i2c_unlock() so we can use the sensor for data.

We create our sensor object using the sensor library. We call it tsI2561 and provide it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we created. We add a
time.sleep(1.0), so it only prints once per second. Connect to the serial console to see the results. Try shining a light
on it to see the results change!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 71 of 95

"12C addresses found:" device_address) for device_address in i2c.scan

i2c.unlock

ts12561 - adafruit_ts12561.TSL2561 12¢

"Lux:", ts12561.1lux
time.sleep (1.0

: 182,987
x: 181.9
181.322
(: 120.073
: 113.181
1 3421.94
1 3202.94
¢ 3046.1

Where's my 12C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range of pins for I2C. On the
nRF52840, any pin can be used for I2C! Some chips, like the ESP8266, require using bitbangio, but can also use any
pins for 12C. There's some other chips that may have fixed 12C pin.

The good news is you can use many but not a// pins. Given the large number of SAMD boards we have, its impossible
to guarantee anything other than the labeled 'SDA' and 'SCL'. So, if you want some other setup, or multiple 12C
interfaces, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of SCL and SDA pin pairs that you can use.

These are the results from an ItsyBitsy MO Express. Your output may vary and it might bevery long. For more details
about 12C and SERCOMs, check out our detailed guide here (https://adafru.it/Ben).

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

SDA pin: board.D
| pin: board.A:
L d. pin: board.
in: boa pin: board.D
in: board.D13 pin: board.S
board. pin: board./
d. pin: boa

pin: board.
pin: board.A3
pin:

pin:

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 72 of 95

file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is hardware I2C(scl, sda):
try:
p = busio.I2C(scl, sda)
p.deinit()
return True
except ValueError:
return False
except RuntimeError:
return True

def get unique pins():
exclude = ['NEOPIXEL', 'APA102 MOSI', 'APA102 SCK']
pins = [pin for pin in [
getattr(board, p) for p in dir(board) if p not in exclude]
if isinstance(pin, Pin)]
unique = []
for p in pins:
if p not in unique:
unique.append(p)
return unique

for scl pin in get unique pins():
for sda pin in get unique pins():
if scl _pin is sda pin:
continue
else:
if is hardware I2C(scl pin, sda pin):
print("SCL pin:", scl pin, "\t SDA pin:", sda pin)
else:
pass

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 73 of 95

* adafruit learning system

CircuitPython HID Keyboard and
Mouse

These examples have been updated for version 4+ of the CircuitPython HID library. On some boards, such as

the CircuitPlayground Express, this library is built into CircuitPython. So, please use the latest version of
CircuitPython with these examples. (At least 5.0.0-beta.3)

One of the things we baked into CircuitPython is 'HID' (Human Interface Device) control - that means keyboard and
mouse capabilities. This means your CircuitPython board can act like a keyboard device and press key commands, or a
mouse and have it move the mouse pointer around and press buttons. This is really handy because even if you cannot
adapt your software to work with hardware, there's almost always a keyboard interface - so if you want to have a
capacitive touch interface for a game, say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator. First we'll go through an example
that uses pins on your board to emulate keyboard input. Then, we will show you how to wire up a joystick to act as a
mouse, and cover the code needed to make that happen.

You'll need the adafruit_hid library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

CircuitPython Keyboard Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - Keyboard emulator
import time

import board

import digitalio

import usb hid

from adafruit hid.keyboard import Keyboard

from adafruit hid.keyboard layout us import KeyboardLayoutUS
from adafruit hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup

keypress pins = [board.Al, board.A2]

Our array of key objects

key pin array = []

The Keycode sent for each button, will be paired with a control key
keys pressed = [Keycode.A, "Hello World!\n"]

control key = Keycode.SHIFT

The keyboard object!

time.sleep(l) # Sleep for a bit to avoid a race condition on some systems
keyboard = Keyboard(usb hid.devices)

keyboard layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups

for pin in keypress pins:

~ D R

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 74 of 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Key pin = glgltallo.vilgltallnuut(pin)
key pin.direction = digitalio.Direction.INPUT
key pin.pull = digitalio.Pull.UP

key pin array.append(key pin)

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

while True:
Check each pin
for key pin in key pin array:
if not key pin.value: # Is it grounded?
i = key pin array.index(key pin)
print("Pin #%d is grounded." % 1)

Turn on the red LED
led.value = True

while not key pin.value:

pass # Wait for it to be ungrounded!

"Type" the Keycode or string
key = keys pressed[i]
if isinstance(key, str):
keyboard layout.write(key)
else: # If it's not a string...
keyboard.press(control key, key)

Get the corresponding Keycode or string
If it's a string...
...Print the string

"Press"...

keyboard.release all() # ..."Release"!

Turn off the red LED
led.value = False

time.sleep(0.01)

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to send the key press "A" or the string

"Hello world!"

Create the Objects and Variables

© Adafruit Industries

https://learn.adafruit.com/circuitpython-essentials

This wiring example shows A1 and A2 connected to
ground.

Remember, on Trinket, A1 and A2 are labeled 2 and O!
On other boards, you will have A1and A2 labeled as
expected.

Page 75 of 95

https://learn.adafruit.com/assets/52710

First, we assign some variables for later use. We create three arrays assigned to variables: keypress pins,

key pin_array , and keys_pressed . The first is the pins we're going to use. The second is empty because we're going
to fill it later. The third is what we would like our "keyboard" to output - in this case the letter "A" and the phrase, "Hello
world!". We create our last variable assigned to control_key which allows us to later apply the shift key to our
keypress. We'll be using two keypresses, but you can have up to six keypresses at once.

Next keyboard and keyboard layout objects are created. We only have US right now (if you make other layouts
please submit a GitHub pull request!). The time.sleep(1l) avoids an error that can happen if the program gets run as
soon as the board gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction and give them each a pullup.
Then we apply the pin objects to key pin_array so we can use them later.

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print, "Waiting for key pin..." so you know the code is ready and
waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected the pin to ground. Once it
changes, it prints, "Pin # grounded." to let you know the ground state has been detected. Then we turn on the red LED.
The code waits for the state to change again, i.e. it waits for you to unground the pin by disconnecting the wire
attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded and ungrounded A1, the code
retrieves the keypress a, if you grounded and ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the keyboard_layout to determine the keypresses.
Otherwise, the code prints the keypress from the control_key and the keypress "a", which result in "A". Then it calls
keyboard.release_all() . You always want to call this soon after a keypress or you'll end up with a stuck key which is
really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in CircuitPython Digital In &
Out (https://adafru.it/Beo). Try altering the code to add more pins for more keypress options!

CircuitPython Mouse Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

import time

import analogio

import board

import digitalio

import usb hid

from adafruit hid.mouse import Mouse

mouse = Mouse(usb_hid.devices)

X _axis = analogio.AnalogIn(board.AQ)
y axis = analogio.AnalogIn(board.Al)
select = digitalio.DigitalInOut(board.A2)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 76 of 95

file:///circuitpython-essentials/circuitpython-digital-in-out

select.direction = digitalio.Direction.INPUT

select.pull = digitalio.Pull.UP

pot mi
pot ma

n
X

0.00
= 3.29

step = (pot max - pot min) / 20.0

def get voltage(pin):
return (pin.value * 3.3) / 65536

def steps(axis):
""" Maps the potentiometer voltage range to 0-20 """
return round((axis - pot min) / step)

while
X

y

if select.value is False:

if

if

if

if

if

if

if

if

T

rue:
get voltage(x axis)
get voltage(y axis)

mouse.click(Mouse.LEFT BUTTON)
time.sleep(0.2) # Debounce delay

steps(x) > 11.0:
print(steps(x))
mouse.move(x=1)

steps(x) < 9.0:

print(steps(x))
mouse.move(x=-1)

steps(x) > 19.0:
print(steps(x))
mouse.move(x=8)

steps(x) < 1.0:

print(steps(x))
mouse.move(x=-8)

steps(y) > 11.0:
print(steps(y))
mouse.move (y=-1)

steps(y) < 9.0:

print(steps(y))
mouse.move (y=1)

steps(y) > 19.0:

print(steps(y))
mouse.move (y=-8)
steps(y) < 1.0:

print(steps(y))
mouse.move (y=8)

For this example, we've wired up a 2-axis thumb joystick with a select button. We use this to emulate the mouse
movement and the mouse left-button click. To wire up this joytick:

® Connect VCC on the joystick to the 3V on your board. Connect ground to ground.

® Connect Xout on the joystick to pin AO on your board.

© Adafruit Industries

https://learn.adafruit.com/circuitpython-essentials

Page 77 of 95

® Connect Yout on the joystick to pin A1 on your board.
® Connect Sel on the joystick to pin A2 on your board.

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts page (https://adafru.it/AMd) to verify your
wiring.

*®

Analog Thumb Joystick
Board

Breakout
X and Y act like 10K pots

Xout and Yout are Analog out

o
7l
n
a
L
a
=
o
=
3
o
=
=
o
-
]
o
e}
0
a3
=
=]
=
0
I
)

.S

fritzing

To use this demo, simply move the joystick around. The mouse will move slowly if you move the joystick a little off
center, and more quickly if you move it as far as it goes. Press down on the joystick to click the mouse. Awesome! Now
let's take a look at the code.

Create the Objects and Variables
First we create the mouse object.

Next, we set x_axis and y axis to pins A0 and Al.Then we set select to A2, set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like we did inCircuitPython Analog
In (https://adafru.it/Bep). We set pot_min and pot_max to be the minimum and maximum voltage read from the
potentiometers. We assign step = (pot_max - pot_min) / 20.0 to use in a helper function.

CircuitPython HID Mouse Helpers

First we have the get voltage() helper so we can get the correct readings from the potentiometers. Look familiar? We
learned about it in Analog In (https://adafru.it/Bep).

Second, we have steps(axis) . To use it, you provide it with the axis you're reading. This is where we're going to use
the step variable we assigned earlier. The potentiometer range is 0-3.29. This is a small range. It's even smaller with

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 78 of 95

file:///adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities
file:///circuitpython-essentials/circuitpython-analog-in
file:///circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

the joystick because the joystick sits at the center of this range, 1.66, and the + and - of each axis is above and below
this number. Since we need to have thresholds in our code, we're going to map that range of 0-3.29 to while numbers
between 0-20.0 using this helper function. That way we can simplify our code and use larger ranges for our thresholds
instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y axis.

Next, we check to see when the state of the select button is False. It defaults to True when it is not pressed, so if the
state is False, the button has been pressed. When it's pressed, it sends the command to click the left mouse button.
The time.sleep(0.2) prevents it from reading multiple clicks when you've only clicked once.

Then we use the steps() function to set our mouse movement. There are two sets of two if statements for each axis.
Remember that 10 is the center step, as we've mapped the range 0-20 . The first set for each axis says if the joystick
moves 1 step off center (left or right for the x axis and up or down for the y axis), to move the mouse the appropriate
direction by 1 unit. The second set for each axis says if the joystick is moved to the lowest or highest step for each axis,
to move the mouse the appropriate direction by 8 units. That way you have the option to move the mouse slowly or
quickly!

To see what step the joystick is at when you're moving it, uncomment the print statements by removing the # from
the lines that look like # print(steps(x)), and connecting to the serial console to see the output. Consider only
uncommenting one set at a time, or you end up with a huge amount of information scrolling very quickly, which can be
difficult to read!

D For more detail check out the documentation at https://circuit|

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 79 of 95

https://circuitpython.readthedocs.io/projects/hid/en/latest/

ﬁ adafruit learning system
CircuitPython Storage

CircuitPython boards show up as as USB drive, allowing you to edit code directly on the board. You've been doing this
for a while. By now, maybe you've wondered, "Can | write data from CircuitPythonto the storage drive to act as a
datalogger?" The answer is yes!

However, it is a little tricky. You need to add some special code to boot.py, not just code.py. That's because you have
to set the filesystem to be read-only when you need to edit code to the disk from your computer, and set it to writeable
when you want the CircuitPython core to be able to write.

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You cannot have

both write to the drive at the same time. (Bad Things Will Happen so we do not allow you to do it!)

The following is your new boot.py. Copy and paste the code into boot.py using your favorite editor. You may need to
create a new file.

import board
import digitalio
import storage

For Gemma MO, Trinket MO, Metro MO/M4 Express, ItsyBitsy MO/M4 Express
switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express
switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit
switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", switch.value)

For Gemma MO, Trinket MO, Metro MO Express, Metro M4 Express, ItsyBitsy MO Express and ItsyBitsy M4 Express,
no changes to the initial code are needed.

For Feather MO Express and Feather M4 Express, comment out switch = digitalio.DigitalinOut(board.D2) , and
uncomment switch = digitalio.DigitallnOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out switch =
digitalio.DigitallnOut(board.D2) , and uncomment switch = digitalio.DigitalinOut(board.D7) . Remember, D7 is the
onboard slide switch, so there's no extra wires or alligator clips needed.

|:| Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +

space from the beginning of the line.

The following is your new code.py. Copy and paste the code into code.py using your favorite editor.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 80 of 95

import time

import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.D13)
led.switch to output()

try:
with open("/temperature.txt", "a") as fp:
while True:
temp = microcontroller.cpu.temperature
do the C-to-F conversion here if you would like
fp.write('{0:f}\n'.format(temp))
fp.flush()
led.value = not led.value
time.sleep(1)
except OSError as e:
delay = 0.5
if e.args[0] == 28:
delay = 0.25
while True:
led.value = not led.value
time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch setup in your code is connected to a
ground pin. If it is, it changes the read-write state of the file system, so the CircuitPython core can begin logging the
temperature to the board.

For help finding the correct pins, see the wiring diagrams and information in the Find the Pins section of the

CircuitPython Digital In & Out guide (https://adafru.it/Bes). Instead of wiring up a switch, however, you'll be connecting
the pin directly to ground with alligator clips or jumper wires.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 81 of 95

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

&8 888088 04848484480s
B RN

EEEEE R E R EE B RN
4642868868808 0008200

fritzing

|:| boot.py only runs on first boot of the device, not if you re-load the serial console with ctrl+D or if you save a

file. You must EJECT the USB drive, then physically press the reset button!

Once you copied the files to your board, eject it and unplug it from your computer. If you're using your Circuit
Playground Express, all you have to do is make sure the switch is to the right. Otherwise, use alligator clips or jumper
wires to connect the chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

boot_out.ixt - XEmacs: xemacs.exe - Write ProtectError ‘ u

The disk cannot be written to because it is write protected. Please
remove the write protection frem the volume CIRCUITPY in drive G:.

Try Again Continue

The red LED should blink once a second and you will see a newtemperature.txt file on CIRCUITPY.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 82 of 95

(X X | | temperature.ixt

20.470741
20.684693
20.684693
20.470741
120.684693
20.363793
20.684693
20.470741
20.470741
20.363793
20.256813
20.256813
20.042915
20.042915

This file gets updated once per second, but you won't see data come in live. Instead, when you're ready to grab the
data, eject and unplug your board. For CPX, move the switch to the left, otherwise remove the wire connecting the pin
to ground. Now it will be possible for you to write to the filesystem from your computer again, but it will not be logging
data.

We have a more detailed guide on this project available here: CPU Temperature Logging with
CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it out!

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 83 of 95

file:///cpu-temperature-logging-with-circuit-python

ﬁ adafruit learning system
CircuitPython CPU
Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and nRF52840 chips. CircuitPython makes
it really simple to read the data from this sensor. This works on the Adafruit CircuitPython boards it's built into the
microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL. Plug in your board, connect to
the serial console (https://adafru.it/Bec), and enter the REPL (https://adafru.it/Awz). Then, enter the following commands
into the REPL:

import microcontroller
microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not exactly the ambient temperature and
it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32. It's super easy to do math using
CircuitPython. Check it out!

Note that the temperature sensor built into the nRF52840 has a resolution of 0.25 degrees Celsius, so any
|:| temperature you print out will be in 0.25 degree increments.

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 84 of 95

file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///welcome-to-circuitpython/the-repl

ﬁ adafruit learning system
CircuitPython Expectations

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit to download the latest version of CircuitPython for your board. You

must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit to download the latest Library Bundle.

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython
repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

| have to continue using CircuitPython 3.x or 2.x, where can | find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the

libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

Switching Between CircuitPython and Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between the two? Switching between
CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow the steps found inWelcome to
CircuitPython: Installing CircuitPython (https://adafru.it/Amd).

If you're currently running CircuitPython and would like to start using Arduino, plug in your board, and then load your
Arduino sketch. If there are any issues, you can double tap the reset button to get into the bootloader and then try
loading your sketch. Always backup any files you're using with CircuitPython that you want to save as they could be
deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-Express Boards

We often reference "Express" and "Non-Express" boards when discussing CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides you with extra space for

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 85 of 95

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

CircuitPython and your code. This means that we're able to include more functionality in CircuitPython and you're able
to do more with your code on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ltsyBitsy MO Express, Feather MO Express, Metro MO Express and
Metro M4 Express.

Non-Express boards include Trinket MO, Gemma MO, Feather MO Basic, and other non-Express Feather MO variants.

Non-Express Boards: Gemma and Trinket

CircuitPython runs nicely on the Gemma MO or Trinket MO but there are some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB of space.
No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support for hardware
audio playpack or NVM 'eeprom'. Modules audioio and bitbangio are not included. For that support, check out the
Circuit Playground Express or other Express boards.

However, 12C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out, digital IO, logging storage, and HID
do work! Check the CircuitPython Essentials for examples of all of these.

Differences Between CircuitPython and MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPython
documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and Python

Python (also known as CPython) is the language that MicroPython and CircuitPython are based on. There are many
similarities, but there are also many differences. This is a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard libraries are included. Unfortunately,
for space reasons, many Python libraries are not available. So for instance while we wish you could import numpy,
numpy isn't available. So you may have to port some code over yourselfl

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of unlimited size are not supported. The
largest positive integer that can be represented is 23°-1, 1073741823, and the most negative integer possible is -239, -
1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as in Python). The largest floating
point magnitude that can be represented is about +/-3.4e38. The smallest magnitude that can be represented with full

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 86 of 95

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

accuracy is about +/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like regular single precision floating
point), which is about five or six decimal digits of precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can look at the MicroPython
documentation. We keep up with MicroPython stable releases, so check out the core 'differences' they document
here. (https://adafru.it/zwA)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 87 of 95

http://docs.micropython.org/en/latest/pyboard/genrst/index.html

* adafruit learning system
CircuitPython Libraries and
Drivers

CircuitPython Libraries and Drivers (https://adafru.it/AYD)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 88 of 95

https://circuitpython.readthedocs.io/en/latest/docs/drivers.html

ﬁ adafruit learning system
CircuitPython Libraries

We have tons of CircuitPython libraries that can be used by microcontroller boards or single board computers such as
Raspberry Pi. Here's a quick listing that is automatically generated

Adafruit CircuitPython Libraries

Here is a listing of current Adafruit CircuitPython Libraries. There are 224 libraries available.

Drivers:

Adafruit CircuitPython 74HC595 (PyPi)
Adafruit CircuitPython ADS1x15 (PyPi)
Adafruit CircuitPython ADT7410 (PyPi)
Adafruit CircuitPython ADXL34x (PyPi)
Adafruit CircuitPython AM2320 (PyPi)
Adafruit CircuitPython AMG88xx (PyPi)
Adafruit CircuitPython APDS9960 (PyPi)
Adafruit CircuitPython AS726x (PyPi)
Adafruit CircuitPython ATECC (PyPi)
Adafruit CircuitPython BD3491FS (PyPi)
Adafruit CircuitPython BME280 (PyPi)
Adafruit CircuitPython BMEG80 (PyPi)
Adafruit CircuitPython BMP280 (PyPi)
Adafruit CircuitPython BMP3XX (PyPi)
Adafruit CircuitPython BNOO55 (PyPi)
Adafruit CircuitPython BluefruitSPI (PyPi)
Adafruit CircuitPython CAP1188 (PyPi)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 89 of 95

https://github.com/adafruit/Adafruit_CircuitPython_74HC595.git
https://pypi.org/project/adafruit-circuitpython-74hc595
https://github.com/adafruit/Adafruit_CircuitPython_ADS1x15.git
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://github.com/adafruit/Adafruit_CircuitPython_ADT7410.git
https://pypi.org/project/adafruit-circuitpython-adt7410
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x.git
https://pypi.org/project/adafruit-circuitpython-adxl34x
https://github.com/adafruit/Adafruit_CircuitPython_AM2320.git
https://pypi.org/project/adafruit-circuitpython-am2320
https://github.com/adafruit/Adafruit_CircuitPython_AMG88xx.git
https://pypi.org/project/adafruit-circuitpython-amg88xx
https://github.com/adafruit/Adafruit_CircuitPython_APDS9960.git
https://pypi.org/project/adafruit-circuitpython-apds9960
https://github.com/adafruit/Adafruit_CircuitPython_AS726x.git
https://pypi.org/project/adafruit-circuitpython-as726x
https://github.com/adafruit/Adafruit_CircuitPython_ATECC.git
https://pypi.org/project/adafruit-circuitpython-atecc
https://github.com/adafruit/Adafruit_CircuitPython_BD3491FS.git
https://pypi.org/project/adafruit-circuitpython-bd3491fs
https://github.com/adafruit/Adafruit_CircuitPython_BME280.git
https://pypi.org/project/adafruit-circuitpython-bme280
https://github.com/adafruit/Adafruit_CircuitPython_BME680.git
https://pypi.org/project/adafruit-circuitpython-bme680
https://github.com/adafruit/Adafruit_CircuitPython_BMP280.git
https://pypi.org/project/adafruit-circuitpython-bmp280
https://github.com/adafruit/Adafruit_CircuitPython_BMP3XX.git
https://pypi.org/project/adafruit-circuitpython-bmp3xx
https://github.com/adafruit/Adafruit_CircuitPython_BNO055.git
https://pypi.org/project/adafruit-circuitpython-bno055
https://github.com/adafruit/Adafruit_CircuitPython_BluefruitSPI.git
https://pypi.org/project/adafruit-circuitpython-bluefruitspi
https://github.com/adafruit/Adafruit_CircuitPython_CAP1188.git
https://pypi.org/project/adafruit-circuitpython-cap1188

Adafruit CircuitPython CCS811 (PyPi)
Adafruit CircuitPython CLUE

Adafruit CircuitPython CharLCD (PyPi)
Adafruit CircuitPython CircuitPlayground
Adafruit CircuitPython Crickit (PyPi)
Adafruit CircuitPython DHT (PyPi)

Adafruit CircuitPython DPS310 (PyPi)
Adafruit CircuitPython DRV2605 (PyPi)
Adafruit CircuitPython DS1307 (PyPi)
Adafruit CircuitPython DS1841 (PyPi)
Adafruit CircuitPython DS18X20 (PyPi)
Adafruit CircuitPython DS2413 (PyPi)
Adafruit CircuitPython DS3231 (PyPi)
Adafruit CircuitPython DS3502 (PyPi)
Adafruit CircuitPython DisplaylO SSD1305 (PyPi)
Adafruit CircuitPython DisplaylO SSD1306
Adafruit CircuitPython DotStar (PyPi)
Adafruit CircuitPython DymoScale (PyPi)
Adafruit CircuitPython EPD (PyPi)

Adafruit CircuitPython ESP ATcontrol (PyPi)
Adafruit CircuitPython ESP32SPI (PyPi)
Adafruit CircuitPython FRAM (PyPi)
Adafruit CircuitPython FXAS21002C (PyPi)
Adafruit CircuitPython FXOS8700 (PyPi)
Adafruit CircuitPython Fingerprint (PyPi)
Adafruit CircuitPython FocalTouch (PyPi)
Adafruit CircuitPython GPS (PyPi)

Adafruit CircuitPython HCSRO4 (PyPi)
Adafruit CircuitPython HT16K33 (PyPi)
Adafruit CircuitPython HTS221 (PyPi)
Adafruit CircuitPython HTU21D (PyPi)
Adafruit CircuitPython HX8357

Adafruit CircuitPython ICM20649 (PyPi)
Adafruit CircuitPython ILO373 (PyPi)
Adafruit CircuitPython ILO398 (PyPi)
Adafruit CircuitPython IL91874 (PyPi)
Adafruit CircuitPython ILI9341

Adafruit CircuitPython INA219 (PyPi)
Adafruit CircuitPython INA260 (PyPi)
Adafruit CircuitPython IRRemote (PyPi)
Adafruit CircuitPython IS31FL3731 (PyPi)
Adafruit CircuitPython L3GD20 (PyPi)
Adafruit CircuitPython LIDARLite (PyPi)
Adafruit CircuitPython LIS2MDL (PyPi)
Adafruit CircuitPython LIS3DH (PyPi)
Adafruit CircuitPython LIS3MDL (PyPi)
Adafruit CircuitPython LPS2X (PyPi)
Adafruit CircuitPython LPS35HW (PyPi)
Adafruit CircuitPython LSM303 Accel (PyPi)
Adafruit CircuitPython LSM303DLH Mag (PyPi)
Adafruit CircuitPython LSM303 (PyPi)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 90 of 95

https://github.com/adafruit/Adafruit_CircuitPython_CCS811.git
https://pypi.org/project/adafruit-circuitpython-ccs811
https://github.com/adafruit/Adafruit_CircuitPython_CLUE.git
https://github.com/adafruit/Adafruit_CircuitPython_CharLCD.git
https://pypi.org/project/adafruit-circuitpython-charlcd
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground.git
https://github.com/adafruit/Adafruit_CircuitPython_Crickit.git
https://pypi.org/project/adafruit-circuitpython-crickit
https://github.com/adafruit/Adafruit_CircuitPython_DHT.git
https://pypi.org/project/adafruit-circuitpython-dht
https://github.com/adafruit/Adafruit_CircuitPython_DPS310.git
https://pypi.org/project/adafruit-circuitpython-dps310
https://github.com/adafruit/Adafruit_CircuitPython_DRV2605.git
https://pypi.org/project/adafruit-circuitpython-drv2605
https://github.com/adafruit/Adafruit_CircuitPython_DS1307.git
https://pypi.org/project/adafruit-circuitpython-ds1307
https://github.com/adafruit/Adafruit_CircuitPython_DS1841.git
https://pypi.org/project/adafruit-circuitpython-ds1841
https://github.com/adafruit/Adafruit_CircuitPython_DS18X20.git
https://pypi.org/project/adafruit-circuitpython-ds18x20
https://github.com/adafruit/Adafruit_CircuitPython_DS2413.git
https://pypi.org/project/adafruit-circuitpython-ds2413
https://github.com/adafruit/Adafruit_CircuitPython_DS3231.git
https://pypi.org/project/adafruit-circuitpython-ds3231
https://github.com/adafruit/Adafruit_CircuitPython_DS3502.git
https://pypi.org/project/adafruit-circuitpython-ds3502
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1305.git
https://pypi.org/project/adafruit-circuitpython-displayio-ssd1305
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306.git
https://github.com/adafruit/Adafruit_CircuitPython_DotStar.git
https://pypi.org/project/adafruit-circuitpython-dotstar
https://github.com/adafruit/Adafruit_CircuitPython_DymoScale.git
https://pypi.org/project/adafruit-circuitpython-dymoscale
https://github.com/adafruit/Adafruit_CircuitPython_EPD.git
https://pypi.org/project/adafruit-circuitpython-epd
https://github.com/adafruit/Adafruit_CircuitPython_ESP_ATcontrol.git
https://pypi.org/project/adafruit-circuitpython-esp-atcontrol
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI.git
https://pypi.org/project/adafruit-circuitpython-esp32spi
https://github.com/adafruit/Adafruit_CircuitPython_FRAM.git
https://pypi.org/project/adafruit-circuitpython-fram
https://github.com/adafruit/Adafruit_CircuitPython_FXAS21002C.git
https://pypi.org/project/adafruit-circuitpython-fxas21002c
https://github.com/adafruit/Adafruit_CircuitPython_FXOS8700.git
https://pypi.org/project/adafruit-circuitpython-fxos8700
https://github.com/adafruit/Adafruit_CircuitPython_Fingerprint.git
https://pypi.org/project/adafruit-circuitpython-fingerprint
https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch.git
https://pypi.org/project/adafruit-circuitpython-focaltouch
https://github.com/adafruit/Adafruit_CircuitPython_GPS.git
https://pypi.org/project/adafruit-circuitpython-gps
https://github.com/adafruit/Adafruit_CircuitPython_HCSR04.git
https://pypi.org/project/adafruit-circuitpython-hcsr04
https://github.com/adafruit/Adafruit_CircuitPython_HT16K33.git
https://pypi.org/project/adafruit-circuitpython-ht16k33
https://github.com/adafruit/Adafruit_CircuitPython_HTS221.git
https://pypi.org/project/adafruit-circuitpython-hts221
https://github.com/adafruit/Adafruit_CircuitPython_HTU21D.git
https://pypi.org/project/adafruit-circuitpython-htu21d
https://github.com/adafruit/Adafruit_CircuitPython_HX8357.git
https://github.com/adafruit/Adafruit_CircuitPython_ICM20649.git
https://pypi.org/project/adafruit-circuitpython-icm20649
https://github.com/adafruit/Adafruit_CircuitPython_IL0373.git
https://pypi.org/project/adafruit-circuitpython-il0373
https://github.com/adafruit/Adafruit_CircuitPython_IL0398.git
https://pypi.org/project/adafruit-circuitpython-il0398
https://github.com/adafruit/Adafruit_CircuitPython_IL91874.git
https://pypi.org/project/adafruit-circuitpython-il91874
https://github.com/adafruit/Adafruit_CircuitPython_ILI9341.git
https://github.com/adafruit/Adafruit_CircuitPython_INA219.git
https://pypi.org/project/adafruit-circuitpython-ina219
https://github.com/adafruit/Adafruit_CircuitPython_INA260.git
https://pypi.org/project/adafruit-circuitpython-ina260
https://github.com/adafruit/Adafruit_CircuitPython_IRRemote.git
https://pypi.org/project/adafruit-circuitpython-irremote
https://github.com/adafruit/Adafruit_CircuitPython_IS31FL3731.git
https://pypi.org/project/adafruit-circuitpython-is31fl3731
https://github.com/adafruit/Adafruit_CircuitPython_L3GD20.git
https://pypi.org/project/adafruit-circuitpython-l3gd20
https://github.com/adafruit/Adafruit_CircuitPython_LIDARLite.git
https://pypi.org/project/adafruit-circuitpython-lidarlite
https://github.com/adafruit/Adafruit_CircuitPython_LIS2MDL.git
https://pypi.org/project/adafruit-circuitpython-lis2mdl
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH.git
https://pypi.org/project/adafruit-circuitpython-lis3dh
https://github.com/adafruit/Adafruit_CircuitPython_LIS3MDL.git
https://pypi.org/project/adafruit-circuitpython-lis3mdl
https://github.com/adafruit/Adafruit_CircuitPython_LPS2X.git
https://pypi.org/project/adafruit-circuitpython-lps2x
https://github.com/adafruit/Adafruit_CircuitPython_LPS35HW.git
https://pypi.org/project/adafruit-circuitpython-lps35hw
https://github.com/adafruit/Adafruit_CircuitPython_LSM303_Accel.git
https://pypi.org/project/adafruit-circuitpython-lsm303-accel
https://github.com/adafruit/Adafruit_CircuitPython_LSM303DLH_Mag.git
https://pypi.org/project/adafruit-circuitpython-lsm303dlh-mag
https://github.com/adafruit/Adafruit_CircuitPython_LSM303.git
https://pypi.org/project/adafruit-circuitpython-lsm303

Adafruit CircuitPython LSM6EDS (PyPi)
Adafruit CircuitPython LSM9DSO (PyPi)
Adafruit CircuitPython LSM9DS1 (PyPi)
Adafruit CircuitPython MAX31855 (PyPi)
Adafruit CircuitPython MAX31856 (PyPi)
Adafruit CircuitPython MAX31865 (PyPi)
Adafruit CircuitPython MAX7219 (PyPi)
Adafruit CircuitPython MAX9744 (PyPi)
Adafruit CircuitPython MCP230xx (PyPi)
Adafruit CircuitPython MCP3xxx (PyPi)
Adafruit CircuitPython MCP4725 (PyPi)
Adafruit CircuitPython MCP4728 (PyPi)
Adafruit CircuitPython MCP9600 (PyPi)
Adafruit CircuitPython MCP9808 (PyPi)
Adafruit CircuitPython MLX90393 (PyPi)
Adafruit CircuitPython MLX90614 (PyPi)
Adafruit CircuitPython MLX90640 (PyPi)
Adafruit CircuitPython MMA8451 (PyPi)
Adafruit CircuitPython MPL115A2 (PyPi)
Adafruit CircuitPython MPL3115A2 (PyPi)
Adafruit CircuitPython MPR121 (PyPi)
Adafruit CircuitPython MPRLS (PyPi)
Adafruit CircuitPython MPUG050 (PyPi)
Adafruit CircuitPython MSA301 (PyPi)
Adafruit CircuitPython MatrixKeypad (PyPi)
Adafruit CircuitPython NeoPixel SPI (PyPi)
Adafruit CircuitPython NeoPixel (PyPi)
Adafruit CircuitPython NeoTrellis (PyPi)
Adafruit CircuitPython Nunchuk
Adafruit CircuitPython PCA9685 (PyPi
Adafruit CircuitPython PCD8544 (PyPi
Adafruit CircuitPython PCF8523 (PyPi
Adafruit CircuitPython PCT2075 (PyPi
Adafruit CircuitPython PN532 (PyPi)
Adafruit CircuitPython Pixie (PyPi)
Adafruit CircuitPython PyPortal (PyPi)
Adafruit CircuitPython RA8875 (PyPi)
Adafruit CircuitPython RFMG9 (PyPi)
Adafruit CircuitPython RFM9x (PyPi)
Adafruit CircuitPython RGB Display (PyPi)
Adafruit CircuitPython RPLIDAR (PyPi)
Adafruit CircuitPython RockBlock (PyPi)
Adafruit CircuitPython SD (PyPi)

Adafruit CircuitPython SGP30 (PyPi)
Adafruit CircuitPython SHT31D (PyPi)
Adafruit CircuitPython SI14713 (PyPi)
Adafruit CircuitPython SI5351 (PyPi)
Adafruit CircuitPython SI17021 (PyPi)
Adafruit CircuitPython SSD1305 (PyPi)
Adafruit CircuitPython SSD1306 (PyPi)
Adafruit CircuitPython SSD1322

= =

= =

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 91 of 95

https://github.com/adafruit/Adafruit_CircuitPython_LSM6DS.git
https://pypi.org/project/adafruit-circuitpython-lsm6ds
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS0.git
https://pypi.org/project/adafruit-circuitpython-lsm9ds0
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1.git
https://pypi.org/project/adafruit-circuitpython-lsm9ds1
https://github.com/adafruit/Adafruit_CircuitPython_MAX31855.git
https://pypi.org/project/adafruit-circuitpython-max31855
https://github.com/adafruit/Adafruit_CircuitPython_MAX31856.git
https://pypi.org/project/adafruit-circuitpython-max31856
https://github.com/adafruit/Adafruit_CircuitPython_MAX31865.git
https://pypi.org/project/adafruit-circuitpython-max31865
https://github.com/adafruit/Adafruit_CircuitPython_MAX7219.git
https://pypi.org/project/adafruit-circuitpython-max7219
https://github.com/adafruit/Adafruit_CircuitPython_MAX9744.git
https://pypi.org/project/adafruit-circuitpython-max9744
https://github.com/adafruit/Adafruit_CircuitPython_MCP230xx.git
https://pypi.org/project/adafruit-circuitpython-mcp230xx
https://github.com/adafruit/Adafruit_CircuitPython_MCP3xxx.git
https://pypi.org/project/adafruit-circuitpython-mcp3xxx
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725.git
https://pypi.org/project/adafruit-circuitpython-mcp4725
https://www.github.com/adafruit/Adafruit_CircuitPython_MCP4728.git
https://pypi.org/project/adafruit-circuitpython-mcp4728
https://github.com/adafruit/Adafruit_CircuitPython_MCP9600.git
https://pypi.org/project/adafruit-circuitpython-mcp9600
https://github.com/adafruit/Adafruit_CircuitPython_MCP9808.git
https://pypi.org/project/adafruit-circuitpython-mcp9808
https://github.com/adafruit/Adafruit_CircuitPython_MLX90393.git
https://pypi.org/project/adafruit-circuitpython-mlx90393
https://github.com/adafruit/Adafruit_CircuitPython_MLX90614.git
https://pypi.org/project/adafruit-circuitpython-mlx90614
https://github.com/adafruit/Adafruit_CircuitPython_MLX90640.git
https://pypi.org/project/adafruit-circuitpython-mlx90640
https://github.com/adafruit/Adafruit_CircuitPython_MMA8451.git
https://pypi.org/project/adafruit-circuitpython-mma8451
https://github.com/adafruit/Adafruit_CircuitPython_MPL115A2.git
https://pypi.org/project/adafruit-circuitpython-mpl115a2
https://github.com/adafruit/Adafruit_CircuitPython_MPL3115A2.git
https://pypi.org/project/adafruit-circuitpython-mpl3115a2
https://github.com/adafruit/Adafruit_CircuitPython_MPR121.git
https://pypi.org/project/adafruit-circuitpython-mpr121
https://github.com/adafruit/Adafruit_CircuitPython_MPRLS.git
https://pypi.org/project/adafruit-circuitpython-mprls
https://github.com/adafruit/Adafruit_CircuitPython_MPU6050.git
https://pypi.org/project/adafruit-circuitpython-mpu6050
https://github.com/adafruit/Adafruit_CircuitPython_MSA301.git
https://pypi.org/project/adafruit-circuitpython-msa301
https://github.com/adafruit/Adafruit_CircuitPython_MatrixKeypad.git
https://pypi.org/project/adafruit-circuitpython-matrixkeypad
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel_SPI.git
https://pypi.org/project/adafruit-circuitpython-neopixel-spi
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel.git
https://pypi.org/project/adafruit-circuitpython-neopixel
https://github.com/adafruit/Adafruit_CircuitPython_NeoTrellis
https://pypi.org/project/adafruit-circuitpython-neotrellis
https://github.com/adafruit/Adafruit_CircuitPython_Nunchuk.git
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685.git
https://pypi.org/project/adafruit-circuitpython-pca9685
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544.git
https://pypi.org/project/adafruit-circuitpython-pcd8544
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523.git
https://pypi.org/project/adafruit-circuitpython-pcf8523
https://github.com/adafruit/Adafruit_CircuitPython_PCT2075.git
https://pypi.org/project/adafruit-circuitpython-pct2075
https://github.com/adafruit/Adafruit_CircuitPython_PN532.git
https://pypi.org/project/adafruit-circuitpython-pn532
https://github.com/adafruit/Adafruit_CircuitPython_Pixie.git
https://pypi.org/project/adafruit-circuitpython-pixie
https://github.com/adafruit/Adafruit_CircuitPython_PyPortal.git
https://pypi.org/project/adafruit-circuitpython-pyportal
https://github.com/adafruit/Adafruit_CircuitPython_RA8875.git
https://pypi.org/project/adafruit-circuitpython-ra8875
https://github.com/adafruit/Adafruit_CircuitPython_RFM69.git
https://pypi.org/project/adafruit-circuitpython-rfm69
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x.git
https://pypi.org/project/adafruit-circuitpython-rfm9x
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display.git
https://pypi.org/project/adafruit-circuitpython-rgb-display
https://github.com/adafruit/Adafruit_CircuitPython_RPLIDAR.git
https://pypi.org/project/adafruit-circuitpython-rplidar
https://github.com/adafruit/Adafruit_CircuitPython_RockBlock.git
https://pypi.org/project/adafruit-circuitpython-rockblock
https://github.com/adafruit/Adafruit_CircuitPython_SD.git
https://pypi.org/project/adafruit-circuitpython-sd
https://github.com/adafruit/Adafruit_CircuitPython_SGP30.git
https://pypi.org/project/adafruit-circuitpython-sgp30
https://github.com/adafruit/Adafruit_CircuitPython_SHT31D.git
https://pypi.org/project/adafruit-circuitpython-sht31d
https://github.com/adafruit/Adafruit_CircuitPython_SI4713.git
https://pypi.org/project/adafruit-circuitpython-si4713
https://github.com/adafruit/Adafruit_CircuitPython_SI5351.git
https://pypi.org/project/adafruit-circuitpython-si5351
https://github.com/adafruit/Adafruit_CircuitPython_SI7021.git
https://pypi.org/project/adafruit-circuitpython-si7021
https://github.com/adafruit/Adafruit_CircuitPython_SSD1305.git
https://pypi.org/project/adafruit-circuitpython-ssd1305
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306.git
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://github.com/adafruit/Adafruit_CircuitPython_SSD1322.git

Adafruit CircuitPython SSD1325 (PyPi)
Adafruit CircuitPython SSD1327
Adafruit CircuitPython SSD1331

Adafruit CircuitPython SSD1351

Adafruit CircuitPython SSD1608
Adafruit CircuitPython SSD1675 (PyPi)
Adafruit CircuitPython ST7735R
Adafruit CircuitPython ST7735

Adafruit CircuitPython ST7789

Adafruit CircuitPython STMPEG10 (PyPi)
Adafruit CircuitPython Seesaw (PyPi)
Adafruit CircuitPython SharpMemoryDisplay (PyPi)
Adafruit CircuitPython TCA9548A (PyPi)
Adafruit CircuitPython TCS34725 (PyPi)
Adafruit CircuitPython TFmini (PyPi)
Adafruit CircuitPython TLC5947 (PyPi)
Adafruit CircuitPython TLC59711 (PyPi)
Adafruit CircuitPython TLV493D (PyPi)
Adafruit CircuitPython TMPOOG6 (PyPi)
Adafruit CircuitPython TMPOO7 (PyPi)
Adafruit CircuitPython TPA2016 (PyPi)
Adafruit CircuitPython TSL2561 (PyPi)
Adafruit CircuitPython TSL2591 (PyPi)
Adafruit CircuitPython Thermal Printer (PyPi)
Adafruit CircuitPython Thermistor (PyPi)
Adafruit CircuitPython Touchscreen (PyPi)
Adafruit CircuitPython TrellisM4 (PyPi)
Adafruit CircuitPython Trellis (PyPi)
Adafruit CircuitPython US100 (PyPi)
Adafruit CircuitPython VC0706 (PyPi)
Adafruit CircuitPython VCNL4010 (PyPi)
Adafruit CircuitPython VCNL4040 (PyPi)
Adafruit CircuitPython VEML6070 (PyPi)
Adafruit CircuitPython VEML6075 (PyPi)
Adafruit CircuitPython VEML7700 (PyPi)
Adafruit CircuitPython VL53LOX (PyPi)
Adafruit CircuitPython VL6180X (PyPi)
Adafruit CircuitPython VS1053 (PyPi)
Adafruit CircuitPython WS2801 (PyPi)
Adafruit CircuitPython Wiznet5k (PyPi)

Helpers:

Adafruit CircuitPython AVRprog (PyPi)

Adafruit CircuitPython AWS 10T (PyPi)

Adafruit CircuitPython AdafruitlO (PyPi)

Adafruit CircuitPython AzureloT (PyPi)

Adafruit CircuitPython BLE Apple Media (PyPi)

Adafruit CircuitPython BLE Apple Notification Center (PyPi)
Adafruit CircuitPython BLE BroadcastNet (PyPi)

Adafruit CircuitPython BLE Cycling Speed and Cadence (PyPi)
Adafruit CircuitPython BLE Eddystone (PyPi)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials

Page 92 of 95

https://github.com/adafruit/Adafruit_CircuitPython_SSD1325.git
https://pypi.org/project/adafruit-circuitpython-ssd1325
https://github.com/adafruit/Adafruit_CircuitPython_SSD1327.git
https://github.com/adafruit/Adafruit_CircuitPython_SSD1331.git
https://github.com/adafruit/Adafruit_CircuitPython_SSD1351.git
https://github.com/adafruit/Adafruit_CircuitPython_SSD1608.git
https://github.com/adafruit/Adafruit_CircuitPython_SSD1675.git
https://pypi.org/project/adafruit-circuitpython-ssd1675
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R.git
https://github.com/adafruit/Adafruit_CircuitPython_ST7735.git
https://github.com/adafruit/Adafruit_CircuitPython_ST7789.git
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610.git
https://pypi.org/project/adafruit-circuitpython-stmpe610
https://github.com/adafruit/Adafruit_CircuitPython_Seesaw.git
https://pypi.org/project/adafruit-circuitpython-seesaw
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay.git
https://pypi.org/project/adafruit-circuitpython-sharpmemorydisplay
https://github.com/adafruit/Adafruit_CircuitPython_TCA9548A.git
https://pypi.org/project/adafruit-circuitpython-tca9548a
https://github.com/adafruit/Adafruit_CircuitPython_TCS34725.git
https://pypi.org/project/adafruit-circuitpython-tcs34725
https://github.com/adafruit/Adafruit_CircuitPython_TFmini.git
https://pypi.org/project/adafruit-circuitpython-tfmini
https://github.com/adafruit/Adafruit_CircuitPython_TLC5947.git
https://pypi.org/project/adafruit-circuitpython-tlc5947
https://github.com/adafruit/Adafruit_CircuitPython_TLC59711.git
https://pypi.org/project/adafruit-circuitpython-tlc59711
https://github.com/adafruit/Adafruit_CircuitPython_TLV493D.git
https://pypi.org/project/adafruit-circuitpython-tlv493d
https://github.com/adafruit/Adafruit_CircuitPython_TMP006.git
https://pypi.org/project/adafruit-circuitpython-tmp006
https://github.com/adafruit/Adafruit_CircuitPython_TMP007.git
https://pypi.org/project/adafruit-circuitpython-tmp007
https://github.com/adafruit/Adafruit_CircuitPython_TPA2016.git
https://pypi.org/project/adafruit-circuitpython-tpa2016
https://github.com/adafruit/Adafruit_CircuitPython_TSL2561.git
https://pypi.org/project/adafruit-circuitpython-tsl2561
https://github.com/adafruit/Adafruit_CircuitPython_TSL2591.git
https://pypi.org/project/adafruit-circuitpython-tsl2591
https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer.git
https://pypi.org/project/adafruit-circuitpython-thermal-printer
https://github.com/adafruit/Adafruit_CircuitPython_Thermistor.git
https://pypi.org/project/adafruit-circuitpython-thermistor
https://github.com/adafruit/Adafruit_CircuitPython_Touchscreen.git
https://pypi.org/project/adafruit-circuitpython-touchscreen
https://github.com/adafruit/Adafruit_CircuitPython_TrellisM4.git
https://pypi.org/project/adafruit-circuitpython-trellism4
https://github.com/adafruit/Adafruit_CircuitPython_Trellis.git
https://pypi.org/project/adafruit-circuitpython-trellis
https://github.com/adafruit/Adafruit_CircuitPython_US100.git
https://pypi.org/project/adafruit-circuitpython-us100
https://github.com/adafruit/Adafruit_CircuitPython_VC0706.git
https://pypi.org/project/adafruit-circuitpython-vc0706
https://github.com/adafruit/Adafruit_CircuitPython_VCNL4010.git
https://pypi.org/project/adafruit-circuitpython-vcnl4010
https://github.com/adafruit/Adafruit_CircuitPython_VCNL4040.git
https://pypi.org/project/adafruit-circuitpython-vcnl4040
https://github.com/adafruit/Adafruit_CircuitPython_VEML6070.git
https://pypi.org/project/adafruit-circuitpython-veml6070
https://github.com/adafruit/Adafruit_CircuitPython_VEML6075.git
https://pypi.org/project/adafruit-circuitpython-veml6075
https://github.com/adafruit/Adafruit_CircuitPython_VEML7700.git
https://pypi.org/project/adafruit-circuitpython-veml7700
https://github.com/adafruit/Adafruit_CircuitPython_VL53L0X.git
https://pypi.org/project/adafruit-circuitpython-vl53l0x
https://github.com/adafruit/Adafruit_CircuitPython_VL6180X.git
https://pypi.org/project/adafruit-circuitpython-vl6180x
https://github.com/adafruit/Adafruit_CircuitPython_VS1053.git
https://pypi.org/project/adafruit-circuitpython-vs1053
https://github.com/adafruit/Adafruit_CircuitPython_WS2801.git
https://pypi.org/project/adafruit-circuitpython-ws2801
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k.git
https://pypi.org/project/adafruit-circuitpython-wiznet5k
https://github.com/adafruit/Adafruit_CircuitPython_AVRprog.git
https://pypi.org/project/adafruit-circuitpython-avrprog
https://github.com/adafruit/Adafruit_CircuitPython_AWS_IOT.git
https://pypi.org/project/adafruit-circuitpython-aws-iot
https://github.com/adafruit/Adafruit_CircuitPython_AdafruitIO.git
https://pypi.org/project/adafruit-circuitpython-adafruitio
https://github.com/adafruit/Adafruit_CircuitPython_AzureIoT.git
https://pypi.org/project/adafruit-circuitpython-azureiot
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Apple_Media.git
https://pypi.org/project/adafruit-circuitpython-ble-apple-media
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Apple_Notification_Center.git
https://pypi.org/project/adafruit-circuitpython-ble-apple-notification-center
https://github.com/adafruit/Adafruit_CircuitPython_BLE_BroadcastNet.git
https://pypi.org/project/adafruit-circuitpython-ble-broadcastnet
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Cycling_Speed_and_Cadence.git
https://pypi.org/project/adafruit-circuitpython-ble-cycling-speed-and-cadence
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Eddystone.git
https://pypi.org/project/adafruit-circuitpython-ble-eddystone

Adafruit CircuitPython BLE Heart Rate (PyPi)
Adafruit CircuitPython BLE Magic Light
Adafruit CircuitPython BLE Radio (PyPi)
Adafruit CircuitPython BLE iBBQ

Adafruit CircuitPython BLE (PyPi)

Adafruit CircuitPython Bitmap Font (PyPi)
Adafruit CircuitPython BitmapSaver (PyPi)
Adafruit CircuitPython BluefruitConnect (PyPi)
Adafruit CircuitPython BoardTest

Adafruit CircuitPython BusDevice (PyPi)
Adafruit CircuitPython CursorControl (PyPi)
Adafruit CircuitPython Debouncer

Adafruit CircuitPython Debug 12C

Adafruit CircuitPython Display Button (PyPi)
Adafruit CircuitPython Display Notification (PyPi)
Adafruit CircuitPython Display Shapes (PyPi)
Adafruit CircuitPython Display Text (PyPi)
Adafruit CircuitPython FancyLED (PyPi)
Adafruit CircuitPython FeatherWing (PyPi)
Adafruit CircuitPython GC IOT Core (PyPi)
Adafruit CircuitPython Gizmo (PyPi)
Adafruit CircuitPython HID (PyPi)

Adafruit CircuitPython Hue (PyPi)

Adafruit CircuitPython ImagelLoad

Adafruit CircuitPython IterTools

Adafruit CircuitPython JWT (PyPi)

Adafruit CircuitPython LED Animation
Adafruit CircuitPython LIFX (PyPi)

Adafruit CircuitPython Logging

Adafruit CircuitPython MIDI (PyPi)

Adafruit CircuitPython MiniMQTT (PyPi)
Adafruit CircuitPython MotorKit (PyPi)
Adafruit CircuitPython Motor (PyPi)
Adafruit CircuitPython NTP (PyPi)

Adafruit CircuitPython OneWire (PyPi)
Adafruit CircuitPython PYOA

Adafruit CircuitPython ProgressBar (PyPi)
Adafruit CircuitPython PyBadger (PyPi)
Adafruit CircuitPython Pypixelbuf (PyPi)
Adafruit CircuitPython RGBLED (PyPi)
Adafruit CircuitPython RSA (PyPi)

Adafruit CircuitPython RTTTL (PyPi)
Adafruit CircuitPython Register (PyPi)
Adafruit CircuitPython Requests (PyPi)
Adafruit CircuitPython ServoKit (PyPi)
Adafruit CircuitPython SimplelO (PyPi)
Adafruit CircuitPython Slideshow (PyPi)
Adafruit CircuitPython TinyLoRa (PyPi)
Adafruit CircuitPython WSGI (PyPi)
Adafruit CircuitPython Waveform (PyPi)
Adafruit CircuitPython binascii (PyPi)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 93 of 95

https://github.com/adafruit/Adafruit_CircuitPython_BLE_Heart_Rate.git
https://pypi.org/project/adafruit-circuitpython-ble-heart-rate
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Magic_Light.git
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Radio.git
https://pypi.org/project/adafruit-circuitpython-ble-radio
https://github.com/adafruit/Adafruit_CircuitPython_BLE_iBBQ.git
https://github.com/adafruit/Adafruit_CircuitPython_BLE.git
https://pypi.org/project/adafruit-circuitpython-ble
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font.git
https://pypi.org/project/adafruit-circuitpython-bitmap-font
https://github.com/adafruit/Adafruit_CircuitPython_BitmapSaver.git
https://pypi.org/project/adafruit-circuitpython-bitmapsaver
https://github.com/adafruit/Adafruit_CircuitPython_BluefruitConnect.git
https://pypi.org/project/adafruit-circuitpython-bluefruitconnect
https://github.com/adafruit/Adafruit_CircuitPython_BoardTest.git
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice.git
https://pypi.org/project/adafruit-circuitpython-busdevice
https://github.com/adafruit/Adafruit_CircuitPython_CursorControl.git
https://pypi.org/project/adafruit-circuitpython-cursorcontrol
https://github.com/adafruit/Adafruit_CircuitPython_Debouncer.git
https://github.com/adafruit/Adafruit_CircuitPython_Debug_I2C.git
https://github.com/adafruit/Adafruit_CircuitPython_Display_Button.git
https://pypi.org/project/adafruit-circuitpython-display-button
https://github.com/adafruit/Adafruit_CircuitPython_Display_Notification.git
https://pypi.org/project/adafruit-circuitpython-display-notification
https://github.com/adafruit/Adafruit_CircuitPython_Display_Shapes.git
https://pypi.org/project/adafruit-circuitpython-display-shapes
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text.git
https://pypi.org/project/adafruit-circuitpython-display-text
https://github.com/adafruit/Adafruit_CircuitPython_FancyLED.git
https://pypi.org/project/adafruit-circuitpython-fancyled
https://github.com/adafruit/Adafruit_CircuitPython_FeatherWing.git
https://pypi.org/project/adafruit-circuitpython-featherwing
https://github.com/adafruit/Adafruit_CircuitPython_GC_IOT_Core.git
https://pypi.org/project/adafruit-circuitpython-gc-iot-core
https://github.com/adafruit/Adafruit_CircuitPython_Gizmo.git
https://pypi.org/project/adafruit-circuitpython-gizmo
https://github.com/adafruit/Adafruit_CircuitPython_HID.git
https://pypi.org/project/adafruit-circuitpython-hid
https://github.com/adafruit/Adafruit_CircuitPython_Hue.git
https://pypi.org/project/adafruit-circuitpython-hue
https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad.git
https://github.com/adafruit/Adafruit_CircuitPython_IterTools.git
https://github.com/adafruit/Adafruit_CircuitPython_JWT.git
https://pypi.org/project/adafruit-circuitpython-jwt
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation.git
https://github.com/adafruit/Adafruit_CircuitPython_LIFX.git
https://pypi.org/project/adafruit-circuitpython-lifx
https://github.com/adafruit/Adafruit_CircuitPython_Logging.git
https://github.com/adafruit/Adafruit_CircuitPython_MIDI.git
https://pypi.org/project/adafruit-circuitpython-midi
https://github.com/adafruit/Adafruit_CircuitPython_MiniMQTT.git
https://pypi.org/project/adafruit-circuitpython-minimqtt
https://github.com/adafruit/Adafruit_CircuitPython_MotorKit.git
https://pypi.org/project/adafruit-circuitpython-motorkit
https://github.com/adafruit/Adafruit_CircuitPython_Motor.git
https://pypi.org/project/adafruit-circuitpython-motor
https://github.com/adafruit/Adafruit_CircuitPython_NTP.git
https://pypi.org/project/adafruit-circuitpython-ntp
https://github.com/adafruit/Adafruit_CircuitPython_OneWire.git
https://pypi.org/project/adafruit-circuitpython-onewire
https://github.com/adafruit/Adafruit_CircuitPython_PYOA.git
https://github.com/adafruit/Adafruit_CircuitPython_ProgressBar.git
https://pypi.org/project/adafruit-circuitpython-progressbar
https://github.com/adafruit/Adafruit_CircuitPython_PyBadger.git
https://pypi.org/project/adafruit-circuitpython-pybadger
https://github.com/adafruit/Adafruit_CircuitPython_Pypixelbuf.git
https://pypi.org/project/adafruit-circuitpython-pypixelbuf
https://github.com/adafruit/Adafruit_CircuitPython_RGBLED.git
https://pypi.org/project/adafruit-circuitpython-rgbled
https://github.com/adafruit/Adafruit_CircuitPython_RSA.git
https://pypi.org/project/adafruit-circuitpython-rsa
https://github.com/adafruit/Adafruit_CircuitPython_RTTTL.git
https://pypi.org/project/adafruit-circuitpython-rtttl
https://github.com/adafruit/Adafruit_CircuitPython_Register.git
https://pypi.org/project/adafruit-circuitpython-register
https://github.com/adafruit/Adafruit_CircuitPython_Requests.git
https://pypi.org/project/adafruit-circuitpython-requests
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit.git
https://pypi.org/project/adafruit-circuitpython-servokit
https://github.com/adafruit/Adafruit_CircuitPython_SimpleIO.git
https://pypi.org/project/adafruit-circuitpython-simpleio
https://github.com/adafruit/Adafruit_CircuitPython_Slideshow.git
https://pypi.org/project/adafruit-circuitpython-slideshow
https://github.com/adafruit/Adafruit_CircuitPython_TinyLoRa.git
https://pypi.org/project/adafruit-circuitpython-tinylora
https://github.com/adafruit/Adafruit_CircuitPython_WSGI.git
https://pypi.org/project/adafruit-circuitpython-wsgi
https://github.com/adafruit/Adafruit_CircuitPython_Waveform.git
https://pypi.org/project/adafruit-circuitpython-waveform
https://github.com/adafruit/Adafruit_CircuitPython_binascii.git
https://pypi.org/project/adafruit-circuitpython-binascii

Adafruit CircuitPython framebuf (PyPi)
Adafruit CircuitPython hashlib (PyPi)
Adafruit CircuitPython miniQR (PyPi)
Adafruit CircuitPython miniesptool (PyPi)
Adafruit CircuitPython turtle (PyPi)

© Adafruit Industries https://learn.adafruit.com/circuitpython-essentials Page 94 of 95

https://github.com/adafruit/Adafruit_CircuitPython_framebuf.git
https://pypi.org/project/adafruit-circuitpython-framebuf
https://github.com/adafruit/Adafruit_CircuitPython_hashlib.git
https://pypi.org/project/adafruit-circuitpython-hashlib
https://github.com/adafruit/Adafruit_CircuitPython_miniQR.git
https://pypi.org/project/adafruit-circuitpython-miniqr
https://github.com/adafruit/Adafruit_CircuitPython_miniesptool.git
https://pypi.org/project/adafruit-circuitpython-miniesptool
https://github.com/adafruit/Adafruit_CircuitPython_turtle.git
https://pypi.org/project/adafruit-circuitpython-turtle

© Adafruit Industries Last Updated: 2020-04-02 02:45:33 PM EDT Page 95 of 95

	Guide Contents
	CircuitPython Essentials
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	Reading Analog Pin Values
	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython Audio Out
	Play a Tone
	Play a Wave File
	Wire It Up
	Breadboard-Friendly 3.5mm Stereo Headphone Jack
	Tactile Switch Buttons (12mm square, 6mm tall) x 10 pack
	Panel Mount 10K potentiometer (Breadboard Friendly)
	100uF 16V Electrolytic Capacitors - Pack of 10
	Full sized breadboard
	Premium Male/Male Jumper Wires - 20 x 6" (150mm)
	Small Alligator Clip to Male Jumper Wire Bundle - 6 Pieces

	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Cap Touch
	Create the Touch Input
	Main Loop
	Find the Pin(s)

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython Storage
	Logging the Temperature

	CircuitPython CPU Temp
	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma and Trinket
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	CircuitPython Libraries and Drivers
	CircuitPython Libraries
	Adafruit CircuitPython Libraries
	Drivers:
	Helpers:

