ADVANCED MICRO DE\'/ICES " 28E'D WM 0257525 0033209 1L BN AMD

Tua 1R

Adva‘gcéilnfoi_:matlor_l :

Advanced

Am29005 anced
Low-Cost Streamlined Instruction Microprocessor Devices
DISTINCTIVE CHARACTERISTICS .
8 Full 32-bit, three-bus architecture B Burst-mode access support
® Nine million Instructions per second (MIPS) B 192 general-purpose registers

sustained at its 16-MHz operating frequency ® pemuitiplexed, pipelined address, instruction,
B Efficlent execution of high-level language and data buses

programs ® Three-address Instruction architecture
B CMOS technology B On-chip byte-alignment support allows
B Concurrent Instruction and data accesses optional byte/half-word accesses

SIMPLIFIED BLOCK DIAGRAM

'\l 4
Am29027

> © Arithmetic < >
Accelerator

Am29005
Address Low-Cost Data
Streamlined < >
Instruction
Microprocessor 32
<
, o2)%
)4 32

Instruction .
ROM Instruction
Instruction
Memory
Data
Memory

\/

\/

- P~
030758-003A
This document contains Information on a product under development at Advanced Micro Publication# 13089 . Rev. 8 Amendment 0
Devices, lnc.Thoh!ormalbnhln!mdodmhobyw(owawa(sthhpmdua.mnmm
ﬂgmwd\a.ngcoldnconmuewkmmbpmposadp(without notice. lssue Date: August 1990

ADVANCED MICRO DEVICES

= PEr ey = T e

N AMD ADVANCE INFORMATION T-49-17-32 .
DISTINCTIVE CHARACTERISTICS Seeseaeraseiers e st aee et et et nnneas e rennns
SIMPLIFIED BLOCK DIAGRAM . .1\ \titiittattanarencanasaceenssosnceneanneonernnnnaid
GENERAL DESCRIPTION 1ot vttt ettt testteeannesanesnonseennntssannresseeersaneennnes 2
PIN DESIGNATIONS ceiseanraans T
LOGICSYMBOLiiiiereeennnnnnnns D - |
PINDESCRIPTION ...vviiiniierennnennarenennns cereenas teatteeraaaseenteatetnenennans 6
FUNCTIONAL DESCRIPTION .+t ttttttutereuateusesororsrssaecreonsnsseenennnnas ... 10
ProductOvervlew...:..10
ARCHITECTURE HIGHLIGHTS L4t i ittt ittt iiiaernnaeernnneseneeesnancensenrensnrennee 12
ATCNIECILIG OVEIVIBW . . . ottt ettt ie ettt ettt e e e e e e e 12
ProgramModesoiiiiiii i e e Ceiereraaaas 12
Visible RegiStors. . . ov v ittt ittt i e e e et raea. e 12
INSIUCHON Set OVEIVIBWttt it e e e Ceeeaeanaal 14
Data Formats and Handlingoouuuiinrnnnn e, e eeen s 17
INEITUPIS AN TIADS .« . ettt it ettt e e e e et e . 18
COoprocessor PrOGramiming vuurenree ettt ettt et e e e e e e 19
Timer Facliity et i i Cereeiaas veaees 19
Trace Facilityo. i i 19
FUNCTIONAL OPERATION iersasaas cererenana ceerasesans 11
Four-Stage Pipelinecouiiiitiiit ittt et Ceeiaae. 20
FUNCion Organizationu ottt ittt ittt e e e e e, el 20
SYSlBM INIOIACE . . vttt i e e e 22
PIOgraM MOdOS ..t e e e 23
REGISTER DESCRIPTION essaa St ecenesasetrensartaestanean Cettecseraerasrnnans 24
General-PUrPOSe REGISIISt itn ettt ie et e 24
Special-PUIPOSE ROGISIOISttt ettt et e et e e .27
INSTRUCTIONSETcivvivnnnnns Ceeeteiseasiereietrcenannns feeean teeesseninnans 40
Integer Arthmeticooi i i i Ceeieseanas 40
COMIPANe . . .t e e 40
LOgICal .ot e e 40
B e e 40
DataMovement e Cecaaaranens 40
COMBl ANt .. e 40
Floaling-Point ..o e e 43
Br AN L\t e 43
MISCEIIANBOUSo i e e . 43
Reserved INSUUCHIONSttt e e e e, oo 43
DATAFORMATS ANDHANDLINGvvvvvinnennnnnnrennnens eresianaes cetsrraann veesos 47
INteger Dala TYPOS . o v vttt ittt e e e e e e RN ¥ 4
Floating-Point Data TYPaS\ iitit ettt et it ie et e e e e e e e e e e 48
Spacial FIoating-PoiNt VAIUSSo cutett ettt ittt e e e ee e e e e 49
EXIemMal Data ACCESSES . . vt ittt ittt e e 50
Addressing and AIGNMENtttt et e e e e e e, 53
Byte and Half-Word ACCESSESuut vttt ittt et e e e e e e e 55
INTERRUPTS AND TRAPS F ettt ettt e e e raeeeanan veee.. 57
O TUDIS L e e e 57
L2 ettt ireaaraaaa 57
2 L - 57
BT e T 58
Interrupt and Trap Handlingo.utunien ittt e ettt e, ... 58
LT T . 61
Sequencing of INterrupts and TraPsvieetitniirer et e e e erens N 62
Table of Contents

c8E D' B 0257525 0033210 & W AMD

ADVANCED MICRO DEVICES 28E D WM 0257525 0033211 T WA AMD
ADVANCE INFORMATION ~ + 49 17-32 AMD fioX

Exception Reportingand Restarting et et ... 62 :
ArtMElIC EXCOPUONSttt iiiiiitee st itetansaaetesanasansansansnnnns tee.. 04 i
Exceptions During Interrupt and Trap Handling et raiereste et et Ceriees 85
CHANNEL DESCRIPTIONc.ccvennn Ceetaenans Wertestasesssescinesecscasnsasanaes 68
User-Defined SIgnalsuiitreeinieriresrenesssaseasenesesssanarosaassnsessonsssnsas 65
INSIUCHON ACCESSES « v v vt es st etaetanessonsssnnoseneereassasacssssssosessnsassnsnensnas 65
DAlBACCESSEBS ..o vvvreeerssseriocassoasasssoncnssoerssrsesacrosionnarans Cheeaana ceveas 66
SN Reporting Brrorsoiii ittt iiaiii i e ittt st reeneceneeed ;. 66
C ACCESS PrOtOCOIS .. it ve it iite ettt eeuerosssscanaseassseasssnnnnnnns Veeeeens 66
e SIMPIE ACCESSES .. vt vieaie sttt titietssassearessassasnsenessnnsnnnens veeieas ... 66
PIpeliNed ACCESSES . v vttt ti ittt ie it i i s et ettt st areea e crees. 68
BUISE-MOUE ACCESSES + o« v vttt ter i etessenraeereetonesearneoasestasecassossossasssnssnsna 68
o111 =111 1 Chrreaes .74
Bus Sharing—Electrical Considerationsttt ittt ittt ittt eras ittt 74
Channel Behavior for Interrupts andTrapsot vvviinreirnriincestasrsconsoacenss Cveeaeia. 74
Effect of the LOCK OUIPUL ..t tit it it ieiitiieeceneaanasnnrsantesstosstassannannens 75
Initialization and Reset oottt it it i it it i resean .75
ABSOLUTE MAXIMUMRBATINGSc000ennnnes Y {4
OPERATINGRANGEScot0uteerennnn Ceeesesaesienetesaanns N [4
DC CHARACTERISTICS reterereanan ceseeaes B N (4
CAPACITANCE ...i.vvienrennnncensancanns Y (4
SWITCHING CHARACTERISTICScv0nun. Certeseiaeseanas teesesaeans T (-]
SWITCHINGWAVEFORMS .. .ivevrvnvnsansencaonannnns P
SWITCHING TESTCIRCUITcovvvevencannnasa terenees PP PP - -] . .
=, PHYSICAL DIMENSIONS Ceeeeans P :” | '
TRADEMARKS .. vvcvvrvenenansescnsanenanes M - 1]

Table of Contents

I [U,

ADVANCED MICRO DEVICES

[y .
e N L eemesa 2o S SN

d8E D mW 0257525 DDBBELE 1 W AMD

&\ AMD ADVANCE INFORMATION o

GENERAL DESCRIPTION

The Am29005™ Low-Cost Streamlined Instruction
Processor is a high-performance, general-purpose,
32-bit microprocessor Implemented in CMOS technol-
ogy. It supports a variety of applications by virtue of a
flexible architecture and rapld execution of simple in-
structions that are common to a wide range of tasks.

The Am29005 microprocessor efficiently performs op-
erations common to all systems, while deferring most
decisions on system policies to the system architect. It is
weil-suited for application in cost-sensitive embedded
systems like laser printers, communications and graph-
lcs controllers, or other applications where high per-
formance, flexibllity, and the ability 1o program using
standard software tools Is important.

T-49-17-3
The Am29005 microprocessor instruction set has been
influenced by the results of high-level language, opti-
mizing compiler research; It is appropriate for a variety
of languages because it efficiently executes operations
that are common to all languages. Consequently, the
Am29005 microprocessor is an ideal target for high-
level languages such as C, FORTRAN, Pascal, Ada®,

and COBOL.
The processor is available in a 168-lead plastic-quad- &
flat-pack (PQFP) package. The package has 141 signal

. Ppins and 27 power and ground pins. A representative

system diagram is shown on page 1.

29K™ Family Development Support
Products

Contact your local AMD® representative for information
on AMD's compiete set of development support tools.

Software development products on several hosts:

¥ Optimizing compilers for common high-level
languages

® Assembier and utility packages

¥ Source- and assembly-level software debuggers
® Target-resident development monitors

B Simulators

RELATED AMD PRODUCTS

Am29005 Microprocessor Peripheral Devices

Part No. Description

Am29027™ Arithmetic Accelerator

e e

2 Am29005 Microprocessor

T pep———

ADVANCED MICRO DEVICES

28kt D

M 0257525 0033213 3 W AMD

ADVANCE INFORMATION AMD e
PQFP PIN DESIGNATIONS . '
(Sorted by Pin Number) T-49-17-32
Pin No. Pin Name Pin No. Pin Name Pin No.| Pin Name Pin No.] Pin Name
1 DRDY 43 Voo 85 GND 127 GND-
2 CDA 44 a 86 Ast 128 OPTo
3 INCLK 45 2 87 Axn 129 OPT1
4 PWRCLK 46 h 88 Az 130 "OPT2
3 5 SYSCLK 47 GND 89 Az 131 SUPUS
6 GND 48 lo 90 Az 132 IREQT
7 Voo 49 Do 91 Azs 133 STATo
8 GND 50 Di 92 Azs 134 STAT:
9 RESET 51 D2 93 Az 135 STAT:
10 CNTLo 52 D3 94 An 136 MSERR
11 CNTLs 53 Ds 95 Az 137 DREQTo
12 TEST 54 Ds 96 Az 138 DREQT:
13 It 55 Ds 97 Az 139 LOCK
14 10 56 Dr 98 Ao 140 RW
15 leo 57 De 99 Ase 141 DREQ
16 I 58 Da 100 Az 142 PDA
17) 59 Do 101 A 143 PiA
18 l2s 60 Du 102 Ats 144 IREQ
19 s 61 D2 103 GND 145 BGRT
20 1 62 Dua 104 Ve 146 DBREQ
- 21 GND 63 Du 105 Veo 47 IBREQ
22 Veo 64 Vee 106 Au - 148 BINV
23 I 65 GND 107 A 149 Voo
24 l2 66 Dis 108 Az 150 Vee
25 l21 67 Dis 109 An 151 GND
26 lo 68 D1z 110 A 152 Veo
27 e 69 Dis m A 153 ~ GND
28 he 70 D 112 Ao 154 TRAPo
29) 71 Dz 113 MPGMo 155 TRAP:
30 I 72 Da 114 MPGM; 156 INTRo
31 Iis 73 Dez 115 Veo 157 INTRs
32 1 74 D2 116 Veo 158 INTR:
33 i 75 Dot 17 Ao 159 INTRs
3 ha 76 Dzs 118 As 160 WARN
35 T 77 ™ 119 A7 161 TBACK
36 lo 78 Der 120 As 162 'TRDY
37 lo 79 Das 121 As 163 TERR
38 Is 80 Dx 122 M 164 DERR
g % 39 I 8t Dx 123 As 165 DBACK
& 40 Te) Dt 124 A 166 BEN
a3 Ts 83 GND 125 GND 167 “BREQ
42 1 84 Vee 126 GND 168 GND
Am29005 Microprocessor 3

I

ADVANCED MICRO DEVICES

.EBE D mm 0257525 0033214 5 WM AMD

[P ¥ U

& AMD ADVANCE INFORMATION . o
PQFP PIN DESIGNATIONS T-49-17-32
(Sorted by Pin Name)
Pin Name Pin No. Pin Name | Pin No. Pin Name Pin No. Pin Name | Pin No.
Ao 112 D« 53 GND 103 INCLK 3 :
A 111 Ds 54 GND 125 INTRo 156 , :
A2 124 Ds 55 GND 126 INTR: 157
As 123 Dr 56 GND 127 INTR: 158
As 122 Ds 57 GND 151 INTR: 159 ‘
As 121 Do 58 GND 153 IRDY 162
As 120 Do 59 GND 168 TREQ 144
Ar 119 Du 60 lo 48 IREQT 132
As 118 D2 61 h 46 LOCK | 139
A 117 D1 62 I 45 MPGMo | 113
Ao 110 Du 63 ls 44 MPGM; 114
An 109 Dis 66 L 42 MSERR | 136
A1z 108 Dis 67 Is 41 OPTo 128
A 107 Dv 68 s 40 OPT1 129
Au 106 Du 69 I 39 OPT: 130
Ass 102 D1 70 ls 38 PDA 142
Ats 101 D= 71 b 37 PEN 166
A 100 Da 72 ™ 36 PIA 143
Auwn 99 D22 73 Iy 35 PWRCLK| 4
A 98 Dz 74 bz 34 RIW 140
Az 97 Dz 75 hs 33 RESET | 9
Az 96 Das 76 lis 32 STATo 133 @
Az 95 Dzs 77 ls 31 STAT: 134
Az 94 Dar 78 hs 30 STAT: 135
Az 93 [79) 29 SUP/US | 131
Az 92 Dz 80 le 28 SYSCLK | 5
Azs 91 Dx 81 he 27 TEST | 12
Az 90 Dat - 82 lo 26 TRAPs 154
_An 89 DBACK | 165 fas 25 TRAP: 155
Axn 88 DBREQ | 146 12 24 Vee 7
A 87 DERR 164 Iz 23 Vee 22
An 86 DRDY 1 I 20 Vee 43 o
__BGRT 145 DREQ 141 les 19 Veo 64
BINV 148 DREQTo | 137 ls 18 Vee 84
BREQ 167 DREQT: | 138 tln 17 Vee 104
CDA 2 GND 6 I 16 Veo 105
CNTLo 10 GND 8 I 15 Vee 115
CNTL 1 GND 21 ™ 14 Vee 116)
Do 49 GND 47 laq 13 Vee 149
D 50 GND 65 IBACK 161 Vee 150
Dz 51 GND 83 IBREQ 147 Vee 152
Ds 52 GND 85 ERR 163 WARN 160
4 Am29005 Microprocessor

ADVANCED MICRO

DEVICES

" 28E D WM 0257525 0033215 7 EE AMD
ADVANCE INFORMATION

AMD e

LOGIC SYMBOL 1-49-17-32
—) BREG BGAT [———»
——— BEN BNV F—
—» OV RWF———»
——» EFR SUPUS[——»
—J BACK oK |—»
— ¥ pEoY MPGM,-MPGM,|———»
SN st REQ ——
———»| BBACK 7Y e—
—— oA DBREG ————»
———» WARN DREQT,-DREQT, —%—»
jJ_‘> NTR-INTR, MSERR[—>
——2—¥ oNTL-CNTL, DREQ ———
— e OPT~OPT, j>
— M T&ST STATz-STAToj_>
—————3{ INCLK IREQT f—
—%— TRAP-TFAP, PA|———»
@ bl BREQ}——>
——»¥ PWRCLK svi oK § Ach| 32)
Am29005 Microprocessor 5

- eEE TS ETEGT

ADVANCED MICRO DEVICES

&8 AMD ADVANCE

e e = Ty

PIN DESCRIPTION

Although certain outputs are described as being three-
state or Dbidirectional outputs, all outputs (except
MSERR) may be placed In a high-impedance state by
the Test mode. The three-state and bidirectional termi-
nology in this section is for those outputs (except
SYSCLK) that are disabled when the processor grants
the channel to another master.

AM"‘AO
Address Bus (Three-state Outputs, Synchronous)

The Address Bus transters the byte address for all ac-
cesses except burst-mode accesses. For burst-mode
accesses, it transfers the address for the first access in
the sequence.

BGRT
Bus Grant (Output, Synchronous)

This output signals to an external master that the
processor is_relinquishing control of the channel in
response to BREQ.

BINV
Bus Invalid (Output, Synchronous)

This output indicates that the address bus and related
controls are invalid. It defines an idle cycle for the
channel.

BREQ
Bus Request (Input, Synchronous)

This input allows other masters to arbitrate for control of
the processor channel.

CDA

Coprocessor Data Accept (Input, Synchronous)
This signal allows the coprocessor to indicate the ac-
ceptance of operands or operation codes. For transfers
to the coprocessor, the processor does not expect a
DRDY response; an active level on CDA performs the
function normally performed by DRDY. TDA may be
active whenever the coprocessor is able to accept
transfers.

CNTL~CNTL,
CPU Control (Inputs, Asynchronous)
These inputs control the processor mode:

T-49-17-32

DBACK
Data Burst Acknowledge (Input, Synchronous)
This input is active whenever a burst-mode data access

has been established. If may be active even though no
data are currently being accessed.

DBREQ

Data Burst Request (Three-state Output,
Synchronous))

This signal is used to establish a burst-mode data ac-
cess and to request data transfers during a burst-mode
data access. DBREQmay be active eventhoughthe ad-
dress bus is being used for an instruction access. This
signal becomes valid late in the cycle, with respect to
DREQ.

DERR :
Data Error (Input, Synchronous)
This input indicates that an error occurred during the

. current data access. For a load, the processor ignores

the content of the data bus. For a store, the access ister-
minated. In either case, a Data Access Exception trap
occurs. The processor ignores this signal if there is no
pending data access.

DRDY

Data Ready (Input, Synchronous)

For loads, this input indicates that valid data is on the
data bus. For stores, it indicates that the access Is com-
plete, and that data need no longer be driven onthe data
bus. The processor ignores this signal if there is no
pending data access.

DREQ

Data Request (Three-state Output, Synchronous)
This signal requests a data access. Whenitis active, the
address for the access appears on the address bus.

DREQT,-DREQT,
Data Request Type
(Three-state Outputs, Synchronous)

These signals specify the address space of a data ac-
cess, as follows (the value “x" is a “don't care™):

Meaning

DREQT, DREQT,

CNTL, CNTL, Mode 0 0 Instruction/data

0 0 Load Test memory access
: 0 1 Input/output
Instruction access
0 1 Step 1 X Coprocessor
! 0 Halt transfer
1 1 Normal
Ds~Do An interrupt/trap vector request is indicated as a data-

Data Bus (Bidirectionals, Synchronous)

The Data Bus transfers data to and from the processor
for load and store operations.

memory read. If required, the system can identify
the vector fetch by the STAT=—STATs - outputs.
DREQT—-DREQTo are valid only when DREQ is active.

6 Am29005 Microprocessor

e TR TR D ATt ettt 23, Tm s 4 et a

28E D M 0257525 003321k 9 MW AMD
INFORMATION .

ADVANCED MICRO DEVICES

S tam o T 02

e ——

B 0257525 0033217 0 W AMD
,AMDn

28E D
ADVANCE INFORMATION
la—lo IRDY

Instruction Bus (Inputs, Synchronous)

The Instruction Bus transfers instructions to the
processor.

IBACK

Instruction Burst Acknowledge
(Input, Synchronous)

This input Is active whenever a burst-mode instruction
access has been established. it may be active even
though no instructions are currently being accessed.

IBREQ

Instruction Burst Request (Three-state

Output, Synchronous)

This signal is used o establish a burst-mode instruction
access and to request instruction transters during a
burst-mode Instruction access. IBREQ may be active
eventhough the address bus Is beingusedforadata ac-
cess. This signal becomes valid late in the cycle withre-
spect to IREQ.

IERR
Instruction Error (Input, Synchronous)

This input indicates that an error occurred during the

current Instruction access. The processor ignores the

content of the instruction bus, and an Instruction Access

Exception trap occurs if the processor attempts to exe-

cute the invalid instruction. The processor ignores this
signal if there is no pending instruction access.

INCLK

Input Clock (Input)

Whenthe processor generates the clock for the system,
this Is an oscillator input to the processor at twice the
processor's operating frequency. In systems where the
clock is not generated by the processor, this signal must
be tied High or Low, except in certain master/slave
configurations.

INTR:~INTRo

Interrupt Request (Inputs, Asynchronous)

These inputs generate prioritized interrupt requests.
The interrupt caused by INTRoe has the highest priority,
and the interrupt caused by TNTRs has the lowest prior-
ity. The interrupt requests are masked in prioritized or-
der by the Interrupt Mask field in the Current Processor
Status Register.

T-49-17-32 "

Instruction Ready (Input, Synchronous)

This input indicates that a valid instruction is on the In-
struction bus. The processor ignores this signal if there
Is no pending instruction access.

TREQ

Instructlon Request
(Three-state Output, Synchronous)

This signal requests an instruction access. When it is
active, the address for the access appears on the ad-

dress bus.
IREQT

Instruction Request Type
(Three-state Output, Synchronous)

This signal specifies the address space of an instruction
request when TIREQ is active:

IREQT Meaning
0 |nstmct|on/data memory access
1 Instruction read-only memory
access
LOCK

Lock (Three-state Output, Synchronous)

This output allows the implementation of various chan-
nel and device Interlocks. it may be active only for the
duration of an access, or active for an extended period
of time under control of the Lock bit in the Current

Processor
MSERR

Status.

Master/Slave Error (Output, Synchronous)

This output shows the result of the comparison of
processor outputs with the S|gnals provided internally to
the off-chip drivers. if there is a difference for any en-
abled driver, this line is asserted.

MPGM,-MPGM,

MMU Programmable

(Three-state Outputs, Synchronous)

These outputs have no function In the Am29005 micro-
processor, and always are driven Low on an access.
They are defined to ensure pin compatibility with the
Am29000™ microprocessor.

Am29005 Microprocessor ' 7

= T N e T RS

ADVANCED MICRO DEVICES

T e I

28E D W 0257525 0033218 2 M
uAMD ADVANCE INFORMATION Te4g—]7-3?
OPT~OPT, until the first access is complete. The completion of the
Optlon Control first access is signaled by the assertion of IREQ.

(Three-state Outputs, Synchronous)

These outputs reflect the value of bits 18—16 of the load
or store instruction that begins an access. Bit 18 of the
instruction Is reflected on OPTz, bit 17 on OPTy, and bit
16 on OPTo.

The standard definitions of these signals (based on
DREQT) are as follows (the value “x” is a “don't care”):

DREQT, DREQT, OPT, OPT, OPT,
0 X 0 0 0

Meaning

Word-
length
access
Byte
access
Half-word
access
Instruction
ROM
access
(as data)
Cache
control
Hardware-
development
systam
accesses
Reserved

During an Interruptitrap vector fetch, the OPT=OPTo
signals Indicate a word-length access (000). Also, the
system should return an entire aligned word for a read,
regardiess of the indicated data length.

The Am23005 microprocessor does not explicitly pre-
vent a store to the instruction ROM. OPT=-OPTo are
valid only when DREQ is active.

PDA

Pipelined Data Access

(Three-state Output, Synchronous)

If DREQ s not active, this outputindicates that a data ac-
cess is pipelined with another in-progress data access.
The Indicated access cannot be completed until the first
access Is complets. The completion of the first access Is
signaled by the assertion of DREQ.

PEN

Pipeline Enable (Input, Synchronous)

This signal allows devices that can support pipelined ac-
cesses (l.e., that have input latches for the address and

required controls) to signal that a second access may
begin while the first is being completed.

PIA

Plpelined Instruction Access

(Three-state Output, Synchronous)

IfTREQ Is not active, this output indicates that an instruc-
tion access s pipelined with another in-progress instruc-
tion access. The indicated access cannot be completed

-all others-

RW :
Read/Wrlte (Three-state Output, Synchronous)

This signal indicates whether data is being transferred
from the processor to the system, or from the systemto
the processor. R/Wis valid only whenthe address bus is
valid. R/W will be High when IREQ is active.

RESET

Reset (Input, Asynchronous)

This input places the processor in the Reset mode.
STATSTAT,

CPU Status (Outputs, Synchronous)

These outputs indicate the state of the processor's exe-
cution stage on the previous cycle. They are encoded
as foliows: :

STAT. STAT, STAT, Conditlon

0 0 0 Halt or Step Modes

0 0 1 Pipeline Hold Made

0 1 0 Load Test Instruc-
tion Mode,
Halt/Freeze

0 1 1 Wait Mode

1 0 0 Interrupt Return

1 0 1 Taking Interrupt or
Trap

1 1 0 Non-sequential
Instruction Fetch

1 1 1 Executing Mode

SUP/US

Supervisor/User Mode
(Three-state Output, Synchronous)

This output indicates the program mode for an access,

The processor does not relinquish the channel (in re-
sponse to BREQ) when LOCK is active.

SYSCLK

System Clock (Bldirectional)

This is either a clock output with a frequency that is half
thatof INCLK, or an inputfrom an external clock genera-
tor at the processor's operating frequency.

TEST
Test Mode (Input, Asynchronous)

Whenthis input is active, the processoris in Test mode.
All eutputs and bidirectional lines, except MSERR, are
forced to the high-impedance state.

TRAP:-TRAP,
Trap Request (Inputs, Asynchronous)

These Inputs generate prioritized trap requests. The
trap caused by TRAPs has the highest priority. These
trap requests are disabled by the DA bit of the Current
Processor Status Register.

8 Am29005 Microprocessor

ADVANCED MICRO DEVICES

28E D WE 0257525 0033219 4 WA AMD
ADVANCE INFORMATION AMD“ '
WARN PWRCLK 1-49-17-32

Warn (Input, Asynchronous, Edge-sensitive)

A High-to-Low transition on this input causes a non-
maskable WARN trap to occur. This trap bypasses the
normal trap vector fetch sequence, and is useful in situ-
ations where the vector fetch may not work {e.g., when
data memory Is faulty).

The tollowing pin is not a signal pin, but is named in
Am29005 microprocessor documentation because of
its speclal role in the processor and system.

Power Supply for SYSCLK Driver

This pin is a power supply for the SYSCLK output driver.
it isolates the SYSCLK driver, and is used to determine
whether or not the Am29005 microprocessor generates
the clock forthe system. If power (+5 V) is applied to this
pin, the Am29005 microprocessor generates a clock
on the SYSCLK output. If this pin is grounded, the
Am29005 micraprocessor accepts a clock generated by
the system on the SYSCLK input.

Am29005 Microprocessor 9

ADVANCED MICRO DEVICES

aAMD ADVANCE

INFORMATION

R Y I L S T

c8E D W 0257525 0033220 0 W AMD

T-49-17-32

FUNCTIONAL DESCRIPTION
Product Overview

The Am29005 microprocessor contains a high-function
execution unit, a large register file (192 locations), and a
high-bandwidth, pipelined external channel with sepa-
rate instruction and data buses. The flexible register file
may be used as a cache for run-time variables during
program execution, or as a collection of register banks
allocated to separate tasks in multitasking applications.

The Am29005 microprocessor provides a significant
margin of performance over other processors designed
for cost-sensitive situations, since the majority of pro-
cessor features were defined with the maximum achiev-
able performance in mind. This section describes the
features of the Am29005 microprocessor from the point
of view of system performance.

Cycle Time

The processor operates at a frequency of 16 MHz. The
processor cycle time Is a single, 62.5-ns clock period.
The processor interface drivers can drive 80-pF loads at
this frequency (for loads greater than 80 pF, refer to the
Capacitive Qutput Delay table).

The Am29005 microprocessor architecture and system
interfaces are designed so that the processor cycletime
can decrease with technology improvements.

Four-Stage Pipellne

The Am29005 microprocessor utilizes a four-stage
pipeline, allowing it to execute one instruction every
clock cycle. The processor can complete an instruction
on every cycle, even though four cycles are required
from the beginning of an instruction to its completion.

At the 16-MHz operating frequency, the maximum in-
struction execution rate is 16 million instructions per
second (MIPS). The Am29005 microprocessor pipeline
Is designed so that the Am29005 microprocessor can
operate at the maximuminstruction execution rate a sig-
nificant portion of the time.

Pipeline interfocks are implemented by processor hard-
ware. Except for a few special cases, it is not necessary
to rearrange programs to avoid pipeline dependencies.

System Interface

The Am29005 microprocessor accesses external in-
structions and data using three non-muttiplexed buses.
These buses are referred to collectively as the channel.
The channel protocol minimizes the logic chains In-
voived in a transfer, and provides a maximum transfer
rate of 128 Mb/s.

Separate Address, Instruction, and Data Buses

The Am29005 microprocessor incorporates two 32-bit
buses for instruction and data transfers, and a third ad-
dress bus that Is shared between instruction and data
accesses. This bus structure allows simultaneous in-
struction and data transters, even though the address

bus Is shared. The channel achieves the performance of
four separate 32-bit buses at a much-reduced pin courit.

Pipelined Addresses

The Am29005 microprocessor address bus is pipelined
so that it can be released before an instruction or
data transfer is completed. This allows a subsequentac-
cess to begin before the first has been completed, and

- allows the processor to have two accesses in progress

simultaneously.,

Support of Burst Devices and Memories
Burst-mode accesses provide high transfer rates for
instructions and data at sequential addresses. For such
accesses, the address of the first instruction or datum
Is sent, and subsequent requests for instructions or data
at sequential addresses do not require additional
address transfers. These instructions or data are trans-
ferred until either party involved in the transfer termi-
nates the access.

Burst-mode accesses can occur at the rale of one ac-
cess per cycle after the first address has been pro-
cessed. At 16 MHz, the maximum achievable transfer
bandwidth for either instructions or data is 64 Mb/s.

Burst-mode accesses may ocour to input/output de-
vices if the system design permits.

Interface to Fast Devices and Memotrles

The processor can be interfaced to devices and memo-
ries that complete accesses within one cycle. The chan-
nel protocol takes maximum advantage of such devices
and memories by allowing data to be returned to the
processorduring the cycle inwhich the address is trans-
mitted. This allows a full range of memory-speed trade-
offs to be made within a particular system.

Register File

An on-chip Register File containing 192 general-
purpose registers allows most instruction operands to
be fetched without the delay of an external access. The
Register File incorporates several features that aid
the retention of data required by an executing program.
Because of the number of general-purpose registers,
the frequency of external references for the Am29005
microprocessor is significantly lower than the freq-
uency of references in processors having only 16 or 32
registers.

Triple-port access to the Register File allows two source
operands to be fetched in one cycle while a previously
computed result is written. Three 32-bit intérnal buses
prevent contention in the routing of operands. All oper-
and fetches and result write-backs for instruction execu-
tion can be performed in a single cycle.

The registers allow efficient procedure linkage by cach-
ing a portion of a compiler's run-time stack. Onthe aver-
age, procedure calls and returns can be executed 5
1o 10 times faster (on a cycle-by-cycle basis) than in

10 Am238005 Microprocessor

C

ADVANCED MICRO DEVICES

ADVANCE

e e, D et Sub i R

28E D WA 0257525 0033221 2
INFORMATION

v

processorsthat require the implementationof a run-time
stack In external memory (with the attendant loading
and storing of registers on procedure call and return).

The registers can contain variables, constants, ad-
dresses, and operating-system values. In multitasking
applications, they can be used to hold the processor
status and variables for as many as eight different tasks.
A register-banking option allows the Register File to be
divided into segments, which can be individually pro-
tected. In this configuration, a task switch can occur in
as few as 17 cycles.

Instruction Execution

The Am29005 microprocessor uses an Arithmetic/Logic
Unit, a Field Shift Unit, and a Prioritizer to execute most
instructions. Each of these Is organized to operate on
32-bit operands and provide a 32-bit result. All opera-
tions are performed in a single cycle.

Instruction operations are overlapped with operand
tetch and result write-back to the Register File. Pipeline
forwarding logic detects pipeline dependencies and
routes data as required, avoiding delays that might arise
from these dependencies.

Branching

Branch conditions in the Am28005 microprocessor are
based on Boolean data contained in general-purpose
registers rather than on arithmetic condition codes. Us-
ing a condition-code register for the purpose of branch-
ing—which Is common in other processors—inhibits
certain compiler optimizations because the condition-
code register is modified by many different instructions.
It is difficult for an optimizing compiler to schedule this
shared use. By treating branch conditions as any other
instruction operand, the Am29005 microprocessor
avolds this problem.

Loads and Stores

The performance degradation of load and store opera-
tions Is minimized in the Am29005 microprocessor by
overlapping them with instruction execution, by taking
advantage of pipelining, and by organizing the flow of
external data onto the processor so that the impact of
external accesses is minimized.

Overlapped Loads and Stores

In the Am29005 microprocessor, a load or store is per-
formed concurrently with execution of instructions that
do not have dependencies on the load or store opera-
tion. An optimizing compiler can schedule loads and
stores in the instruction sequence so that, in most
cases, data accesses are overlapped with instruction
execution.

Overlapped load and store operations can achieve upto
a30% improvement in performance when data memory
has a two-cycle access time. Processor hardware de-
tects dependencies while overlapped loads and stores

T-49-17-32 Ao &

are being performed, so dependencies have no soft-

- ware implications.

The AmM29005 microprocessor exception . restart
mechanism automatically saves information required to
restart any load or store until the operation is success-
fully completed. Thus, it allows the overlapped execu-
tion of loads and stores while properly handling ad-
dress-translation exceptions.

The Am29005 microprocessor data-flow organization
avoids the one-cycle penalty that would result from the
contention between load data and the results of over-
lapped instruction exécution. Load data is buffered ina
latch while awaiting an opportunity to be written into the
register file. This opportunity is guaranteed to arise be-
fore the nextload is executed. While the data is buffered
in this latch, it may be used as an instruction operand in
place of the destination register for the load.

Load Multiple and Store Multiple

Load Muttiple and Store Multiple instructions allow the
transfer of the contents of multiple registers to or from
external memories or devices. Thistransfer canoccur at
a rate of one register content per cycle.

The advantage of Load Multiple and Store Mulitiple is
best sean in task switching, in register-file saving and
restoring, and in block data moves. In many systems,
such operations require a significant percentage of
execution time.

The Load Muitiple and Store Muitiple seqﬁences arein-
terruptible so that they do not affect interrupt latency.

Forwarding of Load Data

Datathatare sentto the processor atthe completionof a
load are forwarded directly to the appropriate execution
unit if the data are required immediately by an instruc-
tion. This avoids the common one-cycle delay from bus
transfer to use of data, and reduces the access latency
ot external data by one cycle.

Interrupts and Traps

When the Am29005 microprocessor takes an interrupt
or trap, it does not automatically save its current state
information. This greatly improves the performance of
temporary interruptions such as floating-point emulation
or other simple operating-system calls that require no
saving of state information,

In cases where the processor state must be saved, the
saving and restoring of state information is under the
control of software. The methods and data structures
used to handle interrupts—and the amount of state
saved—may be tailored to the needs of a particular
system.

Interrupts and traps are dispatched through a 256-entry
Vector Area, which directs the processor to a routine to
handle a given interrupt ot trap. The Vector Areamay be

Am29005 Microprocessor 1"

B AMD

ADVANCED MICRO DEVICES
NAMD ADVANCE

oy AP e

relocated In memory by the modification of a processor
register. There may be multiple Vector Areas in the sys-
tem, though only one Is active at any given time.

The Vector Arealis either a table of pointers to the inter-
rupt and trap handlers, or a segment of instruction mem-
ory (possibly read-only memory) containing the han-
dlers themselves. The choice between the two possible
Vector Area definitions Is determined by the cost/per-
formance trade-offs made for a particular system.

i the Vector Area s a table of vectors in data memory, it
requires only 1 kb of memory. However, this structure
requires that the processor perform a vector fetch every
time an interrupt or trap Is taken. The vector fetch re-
quires at least three cycles in addition to the number of
cycles required for the basic memory access.

Ifthe Vector Area Is a segment of instruction memory, it
requires a maximum of 64 kb of memory. The advan-
tage of this structure is that the processor begins the
axecution of the interrupt or trap handler in the minimum
amount of time.

Floating-Point Arithmetlic Unit

The Am29027 arithmetic accelerator is a double-preci-
sion, floating-point arithmetic unit for the Am29005
microprocessor. It can provide an order-of-magnitude
performance Increase over floating-point operations
performed in software. It performs both single-precision
and double-precision operations using IEEE and other
floating-point formats. The Am29027 arithmetic accel-
erator also supports 32- and 64-bit integer functions.

The Am29027 arithmetic accelerator performs floating-
point operations using combinatorial—rather than se-
quential—logic; therefore, operations with the Am29027
arithmetic accelerator require only five Am29005 micro-
processor cycles. Floating-point operations may be
overlapped with other processor operations. Further-
more, the Am29027 arithmetic accelerator incorporates
pipeline registers and eight operand registers, permit-
ting very high throughput for certain types of operations
(such as array computations).

The Am29027 arithmetic accelerator attaches directiy to
the Am29005 microprocessor using the coprocessor in-
terface. The Am29005 microprocessor can transter two
32-bit quantities to the Am29027 arithmetic accelerator
In one cycle.

The Am29027 arithmetic accelerator is described in
detail In the Am29027 Arithmetic Accelerator Data
Sheet (order #09114) and the Am29027 Handbook
(order #11852).

ARCHITECTURE HIGHLIGHTS

This section introduces the principle architectural ele-
ments, hardware features, and system interfaces of the
Am29005 microprocessor.

T-49-17-32
Architecture Overview

This section gives a brief description of the Am29005
microprocessor from a programmer's point of view. It
introduces the processor's program modes, registers,
and instructions. An overview of the processor's data
formats and handling is given. This section also briefly
describes interrupts and traps, and the coprocessor
interface. Finally, the Timer Facllity and Trace Facility
are introduced.

Program Modes

There are two mutually exclusive mades. of program
execution: the Supervisor mode and the User mode. In
the Supervisor mode, executing programs have access
to all processor resources. In the User mode, certain
processor resources may not be accessed; any at-
tempted access causes a trap.

Visible Registers

The Am29005 microprocessor incorporates two classes
of registers that are accessed and manfpulated by in-
structions: general-purpose registers, and special-pur-
posae registers. (Refer to the Register Description sec-
tion for greater detail of the register categories.)

General-Purpose Registers

The Am29005 microprocessor has 192 general-
purpose registers. With a few exceptions, general-
purpose registers are not dedicated to any special use
and are avaitable for any appropriate program use.

Most processor instructions are three-address instruc-
tions. An instruction specities any three of the 192 regis-
ters for use In instruction execution. Normally, two of
these registers contain source operands for the instruc-
tion, and a third stores the resuit of the instruction.

The 192 registers are divided into 64 global and 128 lo-
cal registers. Global registers are addressed with abso-
lute register numbers, while local registers are ad-
dressed relative to an internal Stack Pointer,

For fast procedure calling, a portion of a comipiler's run-
time stack can be mapped into the local registers. Stati-
cally allocated variables, temporary values, and operat-
ing-system parameters are kept in the global registers.

The Stack Pointer forlocalregisters is mappedto Global
Register 1. The Stack Pointer is a full 32-bit virual ad-
dress for the top of the run-time stack.

The general-purpose registers may be accessed in-
directly, with the register number specified by the con-
tent of a special-purpose register (see below) rather
than by an instruction field. Three independent indirect
register numbers are contained in three separate
special-purpose registers. Indirect addressing is ac-
complished by specifying Global Register 0 as an

12 Am29005 Microprocessor

28E D WM 0257525 0033222 4 WE_AMD
INFORMATION

ADVANCED MICRO DEVICES 28E D WM 0257525 0033223 & W AMD

ADVANCE

INFORMATION

T-49-17-32 Avp A

Instruction operand or result register. An instruction can
specify an indirect register access for any or all of the
source operands or result.

General-purpose registers may be partitioned into
segments of 16 registers for the purpose of access
protection. A register in a protected segment may be ac-
cessed only by a program executing in the Supervisor
mode. An attempted access (either read or write) by a
User-mode program causes a trap to occur.

Speclal-Purpose Registers

The Am29005 microprocessor contains 25 special-pur-
pose registers. These registers provide controls and
data for certaln processor functions.

Special-purpose registers are accessed by data move-
ment only. Any special-purpose register can be written
with the contents of any general-purpose register, and
any general-purpose register can be written with the
contents of any special-purpose register. Operations
cannot be performed directly on the contents of special-
purpose registers.

Some special-purpose registers are protected, and can
be accessed only in the Supervisor mode. This restric-
tion applies to both read and write accesses. An attempt
by a User-mode program to access a protected register
causes a trap to occur.

The protected special-purpose registers are defined as
follows:

1. Vector Area Base Address—Defines the begin-
ning of the Interrupt/trap Vector Area.

2. Old Processor Status—Receives a copy of the
Current Processor Status (see below) when an
interrupt ortrap is taken. It is later used to restore
the Current Processor Status on an interrupt
retum.

3. Current Processor Status—Contains control in-
formation assoclated with the currently execut-
ing process, such as interrupt disables and the
Supervisor Mode bit.

4, Contiguration—Contains control informa-
tion that normally varies only from system to
system, and usually is set only during system
Initialization.

5. Channel Address—Contains the address asso-
ciated with an extemal access, and retains the
address if the access is not completed success-
fully. The Channel Address Register, in con-
junction with the Channel Data and Channel
Control registers described below, allows the re-
starting of unsuccessful external accesses. This
might be necessary for an access encountering
a page fault in a demand-paged environment,
for example.

6. Channel Data—Contains data associated with a
store operation, and retains the data if the opera-
tion is not completed successfully.

7. Channel Control—Contains contro! information
associated with a channel operation, and retains
this information if the operation is not completed
successiully.

8. Register Bank Protect—Restricts access of
user-mode programs to specified groups of 16
registers. This facilitates register banking for
multitasking applications, and protects operat-
ing system parameters kept in the global regis-
ters from corruption by user-mode programs.

9. Timer Counter—Supports real-time control and
other timing-related functions.

10. Timer Reload—Maintains synchronization of
the Timer Counter. It includes control bits for the
Timer Facility.

11. Program Counter 0—Contains the address of
the instruction being decoded when an interrupt
or trap is taken. The processor restars this in-
struction upon interrupt return.

12. Program Counter 1—Contains the address of
the instruction being executed when an interrupt
or trap is taken. The processor restarts this in-
struction upon interrupt return,

13. Program Counter 2—Contains the address of
the instruction just completed when an interrupt
or trap is taken. This address is provided for in-
formation only, and does not participate in anin-
terrupt return.

The unprotected special-purpose registers are defined
as follows:

1. Indiract Pointer C—Allows the indirect access of
a general-purpose register.

2. Indirect Pointer A—Allows the indirect access of
a general-purpose register.

3. Indirect Pointer B—Allows the indirect access of
a general-purpose register.

4, Q—Provides additional operand bits for multiply
step, divide step, and divide operations.

5. ALU Status—Contains information about the
outcome of integer arithmetic and logical opera-
tions, and holds residual control for certain in-
struction operations.

6. Byte Pointer—Contains an index of a byte or
half-word within a word. This register is also ac-
cessible via the ALU Status Register.

Am29005 Microprocessor 13

ADVANCED MICRO DEVICES

nAMD ADVANCE

S e RSINSa s Lol e

7. Funnel Shift Count—Provides a bit ofiset for the
extraction of word-length fields from double-
word operands. This register is also accessible
via the ALU Status Register.

8. Load/Store Count Remalning—Maintains a
count of the number of loads and stores remain-
ing for Load Multiple and Store Multiple opera-
tions. The count is Initialized to the total number
of loads or stores to be performed before the op-
eration is initiated. This register is also acces-
sible via the Channel Control Register.

9. Floating-Point Environment—Controls the op-
eration of floating-point arithmetic, such as
rounding modes and exception reporting.

10. Integer Environment—Enables and disables the
reporting of exceptions that occur during integer
mutiiply and divide operations.

11. Floating-Point Status—Contains information
about the outcome of floating-point operations.

12. Exception Opcode—Reports the operation code
of an Instruction causing a trap. This register is
provided primarily for recovery from floating-
point exceptions, but is also set for other instruc-
tions that cause traps.

Instruction Set Overview

The three-address architecture of the Am29005 micro-
processor instruction set allows a compileror assembly-
language programmer to prevent the destruction of
operands, and aids register allocation and operand
reuse. Instruction operands may be contained in any 2
of the 192 general-purpose registers, and instruction
results may be stored in any of the 192 general-purpose
registers.

The compiler or assembly-language programmer has
complete freedom to allocate register usage. There is
no dedication of a particular register or register groupto
aparticularclass of operations. The instruction set is de-
signed to minimize the number of side effects and
implicit operations of instructions.

Most Am23005 microprocessor instructions can specily
an 8-bit constant as one of the source operands. Larger
constants are constructed using one or two additional

instructions and a general-purpose register. Relative
branch instructions specify a 16-bit, signed, word offset.
Absolute branches specify a 16-bit word address.

The Am29005 microprocessor instruction set contains
113 Instructions. These instructions are divided into
nine classes:

1. Integer Arithmetic—Perform integer add, sub-
tract, multiply, and divide operations.

2. Compare—Perform arithmetic and logical com-
parisons. Some instructions in this class allow
the generation of a trap if the comparison condi-
tion is not met.

3. Logical—Perform a set of bit-wise Boolean
operations.

4. Shift—Perform arithmetic and logical shifts, and
allow the extraction of 32-bit words from 84-bit
double words.

5. Data Movement—Perform movement of data
fields between registers; and the movement
of data to and from external devices and
memories.

6. Constant—Allow the generation of large con-
stant values in registers. .

7. Floating-Point—Included for floating-point arith-
metic, comparisons, and format conversions.
These instructions are not cumently imple-
mented directly in processor hardware.

8. Branch—Perform program jumps and subrou-
tine calls.

9. Miscellaneous—Perform miscellaneous controf
functions and operations not provided by other
classes.

The Am29005 microprocessor executes all instructions
in a single cycle, except for interrupt returns, Load Mul-
tiple, and Store Multiple.

Figure 1 shows a complete list of Am29005 micropro-
cessor instructions, listed alphabetically by instruction
mnemonic (refer to the Instruction Set section for more

_ detail).

14 Am29005 Microprocessor

it e T e P T e e e e e

28E D mm 0257525 0033224 & WM AMD_

INFORMATION T-49-17-32

ADVANCE INFORMATION

ADVANCED MICRO DEVICES 286E D MW 0257525 0033225 T M AMD

AMD ﬂ

Mnemonlc Instruction Name
ADD Add

ADDC Add with Carry

ADDCS Add with Carry, Signed

ADDCU Add with Carry, Unsigned

ADDS Add, Signed

ADDU Add, Unsigned

AND AND Logical

ANDN AND-NOT Logical

ASEQ Assert Equal To

ASGE Assert Greater Than or Equal To

ASGEU Assert Greater Than or Equal To, Unsigned
ASGT Assert Greater Than

ASGTU Assert Greater Than, Unsigned

ASLE Assert Less Than or Equal To

ASLEU Assert Less Than or Equal To, Unsigned
ASLT Assert Less Than

ASLTU Assert Less Than, Unsigned

ASNEQ Assert Not Equal To

CALL Call Subroutine

CALLI Call Subroutine, Indirect

CLASS Classify Floating-Point Operand

CcLz Count Leading Zeros

CONST Constant

CONSTH Constant, High

CONSTN Constant, Negative

CONVERT Convert Data Format

CPBYTE Compare Bytes

CPEQ Compare Equal To

CPGE Compare Greater Than or Equal To
CPGEU Compare Greater Than or Equal To, Unsigned
CPGT Compare Greater Than

CPGTU Compare Greater Than, Unsigned

CPLE Compare Less Than or Equal To

CPLEU Compare Less Than or Equal To, Unsigned
CPLT Compare Less Than

CPLTU Compare Less Than, Unsigned

CPNEQ Compare Not Equal To

DADD Floating-Point Add, Double-Precision

DDV Floating-Point Divide, Double-Precision
DEQ Floating-Point Equal To, Double-Precision
DGE Floating-Point Greater Than or Equal To, Double-Precision
DGT Floating-Point Greater Than, Double-Precision
DIV Divide Step

DIVO Divide Initialize

DIVIDE Integer Divide, Signed

DiVIDU Integer Divide, Unsigned

DiVvL Divide Last Step

DIVREM Divide Remainder

DMUL Floating-Point Multiply, Double-Precision
DsuB Floating-Point Subtract, Double-Precision
EMULATE Trap to Software Emulation Routine
EXBYTE Extract Byte

EXHW Extract Half-Word

EXHWS Extract Half-Word, Sign-Extended
EXTRACT Extract Word, Bit-Aligned

FADD Floating-Point Add, Single-Precisian

FDIV Floating-Point Divide, Single-Precision
FDMUL Floating-Point Multiply, Single-to-Double Precision
FEQ Floating-Point Equal To, Single-Precision
FGE Floating-Point Greater Than or Equal To, Single- Preclswn

Figure 1. Am29005 Microprocessar Instruction Set

T-49-17-32

Am29005 Microprocessor

15

ADVANCED MICRO DEVICES

B A

'28E D WM 0257525 0033226 1 WM AMD

& avD ADVANCE INFORMATION : 7-49-17-32
Mnemonlec Instruction Name
FGT Floating-Point Greater Than, Single-Precision
FMUL Floating-Point Multiply, Single-Precision
FSuB Floating-Polint Subtract, Single-Precision
HALT Enter Halt Mode -
INBYTE Insert Byte
INHW Insert Half-Word
IRET Interrupt Return
JMP Jump
JMPF Jump False
JMPFDEC Jump False and Dacrement
JMPFI Jump Faise Indirect
JMPI Jump Indirect
JMPT Jump True
JMPTI Jump True Indirect
LOAD Load
LOADL Load and Lock
LOADM Load Multiple
LOADSET Load and Set
MFSR Move from Spacial Register
MTSR Move to Spacial Ragister
MTSRIM Move to Speclal Register Inmediate
MUL Multiply Step :
MULL Multiply Last Step
MULTIPLY Integer Multiply, Unsigned
MULTIPLY Integer Muttiply, Signed
MULTM Integer Multiply Most-Significant Bits, Signed
MULTMU Integer Multiply Most-Significant Bits, Unsigned
MULU Multiply Step, Unsigned
NAND NAND Logical
NOR NOR Logical
OR OR Logical
SETIP Set Indirect Pointers
SLL Shift Left Logicat
SQRT Square Root
SRA Shift Right Arithmetic
SRL Shift Right Logical
STORE Store
STOREL Store and Lock
STOREM Store Muttiple
suB Subtract
SUBC Subtract with Carry
SUBCS Subtract with Carry, Signed
suBcu Subtract with Carry, Unsigned
SUBR Subtract Reverse
SUBRC Subtract Reverse with Carry
SUBRCS Subtract Revarse with Carry, Signed
SUBRCU Subtract Reverse with Carry, Unsigned
SUBRS Subtract Reverse, Signed
SUBRU Subtract Reverse, Unsigned
suBs Subtract Signed
SuBU Subtract Unsigned
XNOR Exclusive-NOR Logical
XOR Exclusive-OR Logical
Figure 1. Am29005 Microprocessor Instruction Set (continued)
16 Am29005 Microprocessor

- e v e Sy Er e e e g

VR USRSk FERER S) 2

ADVANCED MICRO DEVICES

ADVANCE

28E D

Data Formats and Handling

This section introduces the data formats and data-
manipulation mechanisms that are supported by the
Am29005 microprocessor.

Data Types

Awordis defined as 32 bits of data. A half-word consists
of 16 bits, and a double word consists of 64 bits. Bytes
are 8 bits in length. The Am29005 microprocessor has
direct support for word-integer (signed and unsigned),
word-logical, word-Boolean, half-word integer (signed
and unsigned), and character (signed and unsigned)
data.

Other data types, such as character strings, are sup-
ported with sequences of basic instructions and/or
external hardware. Single- and double-precision float-
ing-point types are defined for the Am29005 micropro-
cessor, but are not supported directly by hardware.

The format for Boolean data used by the processor is
suchthatthe Boolean values TRUE and FALSE are rep-
resented by 1 and 0, respectively, inthe most-significant
bit of a word.

Figure 2 illustrates the numbering conventions for data
units contained in a word. Within a word, bits are num-
bered in increasing order from right to left, starting with
the number 0 for the least-significant bit. Bytes and half-
words within a word are numbered in increasing order,
starting with the number 0. However, bytes and half-
words may be numbered right-to-left or left-to-right, as
controlled by the Configuration Register.

Note that the numbering of bits within words is strictly for
notational convenience. In contrast, the numbering con-
ventions for bytes and half-words within words affect
processor operations.

External Data Accesses

External accesses move data between the processor
and external devices and memories. These accesses
occur only as a result of load and store instructions.

Load and store instructions move words of data to and
from general-purpose registers. Eachload and store in-
struction moves a single word. There are load and store
Instructions that support interlocking operations neces-
sary for multiprocessor exclusion, synchronization, and
communication.

For the movement of multiple words, Load Multiple and
Store Multiple instructions move the contents of se-
quentially addressed external locations to or from se-
quentially numbered general-purpose registers. The
Load Multiple and Store Muttiple allow the movement of
up to 192 words at a maximum rate of one word per
processor cycle. The multiple load and store sequences
may be interrupted, and restarted at the point of
interruption.

Load and store instructions provide no mechanism for
computing the address associated with the external
data access. All addresses are contained in a general-

T-49-17_3 2un A
purpose register at the beginning of the access, or are
given by an 8-bit instruction constant. Any address com-
putation must be performed explicitly before the load or
store instruction is executed. Since address computa-
tions are expressed directly, they are exposed for
compiler optimizations as any other computations are.

External data accesses are overlapped with instruction
execution. Processor performance is improved if in-
structions that follow loads do not immediately use ex-
ternally referenced data. In this manner, the time re-
quiredto perform the external access is overlapped with
subsequentinstruction execution. Because of hardware
Interlocks, this concurrency has no effect on the logical
behavior of an executing program.

Addressing and Alignment

External instructions and data are contained in one of
four 32-bit address spaces:

1. instructionvData Memory

2. Input/Output

3. Coprocessor

4. Instruction Read-Only Memory (Instruction
ROM)

Bits contained within load and store instructions distin-
guish between the instruction/data memory, input/out-
put, and coprocessor address spaces. The Curent
Processor Status register determines whether instruc-
tion accesses are directed to the instruction/data mem-
ory address space or to the instruction ROM address
space.

The Am28005 microprocessor does not support data
accesses directly to the instruction ROM address
space. However, this capability is possible as a system
option.

All addresses are interpreted as byte addresses, al-
though accesses are word-oriented. The number of a
byte within a word is given by the two least-significant
address bits, The number of a half-word within aword is
given by the next-to-least-significant address bit.

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. For aword
access, anunaligned address has a 1.in either orbothof
the 2 least-significant address bits. For a half-word ac-
cess, an unaligned address has a 1 in the least-signiti-
cant address bit. In many systems, address alignment
can be ignored, with addresses truncated to access the

" word or half-word of interest. However, as auseroption,

the Am29005 microprocessor creates a trap when a
non-aligned access is attempted. The trap allows soft-
ware emulation of nonaligned accesses.

In the Am29005 microprocessor, all instructions are
32 bits in length, and are aligned on word-address
boundaries.

Am29005 Microprocessor 17

Bl 0257525 0033227 3 HR AMD
INFORMATION

ADVANCED MICRO DEVICES
&\ avD

28E D

e em e e e e et eebacim = . TR R iy At 2

ADVANCE INFORMATION
Bytes Within Words BObrt o
31 23 15 7
IIIIIIIIIIIIIIIIIIIIIIIIIIII
Byte 0 Byte 1 Byte 2 Byte 3
OR BO bit = 1
31 23 5 7 0
EERREENEEARRRRRRRR RN NN
Byte 3 Byte 2 Byte 1 Byte 0
Half-Words Within Words BObit=0
31 23 15 7 0
HERRRRRRRARRRRRERRRERRREEERERE
Half-Word 0 Half-Word 1
OR BObit=1
31 23 15 7 0
BERRERRRRERRRRERRERERERREEEE R
Half-Word 1 Half-Word 0

Flgure 2. Data-Unit Numbering Conventions

Byte and Half-Word Accesses

The Am29005 microprocessor supports the direct exter-
nal access of bytes and half-words as an option. If this
optionis enabled, the Am29005 microprocessor selects
a byte or haif-word within a word on a load, and aligns it
to the low-order byte or half-word of a register. On a
store, the low-order byte or half-word of a registeris rep-
licated in ail byte or half-word positions, so that the ex-
ternal memory can easily write the required byte or half-
word in memory. This option requires that the external
memory system be able to write individual bytes and
haif-words within words.

To avold the memory-system complexity caused by
writing individual bytes and half-words, the Am29005
microprocessor can perform byte and half-word ac-
cesses using software alone. The Am29005 micropro-
cessor can set a byte-position indicator in the ALU
Status Register as an option for load instructions, with
the two least-significant bits of the address for the load.
To load a byte or half-word, a word load Is first per-
formed. This load sets the byte-position indicator, and a
subsequent instruction extracts the byte or half-word of
interest from the accessed word. To store a byte or half-
word, aload is also first performed; the byte or half-word
of interestis inserted into the accessed word, and the re-
sulting word then is stored. Even if the Am29005 micro-
processor is configured to perform byte and half-word
accesses in hardware, this software-only technique
operates correctly; this allows software to be upwardly

compatible from simpler systems to more complex
systems.

Interrupts and Traps

Normal program flow may be preempted by an interrupt
or trap for which the processor is enabled. The effecton
the processor is identical for interrupts and traps; the
distinction is in the different mechanisms by which inter-
rupts and traps are enabled. it is intended that interrupts
be used for suspending current program execution and
causing another program to execute, while traps are
used to report errars and exceptional conditions.

The interrupt and trap mechanism supports high-speed,
temporary context switching and user-defined mterrupt-
processing mechanisms.

Temporary Context Switching

The basic interrupt/trap mechanism of the Am29005 mi-
croprocessor supports temporary context switching.
During the temporary context switch, the interrupted
context is held in processor registers. The interrupt or
trap handler can retum immediately to this context.

Temporary context switching is useful for instruction
emulation, floating-point operations, and so forth. Many
of its features are similar to microprogram execution;
processor context does not have to be saved, interrupts
are disabled for the duration of the program, and all
processor resources are accessible, even if the context

18

Am29005 Microprocessor

MM 0257525 0033228 § - AMD

T—49-'l 7-32

ADVANCED MICRO DEVICES
ADVANCE INFORMATION T.49..17-32 amp A

28E D

thatwas interrupted is in the User mode. The associated
routine may execute frominstructiorvdata memory or in-
struction ROM.

User-Defined Interrupt Processing

Since the baslc interrupttrap mechanism for the
Am29005 microprocessor keeps the interrupted context
in the processor, dynamically nested interrupts are not
supported directly. The context inthe processor mustbe
saved before another interrupt or trap can be taken.

The Interrupt or trap handler executing during a tempo-
rary context switch Is not required to return to the in-
terrupted context. This routine optionally may save the
interrupted context, load a new one, and return to the
new context.

The implementation of the saving and restoring of con-
texts is completely user-defined. Thus, the context
save/restore mechanism used (e.g., interrupt stack,
program status word area, etc.) and the amount of con-
text saved may be tailored to the needs of the system.

Vector Area

Interrupt and trap dispatching occur through a
relocatable Vector Area, which accommodates as many
as 256 interrupt and trap handling routines. Entries into
the Vector Area are associated with various sources of
interrupts and traps; some are predefined while others
are user-defined.

The Vector Area s either atable of vectors in data mem-
ory where each vector points to the beginning of an in-
terrupt or trap handler, or it is a segment of instruction/
data memory (or instruction ROM) containing the actual
routines. The latter configuration for the Vector Area
ylelds better interrupt performance with the cost of addi-
tional memory.

Coprocessor Programming

The coprocessor interface for the Am29005 micropro-
cessor allows a program to communicate with an off-

chip coprocessor for performing operations not sup-
ported by processor hardware directly.

The coprocessor interface allows the program to trans-
fer operands and operation codes to the coprocessor,
and then perform other operations while the coproces-
sor operation is in progress. The results of the operation
are read from the coprocessor by a separate transfer.
The processor may transfer multiple operands to the
coprocessor without retransferring operation codes or
reading intermediate results. As many as 64 bits of in-
formation can be transferred to the coprocessor in a
single cycle.

The Am29005 microprocessor includes features that
support the definition of the coprocessor as a system
option. In this case, coprocessor operations are emu-
lated by software whenthe coprocessor is not presentin
a system.

Timer Facility

The Timer Facility provides a counterforimplementing a
real-time clock or other software timing functions. This
facility comprises two special-purpose registers: the
Timer Counter Register, which decrements at a rate
equal to the processor operating frequency, and the
Timer Reload Register, which reinitializes the Timer
Counter Register when it decrements to 0. The Timer
Facility optionally may create an interrupt when the
Timer Counter decrements to 0.

Trace Facllity

The Trace Facility allows a debug program to emulate
single-instruction stepping in a programunder test. This
facility allows a trap to be generated after the execution
of any instruction in the program being tested.

Using the Trace Facility, the debug program can inspect
and modify the state of the program at every instruction
boundary. The Trace Facility is designed to work
properly in the presence of normal system interrupts
and traps.

Am29005 Microprocessor 19

Bl 0257525 0033229 7 H AMD

ADVANCED MICRO DEVICES

n AMD

.EBE_ D WW 0257525 0033230 3 M@ AMD
ADVANCE INFORMATION

T-49-17-32_

FUNCTIONAL OPERATION

This section briefly describes the operation of Am29005
microprocessor hardware. it introduces the processor
pipeline and the two major internal functional units: the
Instruction Fetch Unit, and the Execution Unit. Finally,
the processor's operational modes are described.

Four-Stage Pipeline

The Am29005 microprocessor implements a four-stage
pipeline for instruction execution. The four stages are:
fetch, decode, execute, and write-back. The pipeline is
organized so that the effective instruction execution rate
Is as high as one instruction per cycle. Data forward-
Ing and pipeline interlocks are handled by processor
hardware. :

Fetch Stage

During the fetch stage, the Instruction Fetch Unit
determines the location of the next processor instruction
and issues the instruction to the decode stage. The in-
struction is fetched either from the Instruction Prefetch
Buffer or an external instruction memory.

Decode Stage

During the decode stage, the Execution Unit decodes
the Instruction selected during the fetch stage and
fetches and/or assembles the required operands. It also
evaluates addresses for branches, loads, and stores.

Execute Stage

During the execute stage, the Execution Unit performs
the operation specified by the instruction.

Write-Back Stage

During the write-back stage, the results of the operation
performed during the execute stage are stored. In the
case of branches, loads, and stores, the physical ad-
dress generated during the execute stage is transmitted
to an external device or memory.

Function Organization

Figure 3 shows the Am29005 microprocessor internal
data-flow organization. The following sections refer to
the various components on this data-flow diagram.

Instruction Fetch Unit

The Instruction Fetch Unit fetches instructions and sup-
plies instructions to other functional units. It incorpo-
rates the Instruction Prefetch Buffer and the Program
Counter Unit. All components of the Instruction Fetch
Unit operate during the fetch stage of the processor
plpeline.

Instruction Prefetch Buffer

Most instructions executed by the Am29005 micropro-
cessor are fetched from external instruction/data mem-
ory. The processor prefetches instructions so that they

are requested at least four cycles before they are re-
quired for execution.

Prefetched instructions are stored in a four-word In-
struction Prefetch Buffer while awaiting execution. An
instruction prefetch request occurs wheriever there is a
free location in this buffer (if the processor is otherwise
enabledto fetchinstructions). When a nonsequential in-
struction fetch occurs, prefetching is terminated, and
then restarted for the new instruction stream.

Instruction prefetching uncouples the instruction fetch
rate from the instruction access latency. For example,
an instruction may be transferred to the processor two
cycles after it is requested. However, as long as instruc-
tions are supplied to the processor at an average rate of
one instruction per cycle, this latency has no effect on
the instruction execution rate.

Program Counter Unit

The Program Couriter Unit creates and sequences
addresses of instructions as they are executed by the
processor.

Execution Unit

The Execution Unit executes Instructions. It incorpo-
rates the Register File, the Address Unit, the Arithmistic/
Logic Unit, the Field Shift Unit, and the Prioritizer. The
Register File and Address Unit operate during the de-
code stage of the pipeline. The Arithmetic/Logic Unit,
Field Shift Unit, and Prioritizer operate during the exe-
cute stage of the pipeline. The Register File operates
during the write-back stage. '

Register File

The general-purpose registers are implemented by a
192-location Register File. The Register File can per-
formtwo read accesses and one write access in asingle
cycle. Normally, two read accesses are performed dur-
ing the decode-pipeline stage to fetch operands re-
quired by the instruction being decoded. The write ac-
cess during the same cycle completes the write-back
stage of a previously executed instruction.

Addressing logic associated with the Register File dis-
tinguishes between the global and local general- -
purpose registers, and it performs the Stack-Pointer ad-
dressing for the local registers. Register File addressing
functions are performed during the decode stage.

Address Unit .)
The Address Unit evaluates addresses for branches,
loads, and stores. It also assembles instruction-immedi-
ate data and computes addresses for Load Multiple and
Store Muttiple sequences.

Arithmetic/Logic Unit
The ALU performs all logical, comparative, and arithme-
tic operations (including multiply step and divide step).

20 Am29005 Microprocessor

ADVANCED MICRO DEVICES

ADVANCE INFORMATION T-49-17-32. v B

r
INSTRUCTION FETCH UNIT ' REUS EXECUTION UNIT
' K M
Pcaus 3 N © c
4 ator
: Address tess .
Program ' Unk Generator RWI';‘“
Counter (] B 192x 32
Unht '
t
' A 3
™ : 1-BUS
+ ABUS 4
+ 8.8U8 b
' B-
Instruction Y T <
Prefetch []
Butter (]
'
'
1]
1]
'
]
'
]

[e T P R P L R R R i KR

i
g T

Address
Bus Bus

Y

Figure 3. Am29005 Microprocessor Data Flow

Fleld Shiit Unit

The Field Shift Unit performs N-bit shifts. The Field Shift
Unit also performs byte and half-word extract and insert
operations, and it extracts words from double words.

Prioritizer

The Prioritizer provides a count of the number of leading
0 bits in a 32-bit word; this is useful for performing float-
ing-point normalization, for example. it can also
be used to implement prioritization in a multilevel
interrupt handler.

Processor Modes

The Am29005 microprocessor operates in several dif-
ferent modes to accomplish various processor and
system functions. All modes except for Pipeline Hold
(see below) are under direct control of instructions and/
or processor control inputs. The Pipeline Hold mode
normally is determined by the relative timing between
the processor andits external systemfor certaintypes of
operations. The processor provides an external indica-
tion of its operational mode.

Executing

When the processor is in the Executing mode, it fetches
and executes instructions as described in this manual.
External accesses occur as required.

Wait

Whenthe processor is in the Wait mode; it does not exe-
cute instructions and it performs no external accesses.
The Wait mode is controlled by the Current Processor
Status Register. The processor leaves this mode when
an interrupt or trap for which it is enabled occurs, or
when a reset occurs.

Pipeline Hold

Under certain conditions, processor pipelining might
cause nonsequential instruction execution or timing-de-
pendent results of execution. For example, the proces-
sor might attempt to execute an instruction that has not
been fetched from instruction/data memory.

For such cases, pipeline-interlock hardware detects
the anomalous condition and suspends processor

Am29005 Microprocessor 21

it

ADVANCED MICRO DEVICES

&\ avD

28E D MW 0257525 0033232 7 WE AMD
ADVANCE INFORMATION '

execution until execution can proceed properly. While
execution Is suspended by the interlock hardware, the
processor is in the Pipeline Hold mode. The processor
resumes execution when the pipeline-interlock hard-
ware determines that it is correct to do so.

Halt

The Hait mode is provided so thal the processor may be
placed under the control of a hardware-development
system for the purposes of hardware and software de-
bugging. The processor enters the Halt mode as the re-
sult of instruction execution, or as the result of external
controls. In the Halt mode, the processor neither fetches
nor executes instructions.

Step

The Step mode allows a hardware-development system
to step through processor pipeline operation on a stage-
by-stage basis. The Step mode is nearly identical to the
Halt mode, except that it enables the processor to enter
the Executing mode while the pipeline advances by one
stage.

Load Test Instruction

The Load Test Instruction mode permits a hardware-de-
velopment system to access data contained in the proc-
essor or system. This Is accomplished by allowing the
hardware-development system to supply the processor
with instructions, instead of having the processor fetch
instructions from Instruction/data memory. The Load
Test Instruction mode Is defined so that, once the proc-
essor has completed the execution of instructions pro-
vided by the hardware-development system, it may re-
sume the execution of its normal instruction sequence.

Test

The Test mode facilitates testing of hardware associ-
ated with the processor by disabling processor outputs
so thatthey may be driven directly by testhardware. The
Test mode also allows the addition of a second proces-
sor to a system to monitor the outputs of the first and to
signal detected errors.

Reset

The Reset mode provides initialization of certain pro-
cessor registers and control state. This is used for
power-on reset, for eliminating unrecoverable error con-
ditions, and for supporting certain hardware debugging
functions.

System Interface

This section briefly describes the features of the
Am29005 microprocessor that allow it to be connected
to other system components.

The two major interfaces of the Am29005 microproces-
sor, introduced in this section, are the channel and the
Test/Development interfaces. The other topics briefly
described here are clock generation, master/slave
checking, and coprocessor attachment.

Channel T_49-] 7-32

The Am29005 microprocessor channel consists of the
following 32-bit buses and related controls:

1. an Instruction Bus, which transfers Instructions
into the processor;

2. aData Bus, which iransfers data to and fromthe
pracessor; .

3. an Address Bus, which provides addresses for
both instruction and data accesses. The ad-
dress bus also is used to transfer data to a
COprocessor.

The channel performs accesses and data transfers to all
external devices and memories, including instruction/
data memories, instruction caches, instruction read-
only memories, data caches, input/output devices, bus
converters, and coprocessors.

The channel defines three different access protocols:
simple, pipelined, and burst-mode. For &imple
accesses, the Am29005 microprocessor holds the ad-
dress valid throughout the entire access. This is appro-
priate for high-speed devices that can complete an
access in one cycle, and for low-cost devices that are
accessed infrequently (such as read-only meémories
containing initialization routines). Pipelined and burst-
mode accesses provide high performance with other
types of devices and memories.

For pipelined accesses, the address transfer is uncou-
pled from the corresponding data or instruction transter.
After transmitting an address for a request, the proces-
sormay transmit one more address before receiving the
reply to the first request. This allows address transfer
and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate
the address-transfer cycle completely. Burst-mode ac-
cesses are defined so that once an address is trans-
ferred for a given access, subsequent accesses to se-
quentially increasing addresses may occur without re-
transfer of the address. The burst may be terminated at
any time by either the processor or responding device.

The Am29005 microprocessor determines whether
anaccessis simple, pipelined, or burst-mode on atrans-
fer-by-transfer (i.e., genérally device-by-device) basis.
However, anaccess that begins as a simple access may
be convertedto a pipelined or burst-mode access atany
time during the transfer. This relaxes the timing con-
straints on the channel-protocol implementation, since
addressed devices do not have to respond immediately
to a pipelined or burst-mode request.

Except for the shared address bus, the channel main-
tains a strict division belween instruction and data
accesses. In the most common situation, the system
supplies the processor with instructions using burst-
mode accesses, with instruction addresses transmitted

22 Am29005 Microprocessor

S, . o < PP

{

ADVANCED MICRO DE‘VICES
ADVANCE INFORMATION T—49717f{32

28E D WM 0257525 0033233 9 WA AMD

AMD n

fo the system only when a branch occurs. Data ac-
cesses can occur simuitaneously without interfering
with instruction transfer.

The Am29005 microprocessor contains arbitration logic
to support other masters on the channel. A single exter-
nal master can arbitrate directly for the channel, while
multiple masters may arbitrate using a daisy chain or
other method that requires no additional arbitration
logic. However, to increase arbitration performance in a
multiple-master contiguration, an external channel arbl-
ter should be used. This arbiter works in conjunction
with the processor’s arbitration logic.

Test/Development Interface

The Am29005 microprocessor supports the attachment
of a hardware-development system. This attachment is
made directly to the processor in the system under de-
velopment, without the removal of the processor from
the system. The Test/Development Interface makes it
possible for the hardware-development system to gain
control over the Am29005 microprocessor, and inspect
and modify its internal state {e.g., general-purpose reg-
ister contents, etc.). In addition, the Am29005 micropro-
cessor may be used to access othersystem devices and
memories on behalf of the hardware-development
system.

The Test/Development Interface is made up of controls
and status signals provided on the Am29005 micropro-
cassor, as well as the Instruction and data buses. The
Hatt, Step, Reset, and Load Test Instruction modes al-
low the hardware-development system to control the
operation of the Am29005 microprocessor. The hard-
ware-development system may supply the processor
with instructions on the instruction bus using the load
test instruction mode. The internal processor state can
be inspected and moditied via the data bus.

Clocks

The Am29005 microprocessor generates and distrib-
utes a system clock at its operating frequency. This
clock Is spacially designedto reduce skews betweenthe
system Clock and the processor's internal clocks. The
internal clock-generation circuitry requires a single-
phase oscillator signal at twice the processor operating
frequency.

For systems in which processor-generated clocks are
not appropriate, the Am29005 microprocessor also can
accept a clock from an external clock generator.

The processor decldes between these two clocking

arrangements based on whether the power supply to
the clock-output driver (PWRCLK) is tied to +5 V or to
Ground.

Master/Slave Operation

Each Am29005 microprocessor output has assoclated
logic that compares the signal on the output with the sig-
nalthat the processor is providing internally to the output

e —————

driver. The processor-signals situations where the out-
put of any enabled driver does not agree with its input.

For a single processor, the output comparison detacts
short circuits in output signals, but does not detect open
circuits. It is possible to connect a second processor in
parallel with the first, where the second processor has
its outputs disabled due to the Test mode. The second
processor detects open-circuit signals, as well as pro-
vides a check of the outputs of the first processor.

Coprocessor Attachment

A coprocessor for the Am29005 microprocessor at-
taches directly to the processor channel. However, this
attachment has features that are different from those of
other channel devices. The coprocessor interface is
designed to support a high operand transfer rate and to
support the overlap of coprocessor operations with
other processor operations, including other external
accesses.

The coprocessor is assigned a special address space
on the channel. This permits the transfer of operands
and other information on the address bus without inter-
fering with normal addressing functions. Since both the
address bus and data bus are used for data transfer, the
Am29005 microprocessor can transfer 64 bits of infor-
mation to the coprocessor in one cycle.

Program Modes

All system-protection features of the Am29005 micro-
processor are based ontwo mutually exclusive program
modes: the Supervisor mode and the User mode.

Supervisor Mode

The processor is in the Supervisor mode whenever the
Supervisor Mode (SM) bit of the Current Processor
Status Register (see Register Description section) is 1.
In this mode, executing programs have access to all
processor resources.

During the address cycle of -a channel_request, the
Supervisor mode is indicated by the SUP/US output be-
ing High.

User Mode

The processor is in the User mode whenever the SM bit
in the~Current Processor Status Register is 0. In this
mode, any of the following actions by an executing pro-
gram causes a Protection Viotation trap to occur:

1. An attempted access of any general-purpose
register for which a bit in the Register Bank Pro-
tect Registeris 1.

2. An attempted execution of a load or store in-
struction for which the UA bit is 1.

3. An attempted execution of one of the following
instructions: interrupt Return, Interrupt Return

Am29005 Microprocessor

23

ADVANCED MICRO DEVICES
aAMD

c8E D
ADVANCE INFORMATION

[T 7 35 W

and Invalidate, Invalidate, or Halt. However, a
hardware-development system can disable pro-
tection checking for the Halt instruction, so this
Instruction may be used to implement instruction
breakpoints in User-mode programs.

4. An attempted access of one of the following
registers: Vector Area Base Address, Old Proc-
essor Status, Current Processor Status, Con-
figuration, Channel Address, Channel Data,

. Channel Control, Register Bank Protect, Timer
Counter, Timer Reload, Program Counter 0,
Program Counter 1, or Program Counter 2.

5. Anattempted execution of an assert or Emulate
. instruction that specifies a vector number be-
tween 0 and 63, inclusive.

Devices and memories on the channel also can imple-
ment protection and generate traps based on the value
of the SM bit. During the address cycle of a channel re-
quest, the User mode s indicated by the SUP/US output
being Low.

REGISTER DESCRIPTION

The Am29005 microprocessor has two classes of regis-
ters that are accessible by instructions. These are
general-purpose registers and special-purpose reg-
Isters. Any operation available In the Am23005 micro-
processor can be performed on the general-purpose
registers, while special-purpose registers are accessed
only by explicit data movement to or from general-
purpose registers. Various protection mechanisms pre-
vent the access of some of these registers by User-
mode programs.

General-Purpose Registers

The Am29005 microprocessor incorporates 192
general-purpose registers. The organization of the
general-purpose registers is diagrammed in Figure 4.

General-purpose registers hold the following types of
operands for program use:

32-bit data addresses

32-bit signed or unsigned Integers

32-bit branch-target addresses

32-bit logical bit strings

8-bit signed or unsigned characters

16-bit signed or unsigned integers
Word-fength Booleans

. Single-precision floating-point numbers

. Double-precision floating-point numbers (in two
register locations)

CONPAELPD

Because a large number of general-purpose registers
are provided, a large amount of frequently used data
. can be kept on-chip, where access time is fastest.

Am29005 microprocessor instructions can specify two
general-purpose registers for source operands, and one
general-purpose register for storing the Instruction

result. These registers are specified by three 8-bit in-
struction fields containing register numbers. A register
may be specified directly by the instruction, or indirectly
by one of three special-purpose registers.

Register Addressing

The general-purpose registers are partitioned into 64
globalregisters and 128 local registers, differentiated by
the most-significant bit of the register number. The dis-
tinction between global and local registers isthe result of
register-addressing considerations.

The following terminology is used to describe the ad-
dressing of general-purpose registers:

1. Register number—this is a software-level num-
ber for a general-purpose register. For example,
this is the number contained in an instruction
field. Register numbers range from 0 to 255.

2. Global register number—this is a software-level
number for a global register. Global register
numbers range from 0 to 127.

3. Local register number—this is a software-level
number for a local register. Local register num-
bers range from 0 to 127.

4. Absolute register number—this is a hardware-
level number used to select a general-purpose
register in the Register File. Absolute register
numbers range from 0 to 255.

Global Registers

Whenthe most-significant bit of a register number is 0,a
global register Is selected. The 7 least-significant bits of
the register number give the global register number. For
globalregisters, the absolute register number is equiva-
lent to the register number.

Global Registers 2 through 63 are unimplemented. An
attempt to access these registers yields unprediciable
results; however, they may be protected from User-
mode access by the Register Bank Protect Register.

The register numbers associated with Global Registers
0 and 1 have special meaning. The number for Global
Register 0 spacifies that an indirect pointer is to be used
as the source of the register number; there is an indirect
pointer for each of the instruction operand/result
registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registars as
explained below. -

Local Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an op-
erand of an instruction as any other general-purpose
register. However, a shadow copy of Global Register 1
Is maintained by processor hardware to be used in local
register addressing. This shadow copy is set only with
the resuits of Arithmetic and Logical instructions. If the
Stack Pointer is set with the resutt of any other instruc-

24 Am23005 Microprocessor

o STt i St ea b A R a e

BN 0257525 0033234 0 BM AMD
T-49-17-32

e e S = S S,

ADVANCED MICRO DE;IICES ' 28E D WM 0257525 0033235 2 MR AMD

ADVANCE INFORMATION AMDu
T-49-17-32
Absolute REG# General-Purpose Register
0 indirect Pointer Access
1 Stack Pointer
2 through 63 Not implemented
4
64 Global Register 64
65 Global Register 85
66 Global Register 66
Global < * *
Registers ¢ ¢
L] L
126 Global Reglster 126
\ 127 Global Reglster 127
g / '
4* 128 Local Register 125 -
129 Local Register 126
130 Local Register 127
131 Local Register 0 '——l
Local 132 Local Register 1
Registers Stack
. * ¢ Pointer) -
[. =131 ,,: -
. . {example)
254 Local Register 123
K 255 Local Register 124
Figure 4. General-Purpose Register Organlzation
tion class, local registers cannot be accessed predict- Local Registers

ably until the Stack Pointer Is set once again with an

Whenthe most-significant bit of ister numberis 1,
Arithmetic or Logical instruction. 9 tbitof a register numberis 1,

local register is selected. The 7 feast-significant bits of

Am29005 Microprocessor 25

. ey ——— - - - R PR P NN i S

ADVANCED MICRO DEVICES ~ 24E D WM 0257525 003323k 4 EN AMD
uAMD ADVANCE INFORMATION T-49-17-32

the register number give the local-register number. For
local registers, the absolute register number is obtained
by adding the local register number to bits 8-2 of the
Stack Pointer and truncating the result to 7 bits; the
most-significant bit of the original register numberis un-
changed (i.e., it remains a 1).

The Stack Pointer addition applied to local register num-
bers provides a limited form of base-plus-offset ad-
dressing within the local registers. The Stack Pointer
contains the 32-bit base address. This assists run-time
storage management of variables for dynamically

Register Banking

For the purpose of access restriction, the general-
purpose registers are divided into register banks. Regis-
ter banks consist of 16 registers (except for Bank 0,
which contains Unimplemented Registers 2 through 15)
and are partitioned according to absolute register num-
bers, as shown in Figure 5. .

The Register Bank Protect Register contains 16 protec-
tion bits, where each bit controls User-mode accesses
(read or write) to a bank of registers. Bits 0~15 of the

nested procedures.
Baﬁ(gll’sft:l;ﬂ HegI:?esror';g:bers Ger;;r;;f;r:ose
Register Bit

0 21hrough 15 (unigsgtngnted)
1 16 through 31 (uninB1;|r::n19nte " .
2 32 through 47 (uni::Ir:r(ninted)
3 48 through 63 (unimB:lr::nint od)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
1" 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15

Figure 5. Reglster Bank Organization

26 Am29005 Microprocessor

ADVANCED MICRO DEVICES

e Ein Temmia i me KSRl azasoe

ADVANCE INFORMATION T-49-17-32 AMDn

Register Bank Protect Register protect Register Banks
0 through 15, respectively.

When abitinthe Register Bank Protect Register is 1 and
a register in the corresponding bank Is specified as an
operand register or result register by a User-mode
instruction, a Protection Violation trap occurs. Note that
protection is based on absolute register numbers; inthe
case of local registers, Stack-Pointer addition is per-
formed before protection checking.

When the processor is in Supervisor mods, the Register
Bank Protect Register has no effect on general-purpose
register accesses.

Indirect Accesses

Specification of Global Register 0 as an instruction-op-
erand register or result register causes an indirect ac-
cess to the general-purpose registers. In this case, the
absolute register number is provided by an indirect
pointer contained in a special-purpose register.

Each of the three possible registers for instruction exe-
cution has an associated 8-bit indirect pointer. Indirect
register numbers can be selected independently for
each of the three operands. Since the indirect pointers
contain absolute register numbers, the number in an
indirect pointer is not added to the Stack Pointer when
local registers are selected.

The indirect pointers are set by the Move To Special
Register, Floating-Point, MULTIPLY, MULTM, MULTI-
PLU, MULTMU, DIVIDE, DIVIDU, SETIP, and EMU-
LATE instructions.

For a Move To Special Register instruction, an indirect
pointer is set with bits 92 of the 32-bit source operand.
This provides consistency between the addressing of
words in general-purpose registers and the addressing
of words in external devices or memories. A modifica-
tion of an indirect pointer using a Move To Special Reg-
ister has a delayed effect on the addressing of general-
purpose registers.

Forthe remaining Instructions, all three indirect pointers
are set, simultansously, with the absolute register num-
bers derived from the register numbers specified by the
instruction. For any local registers selected by the in-
struction, the Stack-Pointer addition Is applied to the
register numbers before the indirect pointers are set.

Register numbers stored into the indirect pointers are
checked for bank-protection violations—except when
anindirect pointer is set by a Move-To-Special-Register
instruction—at the time that the indirect pointers are set.

Special-Purpose Registers

The Am29005 microprocassor contains 25 special-pur-
pose registers. The organization of the special-purpose
registers Is shown in Figure 6.

Speclal-purpose registers provide controls and data for
certain processor operations. Some special-purpose

registers are updated dynamically by the processor, in-
dependent of software controls. Because of this, aread

of a special-purpose register following a write does not -

necessarily get the data that was written.

Some special-pupose registers have fields that are re-
served for future processor implementations, When a
special-purpose register is read, a bit in a reserved field
is read as a 0. An attempf to write a reserved bitwith a'1
has no effect; however, this should be avoided because
of upward-compatibility considerations. The only excep-
tions fo this rule are bits 6-5 of the Current Processor
Status Register and bit 0 of the Configuration Register.
These correspond to implemented bits in the Am29000
microprocessor, and should be written with values of 1
for upward compatibility with that microprocessor.

The special-purpose registers are accessed by explicit
data movement only. Instructions that move data to or
from a special-purpose register specify the $pecial-
purpose register by an 8-bit field containing a special-
purpose register number. Register numbers are speci-
fied directly by instructions.

An attempted read of an unimplemented special-pur-
pose register yields an unpredictable value. An at-
tempted write of an unimplemented special-purpose
register has no effect; however, this should be avoided,
because of upward-compatibility considerations.

The spacial-purpose registers are partitioned into pro-
tected and unprotected registers, Special-purpose reg-
isters numbered 0—-127 and 160-255 are protected
(note that not all of these are implemented). Special-
purpose registers numbered 128159 are unprotected
(again, not all are implemented).

Protected special-purpose registers numbered-0-127
are accessible only by programs executing inthe Super-
visor mode. An attempted read or write of a protected
special-purpose _ register by a User-mode program
causes a Protection Violation trap to occur. Protected
special-purpose registers numbered 160-255 are not
accessible by programs in either the User mode or the
Supervisor mode. These register numbers identify vir-
tual registers in the floating-point architecture.

The Floating-Point Environment Register, Integer Envi-
ronment Register, Floating-Point Status Register, and
Exception Opcode Register are not implemented in
processor hardware. These registers are implemented
via a virtual floating-point interface provided on the
Am29005 microprocessor.

Unprotected special-purpose registers are accessible
by programs executing in both the User and Supervisor
modes.

Vector Area Base Address (Register 0)

This protected special-purpose register (see Figure 7)
specifies the beginning address of the interruptitrap
Vector Area. The Vector Area is either a table of 256
vectors that points to interrupt and trap handling

Am29005 Microprocessor 27

c4E D WM 0257525 0033237 b '- AMD

ADVANCED MICRO DEVICES

a AMD

ADVANCE

P . P T e

" 28E DWW 0257525
INFORMATION

[S

0033238 & W AMD
T-49-17-32

Registar Number

Protected Registers

0 Vector Area Base Address
1 Old Processor Status
2 Current Pracessor Status
3 Configuration
4 Channe! Address
5 Channel Data
(] Channel Control
7 Register Bank Protect
8 Timer Counter
9 Timer Reload
10 Program Counter 0
11 Program Counter 1
12 Program Counter 2
Unprotected Reglsters
128 Indirect Pointer C
129 Indirect Pointer A
130 Indirect Pointer B
131 Q
132 ALU Status
133 Byte Pointer
134 Funnel Shift Count
135 Load/Store Count Remaining
160 Floating-Point Environment
161 Integer Environment
]62 Floating-Point Status
1 64 Exception Opcode

Figure 6. Speclal-Purpose Registers

Mnemonle

2 o
> @

PC1
PC2

IPC 6

IPA
IPB

SR
BPR
FCR
MC
FPE
INTE
FPS

EXOP ‘

28

Am29005 Microprocessor

ADVANCED MICRO DEVICES

ADVANCE

28E D

IN

BN 0257525 0033239 T M AMD
FORMATION v I

routines, or a segment of 256 64-instruction blocks that
directly contains the interrupt and trap handiing
routines.

The organization of the Vector Area is determined by the
Vactor Fetch (VF) bit of the Configuration Register. lfthe
VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap {see Interrupts and
Traps saction) replaces bits 9-2 of the value In the
Vector Area Base Address Register to generate the
physical address for a vector contained in instruction/
data memory.

if the VF bit is 0, the vector number replaces bits 158 of
the value In the Vector Area Base Address Register to
generate the physical address of the first instruction of
the interrupt or trap handler. The instruction fetch for this
instruction is directed eitherto instruction memory or in-
struction read-only memory, as determined by the ROM
Vector Area (RV) bit of the Configuration Register.

Bits 31-16: Vector Area Base (VAB)—The VAB field
gives the beginning address of the Vector Area. This ad-
dress Is constrained to begin on a 64-kb address-
boundary inInstruction data memory or instruction read-
only memory.

Bits 15-0—These bits contain 0s; they force the align-
ment of the Vector Area.

Old Processor Status (Register 1)

This protected special-purpose register has the same
format as the Current Processor Status described be-
low. The Old Processor Status stores a copy of the Cur-
rent Processor Status when aninterrupt or trap is taken.
This is required since the Current Processor Status will
be modified to reflect the status of the interruptirap
handler.

During an interrupt return, the Old Processor Status is
copled into the Current Processor Status, This allows

the Current Processor Status to be set as required for
the routine that is the target of the interrupt return.

Current Processor Status (Register 2) - T=49-17-32

This protected special-purpose register {see Figure 8)
controls the behavior of the processor and its ability to
recognize exceptional events.

Blts 31-16—Reserved.

BIt 15: Coprocessor Active (CA)—The CA bit is set
and reset underthe control of load and store instructions
thattransfer informationto and from a coprocessor. This
bit indicates that the coprocessor is performing an op-
eration at the time that an interrupt or trap is taken. This
notifies the interrupt ortrap handler that the coprocessor
contains state information to be preserved. Note that
this notification occurs because the CA bit of the Old
Processor Status Is 1 in this case, not because of the
value of the CA bit of the Curmrent Processor Status.

Bit 14: interrupt Pending (IP)—This bit allows soft-
ware to detect the presence of external interrupts while
they are disabled. The IP bit is set if one or more of the
external signals INTR—INTRo is active, but the proces-
sor Is disabled from taking the resulting interrupt due to
the value of the DA, DI, or IM bits, If all extemnal interrupt
signals subsequently are deasserted while still dis-
abled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)—
The TE and TP bits implement a software-controlled, in-
struction single-step facility. Single stepping is not im-
plemented directly, but rather emulated by trap se-
quences controlled by these bits, The value of the TE bit
is copied to the TP bit whenever aninstruction execution
is completed. When the TP bitis 1, a Trace trap occurs.

Bit 11: Trap Unaligned Access (TU)}—The TU bit en-
ables checking of address alignment for external data-
memory accesses. When this bit is 1, an Unaligned Ac-
cess trap occurs if the processor either generates an ad-

15

7 0

31 23
TTTTTTTETT T

VAB

0

olojojojo|ojo]jojojo]o]ojo]oO}O

Figure 7. Vector Area Base Addfess Register

a1 23 15 7 o
ITTTITTTTTTT NI !
Reserved ™

R TE

dA: i’E: Tlu: (:K:V\'IM: res: 6| *

P TP FZ RE res SM DA

Flgure 8. Current Processor Status Register

Am29005 Microprocessor

29

ADVANCED MICRO DEVICES
L\ avp ADVANCE

EPRIN TP S S

dress for an external word that is not aligned on a word
address boundary (i.e., either of the least-significant 2
bils is 1), or generates an address for an external hai-
word that Is not aligned on a half-word address bound-
ary (i.e., the least-signiticant address bit is 1). When the
TU bit Is 0, data-memory address alignment is ignored.

Alignment Is ignored for input/output accesses and
coprocessor transfers. The alignment of instruction ad-
dresses is also ignored (unaligned instruction ad-
dresses can be generated only by indirect jumps). inter-
fuptitrap vector addresses always are aligned properly.

BIt 10: Freeze (FZ)}—The FZ bit prevents certain regis-
ters from being updated during interrupt and trap pro-
cessing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel
Control, Program Counter 0, Program Counter 1, Pro-
gram Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values.
An affected register can be changed only by a Move To
Special Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by
processor instruction execution as described in this
datasheet.

The FZ bit is set whenever an interrupt or frap is taken,
holding critical state in the processor so that it is not
modified unintentionally by the interrupt or trap handler.

Bit 9: LOCK (LK)—The LK bit controls the value of the
LOCK external signal. If the LK bit is 1, the LOCK signal
is active. If the LK bit is 0, the LOCK signal is controlled
by the execution of the Instructions Load and Set, Load
and Lock, and Store and Lock. This bit Is provided for
the implementation of muliiprocesser synchronization
protocols.

Bit 8: ROM Enable (RE)—The RE bit enables instruc-
tionfetching from external instruction read-only memory
(ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. When this bit is 0, off-chip
requests for instructions are directed to instruction/data
memory.

Bit 7: WAIT Mode (WM)—The WM bit places the pro-
cessor in the Wait mode. When this bit is 1, the proces-
sor performs no operations. The Wait mode is reset by
aninterruptor trap for which the processoris enabled, or
by the Reset mode.

Bit 6—Reserved (Physical Addressing/Data bit In
Am28000 microprocessor).

Bit 5—Reserved (Physical Addressing/Instruction bit in
Am28000 microprocessor).

Bit 4: Supervisor Mode (SM)}—The SM bit protects
certain processor context, such as protected special-
purpose registers. When this bit is 1, the processor is in
the Supervisor mode, and access to all processor con-
textis allowed. When this bit is 0, the processor Is in the
User mode, and access to protected processor context
Is not allowed; an attempt to access (either read or write)

protected processor context causes a Protection Viola-
tion trap.

For an external access, the User Access (UA) bit in the
foad or store instruction also controls access to pro-
tected processor context. When the UA bit Is 1, the
channel performs the access as though the program
causing the access was in User mode.

Blts 3-2: Interrupt Mask (IM)—The IM field Is an en-
coding of the processor priority with respect to external
interrupts. The interpretation of the interrupt mask Is

specified by the following table:
IM Value Result
00 INTR, enabled
01 INTR, ~INTR; enabled
10 INTR, -INTR, enabled
11 INTH, -INTR, enabled

Bit 1: Disable Interrupts (DI)—The DI bit prevénts the
processor from being interrupted by external interrupt
requests INTR=-INTRo. When this bit is 1, the processor
ignores all external interrupts. However, note that traps
(both internal and external), Timer interrupts, and Trace
traps will be taken. When this bit is 0, the processor will
take any interrupt enabled by the IM field, unless the DA
bitis 1. :

Bit 0: Disable all Interrupts and Traps (DA)}—The DA
bit prevents the processor from taking any Interrupts
and mosttraps. Whenthis bitis 1, the processor ignores
interrupts and traps, except for the WARN, Instruction
Access Exception, Data Access Exception, and Co-
processor Exception traps. When this bit is 0, all traps
will be taken, and interrupts will be taken if otherwise
enabled.

Contiguration (Register 3)

This protected speclal-purpose register (see Figure 9)
controls certain processor and system options. Most
fields normally are modified only during system Initial-
ization. The Configuration Register definition follows.

Bits 31-24: Processor Release Level (PRL)—The
PRL fieldis an 8-bit, read-only identification numberthat
specifies the processor version,

Bits 23-6—Reserved.

Bit 5: Data Width Enable (DW)—The DW bit enables
and disables byte and half-word external accesses. If
the DW bit is 0, byte and half-word accesses are not per-
formed in hardware, and these accesses must be emu-
lated by software. If the DW bit is 1, byte and half-word
accesses are performed by hardware: this requires that
external devices and memories be able to write individ-
ual bytes and half-words within a word.

Bit 4: Vector Fetch (VF)—The VF bit determines the
structure of the inferrupt/trap Vector Area. If this bitis 1,
the Vector Area is defined as a block of 256 vectors that
specify the beginning addresses of the interrupt and trap

30 Am29005 Microprocessor

T-49-17-32

28E D WM 0257525 0033240 L WM AMD
INFORMATION

— . g pe— T R o] oy S sy Lt o3

ADVANCED MICRO DtVICES' 28E D WN 0257525 0033241 & WE AMD

ADVANCE INFORMATION AMDH /

31 23 15 7 0 T"49’f] 7-32
HERRRRERRERERRERRRRRRR RS

PRL Reserved B

G Flgure 9. Configuration Reglster

handling routines. If the VF bit is 0, the Vector Areais a coprocessor transfers. It also is used to frestart
segment of 256 64-instruction blocks that contain the interrupted Load Muttiple and Store Multiple operations,
actual routines. and to restart other external accesses when possible.

Bit 3: ROM Vector Area (RV)—if the VF bitis 0, the RV The Channel Address Register is updated onthe execu-
bit specifies whether the Vector Area Is contained in tion of every load or store instruction, and on every load
instruction memory (RV = 0) or instruction read-only or store in a Load Multiple or Store Muitiple sequence,
memory (RV = 1). The value of the RV bit is irrelevant if except when the Freeze (FZ) bit in the Curmrent Proces-
the VF bit is 1. sor Status Register is 1.

Bit 2: Byte Order (BO)—The BO bit determines the or- Bits 31-0: Channel Address (CHA)—This field con-
dering of bytes and half-words within words. If the BO bit tains the address of the current channel transaction (jf
Is 0, bytes and half-words are numbered left-to-right the FZ bit of the Current Processor Status Register is 0).
within aword. if the BObit is 1, bytes and haf-words are Fortransters to the coprocessor, the CHA field contains _
numbered right-to-left. data transferred to the coprocessor.

Bit 1: Coprocessor Present (CP}—The CP bit indi- Channel Data (Register 5)

cates the presence of a coprocessor that may be used Thi d al-ou . .

by the processor. If this bit is 1, it enables the execution s protected special-purpose register (Figure 11) is

of load and store instructions that have a Coprocessor ~ USed to report exceptions during external accesses or -
i Enable (CE) bit of 1. If the CP bt is 0 and the processor coprocessor transfers. |t is also used to restart the first

attempts to execute a load or store instructionwitha CE ~ Store of an interupted Store Multiple operation and to
bit of 1, a Coprocessor Not Present trap occurs. This restart other external accesses when possible.

feature may be usedto emulate coprocessoroperations The Channel Data Register is updated on the execution
as well as to protect the state of a coprocessor shared of every load or store instruction, and on every load or
between multiple processes. store in a Load Muttiple or Store Multiple sequence, ex-
Bit 0—Reserved (Branch Target Cache Disable Bit in cept when the Freeze (FZ) bit in the Cumrent Processor

: Status Registeris 1. Whenthe Channel Data Registeris
Am29000 micfopracsssor). updated for a load operation, the resulting value is un-
Channel Address (Register 4) predictable.

This protected special-purpose register (Figure 10) -
Is usedto report exceptions during external accesses or

RRARRRRRRRRSRRRRRRRARRERARNRRAN)

CHA

Figure 10. Channel Address Reglster

SERRRRERREERRERRRARNRRRRERRRERNA

CHD

Figure 11. Channel Data Register

Am29005 Microprocessor 31

N e A s e e e pe S TR et SR e T T AT = T P ST SR R S

ADVANCED MICRO DEVICES

L4 avp ADVANCE

- e e S5k s A llema amea

28E D

Bits 31-0: Channel Data (CHD)—This fleld contains
the data (if any) associated with the current channel
transaction (if the FZ bit of the Current Processor Status
Register s 0). It the current channel transaction is not a
store or a transfer to the coprocessor, the value of this
field is irrelevant. -

Channel Control (Register 6)

This protected special-purpose reglster (Figure 12) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter-
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possible.

The Channel Control Register is updated on the execu-
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Multiple sequence,
except when the Freeze (FZ) bit in the Current Proces-
sor Status Register is 1.

Bits 31~-24—These bits are a direct copy of bits 23-16
fromthe load or store instruction that started the current
channel transaction.

Blts 23-16: Load/Store Count Remaining (CR)}—The
CR field indicates the remaining number of transfers for
a Load Multiple or Store Multiple operation that encoun-
tered an exception or was interrupted before comple-
tion. This number is zero-based; for example, a value of
28 in this field indicates that 29 transfers remain to be
completed. It the fault or interrupt occurs on the last
transaction, the CR field contains a value of 0 and the
ML bit Is 1 {see below).

Bit 15: Load/Store (LS)—The LS bitis 0 if the channel
transaction Is a store operation, and 1 if it is a load
operation.

Bit 14: Multiple Operation (ML)—The ML bit is 1 if the
current channel transaction Is a partially complete Load
Multiple or Store Multiple operation; otherwise it is 0.

Bit 13: Set (ST)—The ST bit is 1 if the current channel
transactionis for aLoad and Set instruction; otherwise it
Is 0.

BIt 12: Lock Active (LA)—The LA bit is 1 if the cumrent
channel transaction is for a Load and Lock or Store and
Lock instruction; otherwise it is 0. Note that this bit is not

set as the result of the Lock (LK) bit in the Current Pro-
cessor Status Register.

Bit 11—Reserved.

BIt 10: Transaction Fautted (TF)}—The TF bit indicates
that the current channel transaction was not complete
due to some exceptional circumstance. This bit is set
only for exceptions reported via the DERR input, and it
causes a Data Access Exception or Coprocessor Ex-
ception trap to occur {depending on the value of the CE
bit) whenitis 1.

The TF bitallows the proper sequencing of externally re-
ported errors that get preempted by higher-priority
traps; it is reset by software that handles. the resulting
trap. . :

Bits 9-2: Target Register (TR)—The TR field indicates
the absolute register number of data operand for the
current transaction (either a load target or store data
source). Since the register number in this tield is abso-
lute, it reflects the Stack-Pointer addition when the indi-
cated register is a local register.

Bit 1: Not Needed (NN}—The NN bit indicates. that,
even though the Channel Address, Channel Data, and
Channel Control registers contain a valid representation
of an uncompleted load operation, the data requested is
not needed. This situation arises when aload instruction
is overlapped with an instruction that writes the load tar-
get register.

Bit 0: Contents Valid (CV}—The CV bit indicates that
the contents of the Channel Address, Channel Data,
and Charinel Control registers are valid.

Register Bank Protect (Register7)

This protected special-purpose register (Figure 13) pro-
tects banks of general-purpose registers from User-
mode program accesses.

The general-purpose registers are partitioned into 16
banks of 16 registers each (except that Bank 0 contains
14 registers). The banks are organized as shown in
Figure 4.

Bits 31-16—Reserved.

31

15

23
EERRRRERRRERR

CNTL CR

7
FETTTT

TR

LS

ML LA

D.-
[7]

==
-

NN

Q) memmad

Figure 12. Channel Control Reglster

32 Am29005 Microprocessor

B 0257525 0033242 T M AMD
INFORMATION

T-49-17-32

ADVANCED MICRO DEVICES
ADVANCE

c8E D WE 0257525 0033243 1 MM AMD
INFORMATION AMD BN :

o T-49-17-32

31 23
HERRRRRERRRRRR

Reserved

15 7
HERRRRRERRERRRR

Bis BO

Figure 13. Register Bank Protect Register .

Bits 15-0: Bank 15 through Bank 0 Protection Bits
(B15-B0)—In the Register Bank Protect Register, each
bit is associated with a particular bank of registers and
the bit number gives the associated bank number (e.g.,
B11 determines the protection for Bank 11).

When a protection bit is 1, the corresponding bank Is
protected from access by programs executing in the
User mode. A Protection Violation trap occurs when a
User-mode program attempls to access (either read or
write) a register in a protected bank. When a bit in this
register is 0, the comresponding bank is avaltable to pro-
grams executing in the User mode.

Supervisor-mode programs are not affected by the Reg-
ister Bank Protect Register.

Register protection is based on absolute register num-
bers. For focal registers, the protection checking is per-
formed after the Stack-Pointer addition is performed.

Timer Counter (Register 8)

This protected special-purpose register (Figure 14)
contains the counter for the Timer Facility.

Bits 31-24—Reserved.

Bits 23-0: Timer Count Value (TCV)}—The 24-bit TCV
field decrements by one on each processor clock. When
the TCV field decrements to 0, it is reloaded with the
content of the Timer Reload Value field in the Timer

Reload Register. At this time, the Interrupt bit In the
Timer Reload Register is set.

Timer Reload (Register 9)

This protected special-purpose register (Figure 15)
maintains synchronization of the Timer Counter Reg-
ister, enables Timer interrupts, and maintains Timer
Facllity status information.

Bits 31-27—Reserved.

Bit 26: Overflow (OV)—The QV bit indicates that a
Timer interrupt occurred before a previous Timer inter-
ruptwas serviced. ltis setif the Interrupt (IN) bitis 1 (see
below) when the Timer Count Value (TCV) field of the
Timer Counter Register decrementsto 0. Inthis case, a
Timer interrupt caused by the IN bit has not been ser-
viced when another interrupt is created.

BIt 25: Interrupt (IN}—The IN bit is set whenever the
TCV field decrements to 0. if this bitis 1 and the IE bitis
also 1, a Timer interrupt occurs. Note thatthe IN bit is set
when the TCV field decrements to 0, regardiess of the
value of the IE bit. The IN bit is reset by software that
handles the Timer interrupt.

The TCV field is 0-based with respect to the Timer inter-
rupt interval; for example, a value of 28 in the TCV fiekd
causes the IN bit to be set in the 29th subsequent pro-

31 23 15 7 0
HERRERRRRRRRRRRRERRER R
Reserved TCOV
Figure 14. Timer Counter Register
31 23 15 7 0
RER HEERRRERRRERRRERERER R
Reserved TRV
' H
: H
oV, IE

Focenao

Figure 15. Timer Reload Reglster

Am28005 Microprocessor

ADVANCED MICRO DEVI(EES

&\ AvD ADVANCE

"28E D WM 0257525
INFORMATION

N ITY

cessor cycle. The reason for this is that the TCV field is 0
for a complete cycle before the IN bit is set.

Bit 24: Interrupt Enable (IE}—When the IE bitis 1, the
Timer interrupt is enabled, and the Timer interrupt oc-
curs whenever the IN bit is 1. When this bit is 0, the
Timer interrupt is disabled. Note that Timer interrupts
may be disabled by the DA bit of the Current Processor
Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)—The value of
this field is written Into the Timer Count Value (TCV) field
of the Timer Counter Register whenthe TCV field decre-
ments to 0.

Program Counter 0 (Register 10)

This protected special-purpose register (Figure 16) is
used on an interrupt return to restart the instruction that
was in the decode stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 0 (PC0)—This field cap-
tures the word address of an instruction as it enters the
decode stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. lf the FZ bitis 1, PCO holds its value.

When aninterrupt or trap is taken, the PCO field contains
the word address of the instruction in the decode stage;
the interrupt or trap has prevented this instruction from
executing. The processor uses the PCO field to restart
this Instruction on an interrupt return.

Bits 1-0—These bits are 0 since instruction addresses
are always word-aligned.

Program Counter 1 (Register 11)

This protected special-purpose register (Figure 17) is
used on an interrupt return to restart the instruction that
was in the execute stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 1 (PC1)—This field cap-
tures the word address of an instruction as it enters the

execute stage of the processor pipeline, unless the .

Freeze (FZ) bit of the Current Processor Status Register
is 1. if the FZ bitis 1, PC1 holds its value.

When aninterrupt or trap is taken, the PC1 field contains
the word address of the instruction in the execute stage;
the interrupt or trap has prevented this instruction from
completing execution. The processor uses the PC1 field
to restart this instruction on an interrupt return.

Blts 1-0—These bits are 0 since instruction addresses
are always word-aligned.)

Program Counter 2 (Register 12)

This protected special-purpose register (Figure 18) re-
ports the address of certain instructions causing traps,

Bits 31-2: Program Counter 2 (PC2)—This field cap-
tures the word address of an instruction as it enters the
write-back stage of the processor pipeline, unless the
Freeze (FZ) bitof the Current Processor Stalus Register
is 1. if the FZ bit is 1, PC2 holds its value.

When aninterrupt ortrap istaken, the PC2field contains
the word address of the instruction in the write-back
stage. In certain cases, PC2 contains the address of the

31 23 15 7 0
HERERREREERRRERRERRRRREEEEEEE
PCO o0
Figure 16. Program Counter 0 Register
31 23 15 7 0
NERRRRRRARRRRRRRRRRREREEEEEE
olo
Figure 17. Program Counter 1 Reglster
31 23 15 7) 0
RERRRERRERERRERRRRRRREEEE R
olo

Figure 18. Program Counter 2 Register

34 Am29005 Microprocessor

S e T e e e e Sz

B vt S LN NS W S I,

T-49-17-32

0033244 3 EE AMD

ADVANCED MICRO DEVICES

28E D

mm 0257525 0033245 5 EE AMD
ADVANCE INFORMATION 7-49-17-32 _ AvD X

instruction causing atrap. The PC2 field is usedto report
the address of this instruction, and has no other use in
the processor.

" Bits 1-0—These bits are 0 since instruction addresses

are always word-alighed.

Indirect Polinter C (Reglister 128)

This unprotected special-purpose register (Figure 19)
provides the RC-operand register number when an in-
struction RC field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10—Reserved.

Bits 9—-2: Indirect Pointer C (IPC)—The 8-bit IPC field
contains an absolute register number for a general-
purpose register. This number directly selects a register
(Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0—These bits contain 0s. The IPC field is
aligned for compatibility with word addresses.

Indirect Polnter A (Register 129)

This unprotected special-purpose register (Figure 20)
provides the RA-operand register number when an in-
struction RA field has the value 0 (i.e., when Global Reg-
ister 0 Is specified).

Bits 31-10—Reserved.

Bits 9-2: Indirect Pointer A (IPA}—The 8-bit IPA field
contains an absolute register number for either a
general-purpose register or a local register. This num-

ber directly selects a register (Stack-Pointer addition is
not performed in the case of local registers).

Bits 1-0—These bits contain 0s. The IPAfield is aligned
for compatibility with word addresses.

Indirect Pointer B (Register 130)

This unprotected special-purpose register (Figure 21)
provides the RB-operand register number when an in-
struction RB field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10—Reserved.

Bits 9-2: Indirect Pointer B (IPB)—The 8-bit IPB field
contains an absolute register number for a general-
purpose register. This number directly selects a register
(Stack-Poinfer addition is not performed in the case of

local registers).

Bits 1-0—These bits contain 0s. The IPB field is aligned
for compatibility with word addresses.

Q (Reglster 131)

The QRegisteris anunprotected special-purpose regis-
ter (Figure 22).

Bits 31-0: Quotient/Multipller (Q)—During a se-
quence of divide steps, this field holds the low-orderbits
of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field
holds the multiplier; it contains the low-order bits of the
resuit at the end of the multiply.

31 23 16 7 0
rrrertr e et err et erernd
Reserved IPC 0|0
Figure 19. Indirect Pointer C Reglster
. 31 23 15 7 0
REERRRERERRRRRRRRRRRRN RN
Reserved IPA 010
Figure 20. Indirect Pointer A Register
31 23 15 7 0.
EERRRRRRRRRRRRRRR RN D
Reserved IPB ofo

Figure 21. Indirect Pointer B Register

Am238005 Microprocessor 35

&\ avD

T e — TP 1t

ADVANCED MICRO DEVICES

ADVANCE INFORMATION
- T-49-17-32
31 23 15 7 0
LTI TTTITTTTIT T I I T I T I I I I I ITITTIT070T
a !
Figure 22. Q Register

o e e anal T S el Bl e, -

For an integer divide instruction, the Q field contains the
high-order bits of the dividend at the beginning of the in-
struction, and contains the remainder upon completion
of the instruction.

ALV Status (Reglster 132)

This unprotected special-purpose register (Figure 23)
holds information about the outcome of Arithmetic/Logic
Unit (ALU) operations as well as control for certain op-
erations performed by the Execution Unit,

Bits 31-12—Reserved.

Bit 11: Divide Flag (DF)—The DF bit Is used by the in-
structions that implement division. This bit is set at the
end of the division instructions either to 1 or to the com-
plement of the 33rd bit of the ALU. When a Divide Step
instruction is executed, the DF bit then determines
whether an addition or subtraction operation is per-
formed by the ALU.

Bit 10: Overflow (V)—The V bit indicates that the result
of a signed, twos-complement ALU operation required
more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive ORing the
ALU carry-out with the carry-in to the most-significant bit
for signed, twos-complement operations. This bit is not
used for any special purpose in the processor, and is
provided for information only.

Bit 9: Negative (N)}—The N bit is set with the value of
the most-significant bit of the result of an arithmetic or
logical operation. If twos-complement overflow occurs,
the N bit does not reflect the true sign of the result. This
bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an
arithmetic or logical operation s zero. This bit is not used
forany special purpose inthe processor, and is provided
for information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the
ALUfor arithmetic operations. it is used by the add-with-
carry and subtract-with-carry instructions to generate
the carry into the Arithmetic/Logic Unit. s

Bits 6-5: Byte Pointer (BP)}—The BP field holds a 2-bit
pointer to a byte within a word. It is used by Inserf Byte
and Extract Byte instructions. The exact mapping of the
pointer value to the byte position depends on the value
of the Byte Order (BO) bit in the Configuration Register.

The most-significant bit of the BP field is used to deter-
mine the position of a half-wofd within a word for the In-
sert Half-Word, Extract Half-Word, and Extract Half-
Word, Sign-Extended instructions. The exact mapping
of the most-significant bit to the half-word position de-
pends on the value of the BO bit in the Configuration
Register. .

The BP field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Byte
Pointer Register as the destination. It is also set by a
load or store instruction if the Set Byte Pointer (SB) bit in

the instruction is 1. A load or sfore sets the BP field

either with the two least-significant bits of the address {if
the DW bit of the Configuration Register is 0) or with the

complement of the Byte Order bit of the Contiguration

Register (if DW is 1),

Bits 4-0: Funnel Shift Count (FC)—The FC field con-
tains a 5-bit shift count for the Funnel Shifter. The Fun-
nel Shifter concatenates two source operands into a sin-
gle 64-bit operand and extracts a 32-bit result from this
64-bit operand; the FC field specities the number of bit
positions from the most-significant bit of the 64-bit oper-
and to the most-significant bit of the 32-bit result. The
FC field is used by the Exiract instruction.

Reaserved

31 23 15
[TTTTTTTTTTTITTTTTTIT I

) 0
T
FC

DF

Figure 23. ALU Status Register

36 Am29005 Microprocessor

24E D WM 0257525 003324 7 WM AMD

ORGSR T TR ST T TR TR

ADVANCED MICRO DEVICES
ADVANCE INFORMATIONTf49—17-32

28E D - WM 0257525 0033247 9 HE AMD

AMD u

The FC field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Fun-
nel Shift Count Register as the destination.

Byte Pointer (Register 133)

This unprotected special-purpose register (Figure 24)
provides an alternate access to the BP field in the ALU
Status Register.

Bits 31—-2—These bits contain 0s.

Bits 1-0: Byte Pointer (BP)}—This field allows a pro-
gramto change the BP field without affecting other fields
in the ALU Status Register.

Funnel Shift Count (Reglster 134)

This unprotected special-purpose register (Figure 25)
provides an aiternate access to the FC field in the ALU
Status Register.

Bits 31-5-These bits contain 0s.
Bits 4-0: Funnel Shift Count (FC)}—This field allows a

program to change the FC field without affecting other

fields in the ALU Status Register.

Load/Store Count Remalning (Register 135)

This unprotected special-purpose register (Figure 26)
provides alternate access to the CR field in the Channel
Control Register.

Bits 31-8—These bits contain 0s.

Bits 7-0: Load/Store Count Remalining (CR)—This
tleld allows a program to change the CR field without af-
fecting other fields in the Channel Conltrol Register, and
is used 1o Initialize the value before a Load Muttiple or
Store Multiple instruction is executed.

Floating-Point Environment (Register 160)

This unprotected special-purpose register (Figure 27)
contains control bits that affect the execution of floating-
point operalions. ’

Bits 31-9—Reserved.

Bit 8: Fast Float Select (FF}—The FF bit being 1 en-
ables fast floating-point operations, in which certain re-
quirements of the IEEE floating-point specification are
not met. This improves the performance of certain
operations by sacrificing conformance to-the IEEE
specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This
field specifies the default mode used to round the resulis
of floating-point operations, as follows:

FRM1-0 Round Mode
00 Round to nearest
01 . Round to
10 Round to 4o
11 Round to zero

Bit 5: Floating-Point Divide-By-Zero Mask (DM}—If
the DM bit is 0, a Floating-Point Exception trap occurs
when the divisor of a floating-point division operation is
zero and the dividend is a non-zero, finite number. If the
DM bitis 1, a Floating-Point Exception trap does not oc-
cur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask {(XM)—If
the XM bit is 0, a Floating-Point Exception trap occurs
when the result of-a floating-point operation is not equal
to the infinitely precise resutt. If the XM bit is 1, a Float-
ing-Point Exception trap does not occur for an inexact
resuit.

31 23

15

Figure 24. Byte Pointer

3 23

15

T

o|ojo|ojotojojojo}io FC

Figure 25. Funnel Shift Count

31 23

15

7 0
RERRRR
CR

Flgure 26. Load/Store Count Rematning

Am29005 Microprocessor 37

ADVANCED MICRO DEVICES

e R T

e emate ML eiame oenil e mTI.Ta e

28E D

I 0257525-0033248 0 W AMD
uAMD ADVANCE INFORMATION "F—49-17-—32
7 "0

Reserved

31 23 15
(T ETTTTITITITTITITTTIT T T T

FRM

-- -
- -

FF DM :UM: RM !
XM VM NM

Figure 27. Floating-Point Environment

Bit 3: Floating-Point Underflow Mask (UM)—If the
UMbitis 0, a Floating-Point Exception trap occurs when
the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1,
a Floating-Point Exception trap does not occur for
underflow,

Bit 2: Floating-Point Overflow Mask (VM)—If the VM
bitis 0, a Floating-Point Exception trap occurs when the
result of a floating-point operation is too large to be ex-
pressed in the destination format. If the VM bit is 1, a
Floating-Point Exception trap does not occur for over-
flow.

Bit 1: Floating-Point Reserved Operand Mask (RM)
—If the RM bit Is 0, a Floating-Point Exception trap oc-
curs whenone or more input operands to a floating-point
operation is a reserved value, or when the result of a
floating-point operation is a reserved value. If the RM bit
is 1, a Floating-Polint Exception trap does not occur for
reserved operands.

Bit 0: Floating-Polnt Invalld Operation Mask (NM)—
ifthe NM bit is 0, a Floating-Point Exception trap occurs
when the input operands to a floating-point operation
produce an indeterminate result (e.g., « times 0). lf the
NM bitis 1, a Floating-Point Exception trap does not oc-
cur for invalid operations.

Integer Environment (Reglster 161)

This unprotected speclal-purpose register (Figure 28)
contains control bits that affect the execution of integer
operations.

Bits 31—2—Reserved.

Bit 1: Integer Division Overflow Mask (DO)—If the
DO bit is 0, an Out of Range trap occurs when overflow
of a signed or unsigned 32-bit result occurs during

DIVIDE or DIVIDU instructions, respectively. If the DO
bitis 1, an Out of Range trap does not occur for overtlow
during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an
Cut of Range trap upon division by zero, regardless of
the value of the DO bit.

Bit 0: Integer Multiplication Overflow Exceptlon
Mask (MO)—If the MO bitis 0, an Out of Range trap oc-
curs when overflow of a signed or unsigned 32-bit result
occurs during MULTIPLY or MULTIPLU instructions, re-
spectively. if the DO bit is 1, an Out of Range trap does
not occurforovertlow duringinteger multiply operations.

Floating-Point Status (Register 162)

This unprotected special-purpose register (Figure 29)
contains status bits indicating the outcome of floating-
point operations. The bits of the Floating-Point Status
Register are divided into two groups of status bits, The
bits in each group correspond to the causes of Floating-
Point Exception traps that are enabled and disabled by
bits 5-0 of the Floating-Point Environment Register.

The first group of status bits (bits 13-8) are trap status
bits that report the cause of a Floating-Point Exception
trap. The trap status bits are set only when a Floating-
Point Exception trap occurs, and indicate all conditions
that apply to the trapping operation. All other operations
leave the status bits unchanged. A trap status bit is
set regardiess of the state of the corresponding mask
bit of the Floating-Point Environment Register, except
that at least one of the mask bits must be 0 for the trap
to occur. When a Floating-Point Exception trap occurs,
all trap status bits not relevant to the trapping operation
are reset.

31 23 15 7
O TTTTTTTTITI T TI T I T 01T

Reserved

Figure 28. Integer Environment

38 Am29005 Microprocessor

R e

A

B VBISD g b e

reTr—n e T me et e s

ADVANCED MICRO DEVICES

c8E D WM 0257525 0033249 2 W AMD

ADVANCE INFORMATION -1;49—17-32 AMbn

Raserved

31 23 15
RERERRARRRRRR AR I

res

T
1] L

' '
4 [] + ' L
DT ; UT { AT !
XT VT NT

Figure 29. Floating-Point Status

The second group of status bits (bits 5-0) are sticky
status bits that, once set, remain set until explicitly
cleared by a Move 1o Special Register (MTSR) or Move
to Special Register Immediate (MTSRIM) instruction.
A slicky status bit is set only when a floating-point
exception is detected and the corresponding mask bit
of the Floating-Point Environment Register is 1. That s,
the sticky status bitis set only if the corresponding cause
of a Floating-Point Exception trap is disabled. Normally,
this means that sticky status bits are not set when a
Floating-Point Exception trap is taken. However, if
multiple exceptions are detected, a sticky status bit
corresponding to a masked exception may still be set if
a Floating-Point Exception trap occurs for an unmasked
exception.

Bits 31-14—Reserved.

Bit 13: Floating-Point Divide-By-Zero Trap (DT)—
The DT bit Is set when a Floating-Point Exception trap
occurs, and the associated floating-point operation is a
divide with a zero divisor and a non-zero, finite dividend.
Otherwise, this bit is reset when a Floating-Point Excep-
tion {rap occurs.

Bit 12: Floating-Point Inexact Resuit Trap (XT)—The
XT bit is set when a Floating-Point Exception trap oc-
curs, and the resutit of the associated floating-point op-
eration is not equal to the infinitely precise resuit. Other-
wise, this bit is reset when a Floating-Point Exception
frap occurs.

Bit 11: Floating-PolInt Underflow Trap (UT)}—The UT
bit Is set when a Floating-Point Exception trap occurs,
and the resutt of the associated floating-point operation
is too small to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)}—The VT
bit Is set when a Floating-Point Exception trap occurs,
and the resutt of the associated floating-point operation
Is too large to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 9: Floating-Polnt Reserved Operand Trap (RT)—
The RT bit is set when a Floating-Point Exception trap
occurs, and either one or more Input operands to the as-
sociated floating-point operation is a reserved value or
the result of this floating-point operation is a reserved

valus. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)—
The NT bit is set when a Floating-Point Exception trap
occurs, and the input operands to the associated float-
ing-point operation produce an indeterminate result.
Otherwise, this bitis reset when a Floating-Point Excep-
tion trap occurs,

Bits 7-6—Reserved.

Bit 5: Floating-Point Divide-By-Zero Sticky {DS)—
The DS bit is set when the DM bit of the Floating-Point
Environment Register is 1, the divisor of a floating-point
division operation is a zero, and-the dividend is a non-
zero, finite number.

Blt 4: Floating-Polnt Inexact Result Sticky (XS)—
The XS bit is set when the XM bit of the Floating-Point
Environment Register Is 1, and the resuit of a floating-
point operation is not equat to the infinitely precise
resuft.

BIt 3: Floating-Point Underflow Sticky (US)—The US
bit is set when the UM bit of the Floating-Point Environ-
ment Register is 1, and the result of a floating-point op-
eration Is too small to be expressed in the destination
format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS
bit is set when the VM bit of the Floating-Point Environ-
ment Register is 1, and the resutt of a floating-point op-
eratlon Is too large to be expressed in the destination
format.

Bit 1: Floating-Point Reserved Operand Sticky
(RS)—The RS bit is set when the RM bit of the Floating-
Point Environment Register is 1, and either one ormore
input operards to a floating-point operation is a re-
served value or the result of a floating-point operation is
a reserved value,

Bit 0: Floating-Point Invalld Operation Sticky (NS}—
The NS bit is set when the NM bit of the Floating-Point
Environment Register is 1, and the input operands to
a floating-point operation produce an indeterminate
resuilt.

Am29005 Microprocessor 39

ADVANCED MICRO DEVICES

aAMD ADVANCE

28E D

INFORMATION

SRR 7 =S R

M 0257525 0033250 9 W AMD

Exception Opcode (Reglster 164)

This unprotected special-purpose register (Figure 30)
reports the operation code (opcode) of an instruction
causing a trap. It is provided primarily for recovery from
floating-point exceptions, but reports the opcode of any
trapping instruction.

Blts 31-8—Reserved.

Bits 7-0: Instruction Opcode (I0P)—This field cap-
tures the opcode of an instruction causing atrap as a re-
sult of instruction execution; the opcode is captured as
the instruction enters the write-back stage of the proces-
sor pipeline. Instructions that do not trap as a conse-
quence of execution do not modify the IOP field.

INSTRUCTION SET

The Am23005 microprocessor implements 113 instruc-
tions. All instructions execute in a single cycle except for
IRET, LOADM, STOREM, and the trapping arithmetic
Instructions such as floating-point instructions.

Most Instructions deal with general-purpose registers
for operands and results; however, in most instructions,
an 8-bit constant can be used in place of a register-
based operand. Some instructions dea! with special-
purpose registers, external devices and memories, and
COpProcessors.,

This section describes the nine instruction classes inthe
Am29005 microprocessor, and provides a brief sum-
mary of instruction operations.

ifthe processor attempts to execute aninstructionthat is
not implemented, an Illegal Opcode trap occurs.

Integer Arithmetic

The Integer Arithmetic instructions perform add, sub-
tract, muttiply, and divide operations on word-length in-
tegers. Certain instructions in this class cause traps if
signed or unsigned overflow occurs during the execu-
tion of the instruction. There Is support for multl-preci-
slon arithmetic on operands whose lengths are mul-
tiples of words. All Instructions in this class set the ALU
Status Register. The integer arithmetic instructions are
shown in Figure 31.

The instructions MULTIPLU, MULTMU, MULTIPLY,
MULTM, DIVIDE, and DIVIDU are not implemented di-
rectly by processor hardware, but cause traps to occur
in instruction-emulation routines.

T-49-17-32
Compare '

The Compare Instructions test for various relationships
between two values. For all Compare Instructions
except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers.
There are two types of Compare instructions. The first
type places a Boolean value reflecting the outcome of
the compare into a general-purpose register. For the
second type (assert instructions), instruction execution
continues only i the comparison is true; otherwise a
trap occurs. The assert instructions specify a vector for
the trap.

The assert instructions support run-time operand
checking and operating-system calls. if the trap occurs
in the User mode and a trap number between 0 and
63 Is specified by the instruction, a Protection Viotation
trap occurs. The Compare instructions are shown in
Figure 32.

Logical

The Logical instructions perform a set of bit-by-bit
Boolean functions on word-length bit strings. All instruc-
tions inthis class setthe ALU Status Register. These in-
structions are shown in Figure 33.

Shift

The Shift instructions (Figure 34) perform arithmetic
and logical shifts. All but the Extract instruction operate
on word-length data and produce a word-length resutt.
The Extract instruction operates on double-word. data
and produces a word-length resutt. If both parts of the
double word for the Extract instruction are from the
same source, the Extract operation is equivalent to aro-
tate operation. For each operation, the shift count is a
5-bit integer, specifying a shift amount In the range of 0
to 31 bits.

Data Movement

The Data Movement instructions (Figure 35) move
bytes, half-words, and words between processor regis-
ters. In addition, they move data between general-
purpose registers and external devices, memories, and
the coprocessor.

Constant

The Constant instructions (Figure 36) provide the ability
to place half-word and word constants into registers,
Most instructions inthe instruction set alfow an8-bit con-

Reserved

31 23 15
RERRERRERRERRERRRRERRD

7 0
HERRRR

IoP

Figure 30. Exception Opcode

Am29005 Microprocessor

ADVANCED MICRO DEVICES

28E D WM 0257525 0033251 0 HE AMD
ADVANCE INFORMATION T-49-17-32 avp X

Mnemonlc Operation Description
ADD DEST <-SRCA + SRCB
ADDS DEST <-SRCA + SRCB

IF signed overflow THEN Trap (Out Of Range)
ADDU DEST <-SRCA + SRCB

IF unsigned overflow THEN Trap (Out Of Range}
ADDC DEST <-SRCA + SRCB+C
ADDCS DEST <-SRCA+ SRCB+C

IF signed overflow THEN Trap (Out Of Range)
ADDCU DEST «-SRCA + SRCB+C

IF unsigned overflow THEN Trap (Out Of Range)
suB DEST <-SRCA - SRCB
SuBs DEST <-SRCA - SRCB

IF signed overflow THEN Trap (Out Of Range)
suBU DEST «-SRCA - SRCB

IF unsigned underflow THEN Trap (Out Of Range)
SuUBC DEST «-SRCA-SRCB~1+C
SUBCS DEST <-SRCA-SRCB-1+C

IF signed overflow THEN Trap (Out Of Range)
SUBCU DEST <-SRCA-SRCB~-1 +C

IF unsigned underfiow THEN Trap (Out Of Range)
SUBR DEST «-SRCB - SRCA
SUBRS DEST <-SRCB - SRCA

IF signed overflow THEN Trap (Out Of Range)
SUBRU DEST <-SRCB - SRCA

IF unsigned underflow THEN Trap (Out Of Rangse)
SUBRC DEST <-SRCB -SRCA-1+C
SUBRCS DEST <-SRCB-SRCA~1+C

IF signed overflow THEN Trap (Out Of Range)
SUBRCU DEST <-SRCB-SRCA-1+C

IF unsigned underflow THEN Trap (Out Of Range)
MULTIPLY DEST <-SRCA * SRCB (unsigned)
MULTIPLY DEST <-SRCA * SRCB (signed)
MUL Perform 1-bit step of a multiply oparation (signed)
MULL Complete a sequence of multiply steps 7
MULTM DEST <-SRCA * SRCB (signed), most-significant bits
MULTMU DEST <-SRCA * SRCB (unsigned), most-significant bits
MULU Perform 1-bit step of a multiply operation (unsigned)
DIVIDE DEST <-(Q//SRCA)/SRCB (signed) Q <-Remainder
DIVIDU DEST <-(Q//SRCA)/SRCB (unsigned) Q <-Remainder
DIVO Initialize for a sequencae of divide steps (unsigned)
DIV Perform 1-bit step of a divide operation (unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation {unsigned)

Flgure 31. Integer Arithmetic Instructions

Am29005 Microprocessor

41

ADVANCED MICRO DEVICES c8E D WM 0257525 0033252 2 m AMD

a AMD

ADVANCE INFORMATION

T-49-17-32

Oparation Description

Mnemonlc
CPEQ IF SRCA = SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPNEQ IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLT IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLE IF SRCA <= SRCB THEN DEST <-TRUE
ELSE DEST <- FALSE
CPLEU IF SRCA <= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGT IF SRCA > SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGTU IF SRCA > SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGE IF SRCA >« SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGEU IF SRCA >= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPBYTE IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCABYTE3 = SRCB.BYTES3)THEN DEST <-TRUE
ELSE DEST <-FALSE
ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
ASNEQ IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASLE IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)
ASLEU IF SRCA <= SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)
ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA >= SRCB THEN Continue
ELSE Trap (VN)
ASGEU IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Figure 32. Compare Instructions

42

Am29005 Microprocessor

ADVANCED MICRO DEVICES 28E D WE 0257525 0033253 4 BN AMD
ADVANCE INFORMATION T-49-17-32 avo A

Mnemonlc Oparation Description ;
AND DEST <-SRCA & SRCB
i
ANDN DEST <-SRCA & ~ SRCB
ﬁ NAND DEST <-~ (SRCA & SRCB)
e’
OR DEST <-SRCA | SRCB
NOR DEST <-~ (SRCA | SRCB)
XOR DEST <-SRCA * SRCB
XNOR DEST <~ (SRCA ~ SRCB)
Figure 33. Loglcal Instructions
Mnemonic Operation Description
SLL DEST <-SRCA << SRCB (zero fill)
7 SRL DEST <-SRCA >> SRCB (zero fill) d
. SRA DEST <-SRCA >> SRCB (sign fill)
EXTRACT DEST <-high-order word of (SRCA/SRCB << FC)

Figure 34. Shift Instructions

stant as an operand. The Constantinstructions allow the
construction of larger constants.

Floating-Point

The Floating-Point instructions (Figure 37) provide op-
erations on single-precision (32-bit) or double-precision
(64-bit) floating-point data. In addition, they provide con-
versions between single-precision, double-pracision,
and integer number representations. In the current
processor implementation, these instructions cause
traps to occur in routines that perform the floating-

point operations.

Branch
The Branch instructions (Figure 38) control the execu-

jumps, the outcome of the jump is based on a Boolean
value in a general-purpose register. Procedure calls are
unconditional and save the retum address in a general-
purpose register. All branches have a delayed effect; :
the instruction following the branch is executed regard-

less of the outcome of the branch.

Miscellaneous

The Miscellaneous instructions (Figure 39) perform
various operations that cannot be grouped into other in-
struction classes. In certain cases, these are control
functions available only to Supervisor-mode programs.

Reserved Instructions
Sixteen Am29005 microprocessor operation codes are

tion flow of instructions. Branch target addresses may
be absolute, relative to the Program Counter (with the
offset given by a signed instruction constant), or con-
tained in a general-purpose register. For conditional

reserved for instruction emulation. These instructions
cause traps, much like the floating-point instructions,
but cumrenty have no specified interpretation.

Am29005 Microprocessor

ADVANCED MICRO DEVICES

u AMD

ADVANCE INFORMATION

- T-49-17-32

Mnemonlc Operation Description
LOAD DEST <-EXTERNAL WORD [SRCB]
LOADL DEST <-EXTERNAL WORD [SRCB]
assert *LOCK output during access
LOADSET DEST <-EXTERNAL WORD [SRCB])
EXTERNAL WORD [SRCB] <-W'FFFFFFFF’,
assert LOCK output during access
LOADM DEST.. DEST + COUNT «-
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4]
STORE EXTERNAL WORD [SRCB] <-SRCA
STOREL EXTERNAL WORD [{SRCB] <-SRCA
assert LOCK output during access
STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4] <-
SRCA .. SRCA + COUNT
EXBYTE DEST <-SRCB, with low-order byte replaced
by byte in SRCA selected by BP
EXHW DEST <-SRCB, with low-order half-word replaced
by half-word in SRCA selected by BP
EXHWS DEST <- half-word in SRCA selected by BP,
sign-extended to 32 bits
INBYTE DEST <-SRCA, with byte selected by BP replaced
by low-order byte of SRCB
INHW DEST <-SRCA, with half-word selected by BP replaced
by low-order half-word of SRCB
MFSR DEST <-SPECIAL
MTSR SPDEST <-SRCB
MTSRIM SPDEST <-0H6
Figure 35. Data Movement Instructions
Mnemonic Operation Description
CONST DEST <-0i16
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST «<-1l16

Figure 36. Constant Instructions

Am29005 Microprocessor

| c8E D WM 0257525 0033254 & W AMD

ADVANCED MICRO DEVICES 26E D WM 0257525 0033255 8 WM AMD
ADVANCE INFORMATION T-49-17-32 AMDn

Mnemonle Operation Description
FADD DEST (single-praclsion) <-SRCA (single-precision)
+ SRCB (single-precision)
DADD DEST (double-precision) <-SRCA (doubls-precision)
: + SRCB (double-precision)
’ FSUB DEST (single-precision) <-SRCA (single-pracision)
— SRCB (single-precision)
psuBs DEST (double-precision) <-SRCA (double-precision)
—~ SRCB (double-precision)
FMUL DEST (singte-pracision) <-SRCA (single-precision)
* SRCB (single-precision)
FDMUL DEST (double-precision) <-SRCA {single-precision)
* SRCB (single-precision)
DMUL DEST (double-precision) <-SRCA (double-precision)
* SRCB (double-precision)
FDIV DEST (single-precision) <-SRCA (single-precision)/
SRCB (single-precision)
DDIV DEST (double-precision) <-SRCA (double-precision)/
SRCB (double-precision)
FEQ IF SRCA (singls-precision) = SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DEQ IF SRCA (double-preacision) = SRCB (double-precision))
THEN DEST <-TRUE
ELSE DEST <-FALSE
FGE IF SRCA (single-precision) >= SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DGE IF SRCA (double-precision) >= SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE .2
SQRT DEST (single-precision, double-precision, extended-precision) -
<-SQRT[SRCA (single-precision, doubla-precision, extended-precision)}
CONVERT DEST (integer, single-precision, double-precision)
<-SRCA (integer, single-pracision, double-precision)
CLASS DEST (single-precision, double-precision, extended-precision)
<-CLASS[SRCA (single-precision, double-pracision, extended-precision)}

Figure 37. Floating-Polnt Instructions

Am29005 Microprocessor 45

ADVANCED MICRO DEVICES

P T e TXERRreal o TR AL e e tenae i e ol BB ATAE bt e e o -

28E D WM 0257525 0033256 T AMD

.aAMD

ADVANCE INFORMATION T-49-17-32
Mnemonlc Operatlon Description
CALL DEST <-PC//00 + 8
PC <-TARGET
Execute delay instruction
CALLI DEST <-PC/00 + 8
PC <-SRCB
Execute delay instruction
JMP PC <-TARGET
Exacute delay instruction
JMPI PC <-SRCB
Execute delay instruction
JMPT IF SRCA = TRUE THEN PC <-TARGET
Execute dslay instruction
JMPTI IF SRCA = TRUE THEN PC <-SRCB
Execute delay instruction
JMPF IF SRCA = FALSE THEN PC <-TARGET
Execute delay instruction
JMPFI IF SRCA = FALSE THEN PC <-SRCB
Execute delay instruction
JMPFDEC IF SRCA = FALSE THEN
SRCA <-SRCA -1
PC <-TARGET
ELSE
SRCA <-SRCA -1
Execute delay instruction
Figure 38. Branch Instructions
Mnemonic Operation Description
cLz Determine number of leading 0s in a word
SETIP Set IPA, IPB, and IPC with operand register numbers
EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)
IRET Perform an Interrupt return sequence
HALT Enter Halt mode on next cycle

Figure 39. Miscellaneous Instructions

Am29005 Microprocessor

ADVANCED MICRO DEVICES

ADVANCE INFORMATION T-49- 17:3_2- AMDu

28E D

The relevant operation codes and the corresponding
trap vectors are:

Operation Codes Trap Vector
{hexadeclmal) Numbers (decimal)
D8-DD 24-29
E7-E9 39-41
F8 56
FA-FF 58-63

These Instructions are intended for future processor
enhancements, and users desiring compatibility with fu-
ture processor versions should not use them for any
purpose.

The Am29000 microprocessor Instructions Move To
TLB (op code BE), Move From TLB (B6), Invalidate (3F),
and Interrupt Return and Invalidate (86) are reserved in
the Am29005 microprocessor. However, for compatibil-
ity with the Am29000 microprocessor, these are not
defined as illegal instructions. An attempted execution
of any of these instructions in the User mode causes
a Protection Violation trap, because they are privileged
in the Am29000 microprocessor. When executed in
Supervisor mode:

B the Move To TLB instruction has no effect;

® the Move From TLB instruction places anundefined
value in the destination register;

the Invalidate instruction has no effect;

B the Interrupt Return and Invalidate instruction is
equivalent to an Interrupt Return instruction.

DATA FORMATS AND HANDLING

This section describes the various data types supported
by the Am29005 microprocessor, and the mechanisms
for accassing data in external devices and memories.
The Am29005 microprocessor Includes provisions for
the external access of bytes, half-words, unaligned
words, and unaligned half-words, as described in this
section.

Integer Data Types

Most Am29005 microprocessor instructions deal di-
rectly with word-length integer data; integers may be
either signed or unsigned, depending on the instruction.
Some instructions (e.g., AND) treat word-length oper-
ands as strings of bits. in addition, there is support for
character, half-word, and Boolean data types.

Byte Operations

The processor supports character data through load,
store, extraction, and insertion operations on word-
length operands, and by a compare operation on byte-
length fields within words. The format for unsigned and
signed characters is shown in Figure 40; for signed
characters, the sign bit is the most-significant bit of the
character. For sequences of packed characters within
words, bytes are ordered either left-to-right or right-to-
left, depending on the BO bit of the Contfiguration Regis-
ter (see Special Floating-Point Values section).

If the Data Width Enable (DW) bit of the Configuration
Register is 1, the Am29005 microprocessor is enabled
to load and store byte data. On a load, an external
packed byte isconvertedto one of the characterformats
shown in Figure 40. On a store, the low-order byte of a
word is packed into every byte of an external word. The
External Data Accesses section describes externatbyte
accesses in more detail.

The Extract Byte (EXBYTE) instruction replaces the
low-order character of a destination word with an arbi-
trary byte-aligned character from a source word, Forthe
EXBYTE instruction, the destination word canbe a 0
word, which effectively 0-extends the character frorn the
source operand.

The Insert Byte (INBYTE) instruction replaces an arbi-
trary byte-aligned character in a destination word with
the low-order character of a source word. For the IN-
BYTE instruction, the source opérand ¢an be a charac-
ter constant specitied by the instruction.

Unslgned

7 0
IIIIIIIIIIIIIIIIIIIIIIlHIHH
0000000000000000C00O0O0O0O0COOQO data
SIQned

7 0
IIIIIIIIIIIIIIIIIIHIII NERE
$ 88 S S8 S S8 SS9 S8 S S S S 888 S S S SIS data

Figure 40. Character Format

Am28005 Microprocessor 47

BN 0257525 0033257 1 EM AMD

ADVANCED MICRO DEVICES

NAMD ADVANCE

INFORMATION

[EPURP SEOvSUS S

T-49-17-32

The Compare Bytes (CPBYTE) instruction compares
two word-length operands and gives a result of True if
any corresponding bytes within the operands have
equivalent values. This allows programs to detect char-
acters within words without first having to extract individ-
ual characters, one at a time, from the word of interest.

Half-Word Operations

The processor supports half-word data through load,
store, insertion, and extraction operations on word-
length operands. The format for unsigned and signed
half-words is shown in Figure 41; for signed half-words,
the sign bit is the most-significant bit of the half-word.
For sequences of packed half-words within words, half-
words are ordered either left-to-right or right-to-left, de-
pending on the Byte Order (BO) bit of the Configuration
Register (see Addressing and Alignment section).

It the Data Width Enable (DW) bit of the Contiguration
Register is 1, the Am29005 microprocessor is enabled
to load and store half-word data. On a load, an external
packed half-word is converted to one of the formats
shown in Figure 41. On a store, the low-order half-word
of a word is packed into every half-word of an external
word. N

The Extract Half-Word (EXHW) instruction replaces the
low-order half-word of a destination word with either the
low-order or high-order half-word of a source word. For
the EXHW instruction, the destination word canbe a 0
word, which effectively 0-extends the haif-word from the
source operand.

The Extract Half-Word, Sign-Extended (EXHWS) in-
struction Is similar to the EXHW instruction, except that
it sign-extends the half-word in the destination word
(i.e., it replaces the most-significant 16 bits of the desti-
nation word with the most-significant bit of the source
half-word).

The Insert Half-Word (INHW) instruction replaces either
the low-order or high-order half-word in a destination
word with the low-order half-word of a source word.

Boolean Data

Some instructions in the Compare class generate word-
length Boolean results. Also, conditional branches are

conditional upon Boolean operands. The Boolean for-
mat used by the processor is such that the Boolean
values True and False are represented by a 1 or 0,
respectively, In the most-significant bit of a word. The
remaining bits are unimportant; for the compare instruc-
tions, they are reset. Note that twos-complement
negative integers are indicated by the Boolean value
True In this encoding scheme.

Floating-Point Data Types

The Am23005 microprocessor defines single- and dou-
ble-precision tloating-point formats that comply with the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSV/IEEE Std. 754-1985). These dala types are not
supported directly in processor hardware, but canbe im-
plemented by a virtual floating-point interface provided
in the Am29005 microprocessor.

Inthis section, the following nomenctature is used to de-
note fields in a floating-point value:

® g sign bit

® bexp: biased exponent

® frac: fraction

B sig: significand

Single-Precision Floating-Point

The format for a single-precision floating-point value is
shown in Figure 42.

Typically, the value of a single-precision operand is ex-
pressed by:

(-1)**s* 1.frac * 2**(bexp—127).

The encoding of special floating-point values is given in
the Special Floating-Point Values section.

Double-Precision Floating-Point

The format for a double-precision ﬂoaling-poihi value is
shown in Figure 43. -

Unslgned: :
31 23 15 7 0
FTTEETTTTTTTIT T T I T T I I I T T i ITT
0000000000D0O0CO0OOO data
Signed:
31 23 15 - 7 0
FRTETETTTTTTTT FTTTTTTTTITTT
$§ S 3885 S S5 S8 8 S8 s s s s]s data

Figure 41. Half-Word Format

Am28005 Microprocessor

c8E D MW 0257525 0033258 3 W AMD

e pe e

ADVANCED MICRO DEVICES

PSP s i e ey S —— = r——

28E D WM 0257525 0033259 5 W AMD
ADVANCE INFORMATION AMD
31 23 : _15 7 _ 0 ‘T'49’1_7'3‘.2 i
TTTTTTIPTTIT I I I eer et vl ~
s bexp frac
Flgure 42. Single-Precislon Floating-Point Format
31 23 15 7 [
FTTTTTIITT P e T e i i e rbett
s bexp frac... 0
HRRERERRERRRRERRRRRRR R
...frac 1

Figure 43. Double-Precision Floating-Polnt Format

Typically, the value of a double-precision operand is ex-
pressed by:

(~1)**s * 1.frac * 2**(bexp~—1023).
The encoding of special floating-point values is given in
the Special Floating-Point Values section.

In order to be properly referenced by a floating-point
instruction, a double-precision floating-point value must

be double-word aligned. The absolute register number -

of the register containing the first word (labeled “0” in
Figure 43) must be even. The absolute register number
of the register containing the second word (labeled “1”in
Figure 43) must be odd. if these conditions are not met,
the results of the instruction are unpredictable. Note that
the appropriate registers for a double-pracision value
in the local registers depend on the value of the Stack
Pointer.

Special Floating-Point Values

The Am29005 microprocessor defines floating-point
values that are encoded for special interpretation. The
values are described in this section.

Not-a-Number

A Not-a-Number (NaN) is a symbolic value used to re-
port certain floating-point exceptions. it also can be
used to implement user-defined extensions to floating-
point operations. A NaN comprises a floating-point
number with maximum biased exponent and non-zero
fraction. The sign bit can be either 0 or 1 and has no
significance. There are two types of NaN: signaling
NaNs and quiet NaNs. A signaling NaN causes an Inva-
lid Operation exception if used as an input operand to a
floating-point operation; a quiet NaN does not cause an
exception. The Am29005 microprocessor distinguishes
signaling and quiet NaNs by the most-signiticant bit of
the fraction: a 1 indicates a quiet NaN, and a 0 indicates
two signaling NaN.

An operation never generates a signaling NaN as a re-
sult. A quiet NaN result can be generated in one of two
ways:

B astheresult of aninvalid operationthat cannot gener-
ate a reasonable result, or

u asthe result of an operation for which one or more in-
put operands are either signaling or quiet NaNs.

Ineithercase, the Am29005 microprocessor produces a
quiet NaN having a fraction of 11000...0; that is, the
two most-significant bits of the fraction are 11, and the
remaining bits are 0. If desired, the Reserved Operand
exception canbe enabled to cause a Floating-Point Ex-
ception trap. The trap handler in this case can imple-
ment a scheme whereby user-defined NaN values ap-
pear to pass through operations as results, providing
overall status for a series of operations.

Infinity

Infinity is an encoded value used to represent a value
that is too large to be represented as a finite number in
a given floating-point format. Infinity comprises a float- i
ing-point number with maximum biased exponent and v
zero fraction. The sign bit of an infinity distinguishes +e

from ~oo,

Denommalized Numbers

The IEEE Standard specifies that, wherever possible, a
result thatis too small to be represented as a normalized
number be represented as a denormalized number. A
denormalized number may be used as aninput operand
to any operation. For single- and double-precision for-
mats, a denormalized number comprises a floating-
point number with a biased exponent of zero and a non-

Am29005 Microprocessor 49

ADVANCED MICRO DEVICES
AMD ADVANCE

28E D

T 02 0 Y

zero fraction field; the sign bit can be either 1 or 0. The
value of a denormalized number is expressed by:

(-1)**s * O.frac * 2**(-bias +1),

where ‘bias” is the exponent bias for the format in
question.

Zero

A zero comprises a floating-point number with a biased
exponent of zero and a zero fraction field. The sign bit of
azero can be either 0 or 1; however, positive and nega-
tive zero are both exactly zero, and are considered
equal by comparison operations.

External Data Accesses

All processor external accesses occur between
general-purpose registers and external devices and
memories. Accesses occur as the result of the execu-
tion of load and store instructions. The load and store in-
structions specify which general-purpose register re-
ceives the data (for a load) or supplies the data (for a
store). The format of the load and store instructions is
shown in Figure 44.

Addresses for accesses are given either by the content
of a general-purpose register or by a constant value
specified by the load or store instruction. The load and
store Instructions do not perform address computation
directly. Any required address computations are per-
formed explicitly by other instructions.

Inthe load or store instruction, the Coprocessor Enable
(CE) bit (bit 23) determines whether or not the access Iis
directed to the coprocessor. If the CE bit is 0, the access
Is directed to an external device or memory. If the CE bit
Is 1, data Is transferred to or from the coprocessor. The

CE bit affects the interpretation of the Control (CNTL)
field as well as the channel protocol. This section deals
with all external accesses other than coprocessor
accesses.

The format of the instructions that do not perform
coprocessor data transfers (i.e., in which the CE bit is 0)
is shown in Figure 45.

Inload and store instructions, the “RB or I field specifies
the address for access. The address is either the con-
tent of a general-purpose register, with register number
RB, or a constant with a value | (zero-extended to 32
bits). The M bit determines whether the register or the
constant is used.

The data for the access is written into the general-

purpose register RA for a load, and is supplied by regis-
ter RA for a store.

The definitions for other fields in the load or store in-
struction are given below:

Bit 23: Coprocessor Enable (CE)—The CE bit is 0 for
a non-coprocessor load or store.

Bit 22: Address Space (AS)—If the AS bit is 0 for an
untranslated load or store, the access is directed to in-
struction/data memory. If the AS bit is 1 for an untrans-
lated load or store, the access is directed to input/output.
The AS bit must be 0 for a translated load or store; if the
ASbitis 1 for atranslated load or store, a Protection Vio-
lation trap occurs.

Bit 21—Reserved.

Bit 20: Set Byte Pointer/Sign Bit (SB)—If the Data
Width Enable (DW) bit of the Configuration Register is 0
and the SB bit is 1, the Byte Pointer Register is written

0

31 23
RERRERRERERRRR

XXXXXX XM CNTL

5
FITTTT

7
RERRR

RA RBorl

CE

Flgure 44. Load/Store Instruction Format

23

31
RERRRR [

XXXXXXXMO0 OPT

15 7 0
FTTETTEPTTTTTTd

RA RBorl

i
CEE'Res: UA
Ll

AS SB

Figure 45. Non-Coprocessor Load/Store Format

50 Am29005 Microprocessor

B 0257525 0033260 1 WM AMD
INFORMATION

ADVANCED MICRO DEVICES

ADVANCE

28E D BE 0257525 00332kl 3 WM AMD
INFORMATION AMD‘_;_‘

with the two least-significant bits of the address for the
access. These address bits can control subsequent
character and haif-word operations. If the BP bitis 0, the
Byte Pointer Register Is not affected.

If the Data Width Enable (DW) bit of the Configuration
Register is 1 and the SB bit is 1 for a load, the loaded
byte or half-word is sign-extended inthe destination reg-
ister; if the SB bit is 0, the byte or half-word is 0-ex-
tended. If the DW bit is 1 and the SB bit is 1 for either a
load or store, then each bit of the Byte Pointer Register
Is written with the complement of the Byte Order bit of
the Configuration Register. The Byte Pointer Register is
set in this case 1o provide software compatibility across
different types of memory systems. if the SB bitis 0, the
Byte Pointer Register is not affected.

Bit 19: User Access (UA)—The UA bit allows pro-
grams executing in the Supervisor mode to emulate
User-mode accesses. This allows checking of the
authorization of an access requested by a User-mode
program.

lfthe UAbitis 1 for a Supervisor-mode load or store, the
access associated with the instruction is performed in
the User mode. In this case, the User mode affects only
the SUP/US output; it has no effect on the registers that
can be accessed by the instruction. If the UA bit is 0, the
program mode for the access is controlled by the SM bit.

It the UA bit is 1 for a User-mode load or store, a Protec-
tion Violation trap occurs.

Bits 18-16: Optlon (OPT)—This field is placed on the
OPT=—OPTo outputs during the address cycle of the ac-
cess. There is a one-to-one correspondence between
the OPT field and the OPT=OPTo outputs; that is, the
most-significant OPT bit is placed on OPTz, and so on.

The OPT field controls system functions as described
below.

Bits 15-8: (RA)}—The data for the access is written into
the general-purpose register RA for a load, and is sup-
plied by register RA for a store.

Bits 7-0: (RB or [}—In load and store instructions, the
“RB or |" field specifies the address for the access. The
address Is either the content of a general-purpose reg-
ister with register number RB, or a constant value | (0-
extended to 32 bits). The M bit of the operation code (bit
24) determines whether the register or the constant is
used.

Load and store operations are overlapped with the exe-
cution of instructions that follow the load or store instruc-
tion. Only one load or store may be in progress on any
given cycle. If aload or store instruction Is encountered
while another load or store operation is in progress, the
processor enters the Pipeline Hold mode until the first
operation Is completed. However, the address for the
second operation may appear on the address bus if the
first operation is to a device or memory that supports
pipelined operations (see Pipelined Accesses section).

Load Operations T"49-T7;-32

The processor provides the following instructions for
performing load operations: Load (LOAD), Load and
Lock (LOADL), Load and Set (LOADSET), and Load
Muttiple (LOADM). All of these instructions transterdata
from an external device or memory into one or more
general-purpose registers.

The LOADL instruction supports the implementation of
device and memory interlocks in a multiprocessor con-
figuration. It activates the LOCK output during the ad-
dress cycle of the access.

The LOADSET Iinstruction implements a binary sema-
phore. it loads a general-purpose register and automati-
cally writes the accessed location with a word that has 1
in every bit position (that is, the write is indivisible from
the read). The LOCK output is asserted during both the
read and write accesses.

The LOADM loads a specified number of registers from
sequential addresses, as explained below.

Load operations are overlapped with the execution of In-
structions that foliow the load instruction, The processor
detects any dependencies on the loaded data that sub-
sequent instructions may have, and, if such a depen-
dency is detected, enters the Pipeline Hold mode until
the data are returned by the external device or memory.
If a register that is the target of an incomplete load is
written with the result of a subsequent instruction, the
processor does not write the returning data into the reg-
ister when the load is completed; the Not Needed (NN)
bit in the Channel Control Register is set-in this case.

Store Operatlons

The processor provides the following instructions for
performing store operations: Store (STORE), Store and -
Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more
general-purpose registers to an external device or
memory.

The STOREL instruction supports the implementation
of device and memory interlocks in a multiprocessor
configuration. It activates the LOCK output during the
address cycle of the access.

The STOREM instruction stores a specified number of
registers to sequential addresses, as explained below.

Store operations are overlapped with the execution of
instructions that follow the store instruction. However,
no data dependencies can exist since the store prevents
any subsequent accesses until it is completed.

Multiple Accesses

Load Multiple (LOADM) arid Store Multiple (STOREM)
instructions move contiguous words of data between
general-purpose registers and external devices and
memories. The number of transfers is determined by the
Load/Store Count Remaining Register,

Am29005 Microprocessor 51

ADVANCED MICRO DEVICES

&X avD ADVANCE

The Load/Store Count Remaining (CR) field in the Load/
Store Count Remaining Register specifies the number
of transfers to be performed by the next LOADM or
STOREM executed inthe instruction sequence. The CR
fiekd Is in the range of 0 to 255 and is 0-based; a count
value of 0 represents one transfer, and a count value of
255 represents 256 transfers. The CR field also appears
in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field
Is set by a Move To Special Register. A LOADM or
STOREM uses the most recently written value of the CR
fleld. if an attempt is made to alter the CR field and the
Channel Control Register contains information for an
external access that has not yet been completed, the
processor enters the Pipeline Hold mode until the
access is completed. Note that since the CR is set inde-
pendently of the LOADM and STOREM, the CR field
may represent a valid state of an interrupted program
even it the Contents Valid (CV) bit of the Channel
Control Register is 0.

Because of the pipelined implementation of LOADM
and STOREM, at least one instruction (e.g., the instruc-
tion that sets the CR field) must separate two succes-
sive LOADM and/or STOREM instructions.

After the CR field Is set, the execution of a LOADM or
STOREM begins the data transfer. As with any other
load or store operation, the LOADM or STOREM waits
until any pending load or store operation is complete
before starting. The LOADM instruction specifies
the starting address and starting destination general-
purpose register. The STOREM instruction specifies the
starting address and the starting source general-
purpose register.

During the execution of the LOADM or STOREM
Instruction, the processor updates the address and reg-
Ister number after every access, incrementing the
address by four and the register number by one. This
continues until elther all accesses are completed or an
inter-rupt or trap is taken.

ForaLoad Muitiple or Store Multiple address sequence,
addresses wrap from the largest possible vatue (hexa-
decimal FFFFFFFC) to the smallest possible value
(hexadecimal 00000000).

The processor increments absolute register numbers
during the Load Multiple or Store Multiple sequence. Ab-
solute register numbers wrap from 127 to 128, and from
255 to 128. Thus, a sequence that begins in the global
registers may make atransition to the local registers, but
a sequence that begins in the local registers remains in
the local registers. Also, note that the local registers are
addressed circularly.

The normal restrictions on register accesses apply for
the Load Multiple and Store Multiple sequences. For ex-
ample, if a protected general-purpose register is en-
countered in the sequence for a User-mode program, a
Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Ad-
dress Register, and register numbers are stored in the
Target Register (TR) field of the Channel Control Regis-
ter. For the STOREM instruction, the data for every
access is stored in the Channel Data Register (this
register also is set during the execution of the LOADM
instruction, but has no interpretation in this case), The
CRfield is updated onthe completion of every access so
thatitindicates the number of accesses remaining inthe
sequence.

Load Multiple and Store Multiple operations are indi-

cated by the Multiple Operation (ML) bit in the Channel
Control Register. This bit may be 1 even though the CR
field has a value of 0 (indicating that one transfer
remains to be performed). The ML bit is used to restart a
multiple operation on an interrupt return; if it is set
independently by a Move To Special Register before a
load or store instruction is executed, the results are
unpredictable.

While a muttiple load or store is executing, the processor
is in the Pipeline Hold mode, suspending any subse-
quent instruction execution until the multiple access is
completed. If an interrupt or trap is taken, the Channel
Address, Channel Data, and Channel Control registers
contain the state of the multiple access at the point of in-
terruption. The multiple access may be resumed at this
point, at a later time, by an interrupt return.

The processor attempts to complete multiple accesses
using the burst-mode capability of the channel (see
Burst-Mode Accesses section). For this reason, multiple
accesses of individual bytes and halt-words are not sup-
ported. If the burst-mode dccess is preempted, the pro-
cessor retransmits the address at the point of preemp-
tion. If the external device or memory cannot support
burst-mode accesses, the processor transmits an ad-
dress for every access.

The last load or store is executed as a simple accéss.
The processor will preempt burst-mode transfer imme-
diately prior to the last word of the transfer.

Option Bits)

The Option field in the load and store instructions sup-
ports system functions, such as byte and half-word ac-
cesses. The definition of this field for a load or store, de-
pending on the AS bit of the instruction, is as follows:

AS OPT. OPT; OPT, Meaning

X 0 0 0 Word-length access

X 0 0 1 Byte access

X 0 1 0 Half-word access

0 1 0 0 Instruction ROM
access (as data)

[1 0 1 Cache control

0 1 1 0 hardware-development
system accesses

-all others - Reserved

52 Am29005 Microprocessor

28E D WE 0257525 00332L2 5 WA AMD

INFORMATION _T-4

9-17-32

e sy wrt JURCTRR g

Ml 0257525 0033263 7 WR AMD

28E D

ADVANCE INFORMATION T-49-17-32 Avo®A

Note that some of these encodings do not affect proces-
sor operation, and could have other interpretations in a
particular system. For example, the OPT values 000,
001, and 010 affect processor operation only if the DW
bit of the Configuration Register is 1. However, non-
standard uses of the OPT field have an implication on
the portability of software between different systems.

Addressing and Alignment
Address Spaces

External instructions and data are contained in one of
four 32-bit address spaces:

1. InstructiorvData Memory

2. Input/Output
3. Coprocessor
4

. Instruction Read-Only Memory (Instruction
ROM).

Itis possible to partition physical instruction and data ad-
dresses into two separate physical address spaces.

The coprocessor address space is not an address
space in the strictest sense. The coprocessor address
space is defined so that transfers of operands and op-
eration codes to the coprocessor do not interfere with
other external devices and memories.

The processor does not directly support the access of
the instruction ROM address space using loads and
stores; this capability is defined as a system option re-
quiring external hardware.

Bits contained in load and store instructions distinguish
between the instructiorvdata memory, input/output, and
coprocessor address spaces.

For instruction fetches, the ROM Enable (RE) bit of the
Current Processor Status Register distinguishes be-
tweenthe instruction/data and instruction ROM address
spaces.

Byte and Half-Word Addressing

The Am29005 microprocessorgenerates word-oriented
byte addresses for accesses to external devices and
memories. Addresses are word-oriented because
loads, stores, and instruction fetches access words.
However, addresses are byte addresses because they
are sufficient to select bytes packed within accessed
words. Forload and store operations, the processor pro-

. vides means for using the least-significant address bits

to access bytes and half-words within external words.

The selection of a byte within a word is determined by
the two least-significant bits of an address and the Byte
Order (BO) bit of the Configuration Register. The selec-
tion of a half-word within a word is determined by the
next-to-least-signiticant bit of an address andthe BObit.

Figure 46 illustrates the addressing of bytes and half-
words when the BO bit is 0, and Figure 47 lllustrates the
addressing of bytes and half-words when the BO bitis 1.

In Figure 46 and Figure 47, addresses are represented
in hexadecimal notation,

in the processor, the two least-significant bits of an ex-
ternal address can be retlected in the Byte Pointer (BP)
tield of the ALU Status Register when the DW bit of the
Configuration Register is 0. Alternativély, the two least-
significant bits of the address can be used to controlbyte
and half-word accesses whenthe DWbitis 1. The BObit
affects only the interpretation of the BP field and the two
least-significant address bits.

If the BO bit is 0, bytes are ordered within words such
that a 00 in the BP field or in the two least-significant ad-
dress bits selects the high-orderbyte of aword, and a 11
selects the low-order byte. If the BO bitis 1,a 00 in the
BP fiekd or in the two least-significant address bits se-
lects the low-order byte of a word, and a 11 selects the
high-order byte.

If the BO bit is 0, half-words are ordered within words
such that a 0 in the most-significant bit of the BP field or
the next-to-least-significant address bit selects the high-
order hatf-word, and a 1 selects the low-order half-word.
if the BO bitis 1, a 0 in the most-significant bit of the BP
tield or the next-to-least-significant address bit selects
the low-order half-word of a word, and a 1 selects the
high-order half-word. Note that since the least-signifi-
cant bit of the BP field or an address does not participate
in the selection of half-words, the alignment of half-
words is forced to half-word boundaries in this case.

Alignment of Words and Half-Words

Since only byte addressing is supported; it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or hal-word. The
Am29005 microprocessor either ignores or forces align-
ment in most cases. However, some systems may re-
quire that unaligned accesses be supported for com-
patibility reasons. Because of this, the Am29005 micro-
processor provides an option that creates atrapwhen a
nonaligned access is attempted. This trap allows soft-
ware emulation of the non-aligned accesses in a man-
ner that is appropriate for the particular system.

The detection of unaligned accesses is activated by a 1
in the Trap Unaligned Access (TU) bit of the Currént
Processor Status Register. Unaligned access detection
is based onthe data length as indicated by the OPT field
of a load or store instruction, and on the 2 least-signifi-
cant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; align-
ment is ignored for input/output accesses and copro-
cessor transfers.

An Unaligned Access trap occurs only if the TU bitis 1
and any of the following combinations of OPT field and

Am29005 Microprocessor 53

ADVANCED MICRO DEVICES 24E D WM 0257525 0033264 9 W AMD

O

HAMD ADVANCE INFORMATION T—49-17—_3__2
31 23 15 7 0
EEREERREERRERRERRRERERRERER
Word 00000000
Half-Word 00000000 Half-Word 00000002
Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003
RERRERERRRRRRRRRRNERRRRRR R
Word 00000004
Half-Word 00000004 Halt-Word 00000006
Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007
;
]
HERRERRRRERERRERERREEREREEEEE D
Word FFFFFFF8
Half-Word FFFFFFF8 Half-Word FFFFFFFA
Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Half-Word FFFFFFFC Half-Word FFFFFFFE
Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF
Figure 46. Byte and Halt-Word Addressing with BO = 0
31 23 15 7 0
HERREERRRRRRRRRRRRERERRREEEEE
Word 60000000
Half-Word 00000002 Half-Word 00000000
Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000
IIIIIIIIIIIIIIIIII4IIIIIII|I|III
Half-Word 00000008 Half-Word 00000004
Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004
:
[]
NERERERRREERERRERRRERREEEEEREEN
Word FFFFFFF8
Half-Word FFFFFFFA Halt-Word FFFFFFF8
Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFF9 Byte FFFFFFF8
IIIIIIIIIIIIIIIIIIHIIIIIIIIIII
Word FFFFFF
Half-Word FFFFFFFE Half-Word FFFFFFFC
Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

Figure 47. Byte and Half-Word Addressing with BO = 1

Am29005 Microprocessor

ADVANCED MICRO DEVICES

28E D

ADVANCE INFORMATION T-49-17-32 Awpfbd

address bits is detected for a load or store to instruction/
data memory:

OPT, OPT, OPT, A, A,
0 0 0 1 0 Unaligned
0 [} 0 0 1 word access
0 0 0 1 1
0 1 0 0 1 Unaligned
0 1 0 1 1 half-word access

The trap handler for the Unaligned Access trap Is
responsible for generating the correct sequence of
aligned accesses and performing any necessary shift-
ing, masking and/or merging. Note that a virtual page-

_ boundary crossing also may have to be considered.

Alignment of Instructions

In the Am29005 microprocessor, all instructions are 32
bits in length, and are aligned onword-address bounda-
rles. The processor's Program Counter is 30 bits in
length, and the least-significant 2 bits of processor-
generated instruction addresses are always 00. An un-
aligned address canbe generated by indirect jumps and
calls. However, alighment is ignored by the processorin
this case, and it expects the system to force alignment
(l.e., by interpreting the 2 least-significant address bits
as 00, regardless of their values).

Accessing Instructions as Data

To ald the external access of instructions and data on
separate buses, the processor distinguishes between
instruction and data accesses. In systems where it is
necessary to access instructions as data, this function
should be performed via the shared address space. The
OPT field provides a means for loads to access instruc-
tions in the instruction read-only memory (ROM) ad-
dress space. The Am29005 microprocessor does not
take any actionto prevent a store to the instruction ROM
address space.

Byte and Half-Word Accesses

The Am29005 microprocassor can perform byte and
half-word accesses In either software or hardware un-
der control of the Data Width Enable (DW) bit of the
Configuration Register. Software byte and half-word ac-
cosses are selected by a DW bit of 0, and hardware byte
and half-word accesses are selected by a DW bit of 1.
Software byte and half-word accesses are less efficient
than hardware byte and half-word accesses, but hard-
ware accesses require thatthe system be able to selec-
tively write individual byte and half-word positions within
external devices and memories. The software-only
technique Is compatible with systems designed to pro-
vide hardware support for byte and half-word accesses.

This section describes the operation of both software
and hardware byte and half-word accesses. Byte and
half-word accesses operate as described here for mem-
ory and input/output accesses, but not for coprocessor

transfers. Coprocessor transfers are unafected by the
DW bit.

The DW bit is cleared by a processor reset. It must ex-
plicitly be set to 1 by software before hardware byte and
half-word accesses can be performed.

Software Byte and Hal{-Word Accesses

if the DW bit is 0, the Am29005 microprocessor allows
the Byte Pointer Register to be set with the least-signifi-
cant bits of an address specified by any load or store in-
struction, except those that transfer information to and
from the coprocessor. Insert and extract insfructions
canthenbe usedto access the byte or half-word of inter-
est, after the external word has been accessed. This
provides a general-purpose mechanism for manipulat-
ing external byte and half-word data, without the need
for extenal hardware support.

To foad a byte or half-word, a word foad is first per-
formed. This load sets the BP field with the 2 least-
significant bits of the address. A subsequent EXBYTE,
EXHW, or EXHWS instruction extracts the byte or half-
word of interest from the accessed word.

To store a byte or half-word, a load is first performed,
setling the BP field with the 2 least-significant bits of the
address. A subsequent INBYTE or INHW instructionin-
serts the byte or half-word of interest into the accessed
word, and the resulting word is then stored.

Software that relies on loads and stores setting the BP
field cannot operate correctly when the Freeze (F2) bit
of the Current Processor Status Register is 1, because
the ALU Status Register is frozen. -

Hardware Byte and Half-Word Accesses

If the DW bit is 1 on a load, the Am29005 microproces-
sor selects a byte or half-word from the loaded word de-
pending onthe Option (OPT) bits of the foad instruction,

_the Byte Order (BO) bit of the Configuration Register,

and the 2 least-significant bits of the address (for bytes)
or the next-to-least-significant bit of the address (for
half-words). The selected byte or half-word is right-justi-
fied within the destination register. if the SB bit of the
load instruction is 0, the remainder of the destination
register is 0-extended. if the SB bitis 1, the remainder of
the destination register is sign-extended with the signbit

of the selected byte or half-word. :

If the DW bit is 1 on a store, the Am29005 microproces-
sor replicates the low-ordér byte or haif-word in the
source register into every byte and half-word position of
the stored word. The system is responsible for generat-
ing the appropriate byte and/or half-word strobes, based
on the OPT=-OPTo signals and the 2 least-significant
bits of the address, to write the appropriate byte or half-
word inthe selected device or memory (the systembyte
order must also be considered). The SB bit does not af-
fect the operation of a store, except for setting the BP
field as described below.

Am29005 Microprocessor 55

B 0257525 0033265 0 WM AMD

ADVANCED MICRO DEVICES
o ADVANCE

26E D WM 0257525 003326k 2 M AMD
INFORMATION

Ifthe SBbitis 1 for either aload or store and the DW bitis
also 1, both bits of the BP field are set to the complement
of the BO bit when the load or store is executed. This
does not directly affect the load or store access, but sup-
ports compatibility for software developed for word-
write-only systems. Hardware byte and half-word
accesses—in contrast to software byte and half-word
accesses—can be performed when the FZ bit is 1,
because these accesses do not rely on the BP field.

System Alternatives and Compatibllity

The two mechanisms for performing byte and half-word
accesses create the possibility of two types of systems.
These are named for convenience:

B Type 1. simple, word-only accesses in external de-
vices and memories; software byte and half-word ac-
€esses.

B Type 2: byte/half-word strobes in extemnal devices
and memories; hardware byte and half-word ac-
cesses by the Am29005 microprocessor.

The provision for hardware byte and half-word accesses
encourages Type 2 systems. Software for Type 1 sys-
tems can execute on Type 2 systems, but the reverse is
not true. Software compatibility is possible primarily be-
cause of the DW bit and because the Am29005 micro-
processor sets the BP field with an appropriate byte
pointer even when it performs byte and half-word ac-
cesses with internal hardware. Also, the system must
return a full word in either type of system, regardless of
the access data-width. The DW bit must be 0 in Type 1
systems and must be 1 in Type 2 systems. To illustrate
compatibility between systems, consider the following
steps of an unsigned byte load compiled for a Type 1
system, but executing on a Type 2 system:

1. Perform a load with OPT=001 and SB=1.

B Type 1 system: The addressed word is ac-
cessed and placed into the destination regis-
ter. The BP field is set with the 2 least-signifi-
cant bits of the address.

B Type 2 system: The addressed byte is ac-
cessed, aligned, padded, and placed into the
destinationregister. The BP tield is setto point
to the low-order byte, reflecting the alignment
that has been performed (the pointer depends
on the value of the BO bit).

2. Perform a byte extract on the loaded word.

B Type 1 system: The byte selected by the BP
field Is aligned to the low-order byte of the des-
tination reglister and the remainder of the word
is 0-extended. The selected byte may be in
any byte position.

, T-49-17-32

® Type 2 system: The byte selected by the BP
field (set to point to the low-order byte) Is
aligned to the low-order byte of the destination
register and the remainder of the word is 0-ex-
tended. (Note that the selected byte was al-
ready in the low-order byte position. This op-
eration does not change the program state but
merely allows software compatibility.)

The recommended instruction sequences for all types of
byte and half-word accesses and for both types of sys-
tems are enumerated below. Compatibility between
these systems follows the above example, but for brev-
ity, compatibility is not described in detail here.

Byte read, unsigned:

Type 1 Comments

toad 0,17 temp,addr ; OPT =001, SB=1

exbyte temp,temp,0 ; get byte

Type 2 Comments

load 0,1,temp,addr ; OPT=001,5B=0
Byte read, signed:

Type 1 Comments

load 0,17,temp,addr ; OPT=001, SB=1
exbyte temp,temp,0 ; get byte

sil temp,temp,24 ; Sign extend

sra temp,temp,24

Type 2 Comments

load 0,17 temp,addr ; OPT=001,SB=1

. (sign extended)

Byte Write:

Type 1 Comments

load 0,17 temp,addr ; OPT=001,SB=1

inbyte temp,temp, ; insert byte

data

store 0,1,temp,addr ; store

Type 2 Comments

store 0,1,data,addr ; OPT=001,SB=0

56 Am28005 Microprocessor

ADVANCED MICRO DEVICES ° cdE D WM 0257525 0033267 4 WM AMD

ADVANCE INFORMATION T-49-17-32

AMD n

Half-word read, unsigned:

is taken when the processor recognizes the interrupt or
trap and alters its behavior accordingly.

Type 1 Comments
load 0,18 temp,addr ; OPT=010, SB=1 Interrupts ,
exhwtemp,temp,0 ;get half-word un- Interrupts are caused by signals applied to any of the ex-
signed ternal inputs INTR—-INTRo, or by the Timer Facility. The
: processor may be disabled from taking certain inter-
Type 2 Comments rupts by the masking capability provided by the Disable
) All interrupts and Traps (DA) bit, Disable Interrupts (Di)
Q load 0,2,temp,addr ; OPT=010,SB=0

Half-word read, signed:

bit, and Interrupt Mask (iM) field in the Current Proces-
sor Status Register.

" The DA bit disables all interrupts and mosttraps. The DI

bit disables external interrupts without affecting the rec-

ognition of traps and Timer interrupts. The 2-bit IM field
Type Comments selectively enables external interrupts as follows:
load 0,18,temp,addr ; OPT=010, SB=1
exhws temp,temp ; get hali-word sign- M Value Resuft
extend
00 INTR; enabled
01 INTR,-INTR, enabled
Type 2 Comments 10 TNTR-INTR, enabled
load 0,18,temp,addr ; OPT=010,SB=1 11 TNTR~INTH, enabled
(sign-extend) .
Note that the INTRo interrupt cannot be disabled by the
Half-word write: IM field. Also, note that no external interrupt is taken if
either the DA or Di bit is 1. The Interrupt Pending bit in
Type 1 Comments the Current Processor Status indicates that one or more
of the signals INTRs~INTRe is active, but that the corre-
load 0,18,temp,addr ; OPT=010, SB=1 sponding intenrupt is disabled due to the value of either
« inhw temp,temp,data ; insert half-word DA, DI, or IM.
store 0,2,temp,addr ; store
Type 2 Comments Traps

store 0,2,data,addr ; OPT=010, SB=0

INTERRUPTS AND TRAPS

Interrupts and traps cause the Am29005 microproces-
sorto suspend the execution of an instruction sequence
and to begin the execution of a new sequence. The
processor may or may not later resume the execution of
the original instruction sequence.

The distinction between interrupts and traps Is largely
one of causation and enabling. Interrupts allow extemal
devices and the Timer Facility to control processor exe-
cution, and are always asynchronous to program execu-
tion. Traps are intended to be used for certain excep-
tional events that occur during instruction execution,
and are generally synchronous to program execution.

Throughout this manual, a distinction is made between
the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to
occurwhen all conditions that define the interrupt or trap
are met. Howaever, an interrupt or trap that occurs is not
necessarily recognized by the processor, either be-
cause of various enables or because of the processor's
operational mode (e.g., Halt mode). An interrupt or trap

Traps are caused by signals applied to one of the inputs
TRAP—TRAPo, or by exceptional conditions such as
protection violations. Except for the Instruction Access
Exception, Data Access Exception, and Coprocessor
Exception traps, traps are disabled by the DA bit in the
Current Processor Status; a 1 in the DA bit disables
traps, and a 0 enables traps. it is not possible to selac-
tively disable individuat traps.

Wait Mode

A wait-for-interrupt capability is provided by the Wait
mode. The processor is in the Wait mode whenever
the Wait Mode (WM) bit of the Current Processor Status
is 1. While in Wait mode, the processor neither fetches
nor executes instructions and performs no external
accesses. The Wait mode is exited when an interrupt or
trap is taken.

Note that the processor can take only those interrupts or
traps for which it Is enabled, even in the Wait mode, For
example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via the Reset
mode or a WARN trap. :

Am29005 Microprocessor 57

ST v ——

ADVANCED MICRO DEVIC'ES

o

ADVANCE INFORMATION

T s, o

gt T raeam o Pis =Y SeiSiins B b SiSe st fomimnt amin ceceimn -

1-49-17-32

Vector Area

Interrupt and trap processing rely on the existence of a
user-managed Vector Area in external instruction/data
memory or instruction read-only memory (instruction
ROM). The Vector Area begins at an address specified
by the Vector Area Base Address Register, and pro-
vides foras many as 256 different interrupt andtrap han-
dling routines. The processor reserves 24 routines for
system operation and 40 routines for instruction emula-
tion. The number and definition of the remaining 192
possible routines are system-dependent.

The Vector Area has one of two possible structures as
determined by the Vector Fetch (VF) bit in the Configu-
ration Register. The first structure, as described below,
requires less external memory than the second, but
imposes the performance penalty of the vector-table
lookup.

If the VF bit is 1, the structure of the Vector Areais ata-
ble of vectors in Instruction/data memory. The layout of
a single vector is shown in Figure 48. Each vector gives
the beginning word-address of the associated interrupt
or trap handling routine, and specifies, by the R bit,
whether the routine is contained in instruction/data
memory (R = 0) or instruction ROM (R = 1).

Ifthe VF bitis 0, the structure of the Vector Area is a seg-
ment of contiguous blocks of instructions in instruction/
data memory or instruction ROM. The ROM Vector Area
(RV) bit of the Configuration Register determines
whether the Vector Area is In instruction/data memory
(RV = 0) or instruction ROM (RV = 1). A 64-instruction
block contains exactly one interrupt or trap handling rou-
tine, and blocks are aligned on 64-instruction address
boundaries.

Vector Numbers

When an interrupt or trap is taken, the processor deter-
mines an 8-bit vector number assoclated with the inter-
rupt or trap. The vector number gives either the number
of a vactor table entry or the number of an instruction
block, depending on the value of the VF bit.

Itthe VF bitis 1, the physical address of the vector table
entry Is generated by replacing bits 9-2 of the value in
the Vector Area Base Address Register with the vector
number.

If the VF bit is 0, the physical address of the first instruc-
tion of the handling routine is generated by replacing bits
15-8 of the value In the Vector Table Base Address
Register with the vector number.

Vector numbers are either predefined or specified by an
instruction causing the trap. The assignment of vector
numbers Is shown In Figure 49 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use
by trapping instructions; the definition of the routines as-
soclated with these numbers is system-dependent.

Interrupt and Trap Handling

Interrupt and trap handling consists of two distinct op-
erations: taking the interrupt or trap, and returning from
the interrupt or trap handler. If the interrupt or trap
handler retums directly to the interrupted routine, the
interrupt or trap handler need not save and restore
processor state.

Taking an Interrupt or Trap

The following operations are performed in sequence by
the processor when an interrupt or trap is taken;

1. Instruction execution is suspended.
2. Instruction fetching is suspended.
3. Any in-progress load or store operation is com-

pleted. Any additional operations are canceled

in the case of Load Multiple and Store Muitiple.

4. The contents of the Current Processor Status
Register are copied into the Old Processor
Status Register.

5. The Current Processor Status register is modi-
fied as shown in Figure 50 (the value “u” means
unaffected). Note that setting the Freeze (FZ) bit
freezes the Channel Address, Channel Data,
Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status
Registers.

6. The address of the first instruction of the inter-
rupt or trap handler is determined. if the VF bit of
the Configuration Register is 1, the address is
obtained by accessing a vector from instruction/
data memory, using the physical address ob-
tained from the Vector Area Base Address Reg-
Ister and the vector number. This access ap-
pears on the channel as a data access, and the
OPT=-OPTo signals indicate a word-length ac-
cess. If the VF bit is 0, the instruction address is
given directly by the Vector Area Base Address
Register and the vector number.

31 23 15 7
RERRRRRRRRRERRRRRERRNRREEERE

Handler Starting Address Rjo

Flgure-48. Vector Table Entry

58 Am29005 Microprocessor

R

28E D W 0257525 00332k3 b WA AMD

ADVANCED MICRO DE\‘/ICES
ADVANCE INFORMATION: [-49-17-32 AMDa

28E D . HH 0257525 0033269 & HE AMD

Number

Type of Trap or Interrupt

Cause

N EWRN=-O

(]

TR b b ch —h o A s s

24-29

57
56-63

64-256

lilegal Opcode

Unaligned Access

Qut of Range

Coprocessor Not Prasent
Coprocessor Exception
Protsction Violation
Instruction Access Exception
Data Access Exception
Reserved

TRAR,

Floating-Point Exception
Reserved

Reserved for Instruction emulation
{Op codes D8-DD)

MULTM

MULTMU

MULTIPLY

DIVIDE

MULTIPLU

DIVIDY

CONVERT

SQRT

CLASS

Reserved for instruction emulation
(Op codes E7-E9)

FEQ

DEQ

FGT

DGT

FGE

DGE

FADD

DADD

FsuB

DSUB

FMUL

DMUL

FOWV

DDIV

Reserved for instruction emulation
(Op code F8)

FDMUL

Reserved for instruction emulation
(Op codes FA-FF)

Assert and EMULATE instruction traps
{vector number specified by Instruction)

Executing undefined instruction
Access on unnatural boundary, TU= 1
Overflow or underflow

Coprocessor access, CP =0
Coprocessor DERR rasponse

Invalid User-modae operation

TERR response

DERR response, not coprocessor

Timer Facility

Trace Facility

INTR, input

INTR, input

INTR, input

INTRs input

Wo lnput

W| input

Unmasked floating-point exception

MULTM instruction
MULTMU instruction
MULTIPLY instruction
DIVIDE instruction
MULTIPLY instruction
DIVIDU instruction
CONVERT instruction
SQRT instruction
CLASS Instruction

FEQ instruction
DEQ instruction
FGT instruction
DGT instruction
FGE Instruction
DGE instruction
FADD instruction
DADD Instruction
FSUB instruction
DSUB instruction
FMUL instruction
DMUL instruction
FDIV instruction
DDIV instruction

FDMUL instruction

Figure 49. Vector Number Assignments

Am29005 Microprocessor

Bl L =t

g

P S

ADVANCED MICRO DEVICES '28E D BW 0257525 0033270 4 EN AMD

uAMD ADVANCE INFORMATION T-49-"7~32
31 2‘3r 15 7 [0
0000000000 0000 O Ojujujojolofjt1|OjujOlx|x]tju uj1j1
\ M
v IR H : : : N : : '
Reserved :':':':':u-:o-:
{1 P TP | FZi RE 1Res;SM IM DA
1 [R
CA TE TU LK WM Res Dl ‘ p
Flgure 50. Current Processor Status after an Interrupt or Trap
7. lfthe VF bitis 1, the Rbitin the vector fetched in 2. The Old Processor Status is set to the value of
Step 6 is copled into the RE bit of the Current the Current Processor Status for the target
Processor Status Register. If the VF bit is 0, the routine. .
RV bit of the Configuration Register is copied
Into the RE bit. This step determines whether or 3. The Channel Address, Channel Data, and
not the first instruction of the interrupt handler is Channel Control registers are setto rgstart orre-
in Instruction ROM sume uncompleted channel operations of the
' target routine.
8. Aninstruction fetch is initiated using the instruc-
tion address determined in Step 6. At this point, 4. The Program Counter 1 and Program Counter 0
normal instruction execution resumes registers are set to the addresses of the first and
) second instructions, respectlively, to be exe-
Note that the processor does not explicitly save the con- cuted in the target routine.
tents of any registers when an interrupt is taken. if regis- .
ter saving is required, it Is the responsibility of the inter- 5. Other registers are set as required. These may
rupt or trap-handling routine. For proper operation, include registers such as the ALU Status, Q, and
registers must be saved before any further interrupts or so forth, depending on the particular situation.)
traps may be taken. The FZ bit must be reset atleast two Some of these registers are unaftected by the
Instructions before interrupts or traps are reenabled to FZbit, so they mustbe setin such amanner that
allow the program state to be reflected properly in pro- they are not modified unintentionally before the -
cessor registers if an interrupt or trap is taken. interrupt return. N
Returning from an Interrupt or Trap Once the processor registers are configured properly,

as described above, an interrupt return instruction
(IRET) performs the remaining steps necessary to re-
turn to the target routine. The following operations are
performed by the interrupt return instruction:

Aninterrupt Retum (IRET) is used to resume the execu-
tion of an interrupted program. In some situations, the
processor state must be set properly by software before
the interrupt return is executed. The following is a list of
operations normally performed in such cases: 1. Any in-progress load or store operation-is com-
pleted. If a Load Mulitiple or Store Multiple se-

1. The Current Processor Status is configured as quence is in progress, the interrupt return is not

shown in Figure 50 (the value “x" is a “don't

il th . T
care”). Note that setting the FZ bit freezes the executed until the sequence is completed ~
registers listed below so that they may be set for
the interrupt return. .

15 7 0

31 23
HERRRRRRRRREER

00000000000 0000 0 {xixjojo]lxjtix|x]olx|x|tix x{1]|1
‘ = TTITTII T T T ¢
Reserved :';-:';-:-...:.
: IPy TP FZ) RE |ResiSM IM i DA
’
CA TE TU LK WM Res Dt

Figure 51. Current Processor Status Before Interrupt Return

60 Am28005 Microprocessor

kA IR o Rt A TR

¥

",:-v.k

ADVANCED MICRO DEVICES
ADVANCE INFORMATION ”T-49-17-32

28E D. WE 0257525 0033271 & WM AMD

AMDu .

2. Interrupts and traps are disabled, regardless of
the settings of the DA, DI, and IM fields of the
Current Processor Status, for Steps 3 through 9.

3. The contents of the Old Processor Status Regis-
ter are copied into the Current Processor Status
Register. This normally resets the FZ bit allow-
ing the Program Counter 0, 1, 2, Channel Ad-
dress, Data, Control, and ALU Status registers
to update normally. Since certain bits of the Cur-
rent Processor Status Register aiways are up-
dated by the processor, this copy operation may
be irrelevant for certain bits (e.g., the Interrupt
Pending bit).

4. If the Contents Valid (CV) bit of the Channel
Control Register is 1, and the Not Needed (NN)
and Muitiple Operation (ML) bits are both 0, an
external access is started. This operation is
based on the contents of the Channel Address,
Channel Data, and Channel Control registers.
The Current Processor Status Register condi-
tions the access—as is normally the case. Note
that Load Muitiple and Store Multiple operations
are not restarted at this point.

5. The address in Program Counter 1 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch.

6. The instruction fetched in Step 5 enters the de-
code stage of the pipeline.

7. The address in Program Counter 0 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch.

8. The Instructionfetched in Step 5 enters the exe-
cute stage of the pipeline, and the instruction
fetched in Step 7 enters the decode stage.

9. ifthe CV bit inthe Channel Control Registeris a
1, the NN bit is 0, and the ML hitis 1, a Load Mul-
tiple or Store Multiple sequence is started,
based on the contents of the Channel Address,
Channel Data, and Channel Control registers.

10. Interrupts and traps are enabled per the ap-
propriate bits in the Current Processor Status
Register.

11. The processor resumes normal operation.

Fast Interrupt Processing

The registers affected by the FZ bit of the Current Pro-
cessor Status Register are those that are modified by al-
most any usual sequence of instructions. Since the FZ
bit s set by an interrupt or frap, the interrupt or trap han-
dler is able to execute while not disturbing the state of
the interrupted routine, though its execution is some-
what restricted. Thus, it is not necessary in many cases
for the interrupt or trap handler to save the registers that
are affected by the FZ bit.

The processor provides an additional benefit if the Pro-
gram Counter 0 and Program Counter 1 registers are
not modified by the interrupt or trap handler. If Program
Counters 0 and 1 contain the addresses of sequentialin-
structions when an interrupt or trap is taken, and if they
are not modified before an interrupt retum Is executed,
Step 8 of the interrupt return sequence above occurs as
a sequential fetch—instead of a branch—for the inter-
rupt return. The performance impact of a sequential
fetchis normally less than that of a nonsequential fetch.

Because the registers affected by the FZ bit are some-
times required for instruction execution, it is not possible
for the interrupt or trap handler to execute all instruc-
tions unless the required registers are first saved else-
where (e.g., in one or more global registers). Most of the
restrictions due to register dependericies are obvious
(e.g., the Byte Pointer for byte extracts), and will not be
discussed here. Other less obvious restrictions are
listed below: :

1. Load Muttiple and Store Multiple. The Channel
Address, Channel Data, and Channel Control
registers are used to sequence Load Multiple
and Store Multiple operations, so these instruc-
tions cannot be executed while the registers are
frozen. However, note that other external
accesses may occur; the Channel Address,
Channel Data, and Channel Control registers
are required only to restart an access after an
exception, and the interrupt or trap handler is not
expected to encounter any exceptions.

2. Loads and stores that set the Byte Pointer. If the
Set Byte Pointer (SB) of a load or store instruc-
tionis 1 and the FZ bitis also 1, there is no effect
on the Byte Pointer. Thus, the execution-of ex-
ternal byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU
Status Register is not updated while the FZ bit
is 1.

4. Divide step instructions. The Divide Flag of the
ALU Status Register is notupdated when the FZ
bit is 1.
If the interrupt or trap handler does not save the state of
the interrupted routine, it cannot aliow additional inter-
rupts and traps. Also, the operation of the interrupt or
trap handler cannot depend on any trapping instruc-
tions (e.g., Floating-Point instructions, illegal operation
codes, arithmetic overflow, efc.) since these are dis-
abled. There are certain cases, however, where traps
are unavoidable; these are discussed in the Arithmetic
Exceptions section.

WARN Trap

The processor recognizes a special trap, caused by the
activation of the WARN input, that cannot be masked.
The WARN ftrap is intended to be used for severe

Am29005 Microprocessor 61

ADVANCED MICRO DEVICES

28k D
o ADVANCE INFORMATION

[N T 0t

M 0257525 0033272 & W AMD
T-49-17-32

system-error or deadlock conditions. 1t allows the pro-
cessor to be placed In a known, operable state, while
preserving much of its original state for error reporting
and possible recovery. Therefore, it shares some fea-
tures in common with the Reset mode as well as fea-
tures common to other traps described in this section.

The major differences between the WARN trap and
other traps are:

1. The processor does not wait for an in-progress
external access to be completed before taking
the trap, since this access might not be com-
pleted. However, the information related to any
outstanding access Is retained by the Channel
Address, Channel Data, and Channe! Control
registers when the trap Is taken.

2. The vector-fetch operation is not performed, re-
gardless of the VF bit of the Contiguration Regls-
ter, when the WARN trap is taken. Instead, the
ROM Enable (RE) bit in the Current Processor
Status is set, and instruction fetching begins im-
mediately at Address 16 in the instruction ROM.
The trap handler executes directly from the in-
struction ROM without the need to access
external (and possibly nonfunctional or invalid)
instruction/data memory.

Note that WARN trap may disrupt the state of the routine
thatis executing when it is taken, prohibiting this routine
from being restarted.

Sequencing of Interrupts and Traps

On every cycle, the processor decides either to execute
Instructions or to take an interrupt or trap. Since there
are multiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken ac-
cording to the priority shown in Figure 52. In this table,
interrupts and traps are fisted in order of decreasing pri-
ority. This section discusses the first three columns of
Figure 52. The last two columns are discussed in the
Exception Reporting and Restarting section.

In Figure 52, interrupts and traps fall into one of two
categories depending on the timing of their occurrence
relative to instruction execution. These categories are
indicated in the third column by the labels “inst” and
“async.” These labels have the following meanings:

1. Inst—Generated by the execution or attempted
execution of an instruction.

2. Async—Generated asynchronous to and inde-
pendent of the instruction being executed, al-
though it may be a resuit of an instruction exe-
cuted previously.

The principle for interrupt and trap sequencing s that the
highest priority interrupt or trap Is taken first. Other
interrupts and traps remain active until they can be
taken, or are regenerated when they can be taken. This

is accomplished, depending on the type of interrupt or
trap, as follows:

1. All traps in Figure 52 with Priority 13 or 14 are
regenerated by the re-execution of the causing
instruction.

2. Most of the interrupts and traps of Priorities 4
through 12 must be held by external hardware
until they are taken. The exceptions fo this are
listed in (3) below.

3. The exceptions {o (2) above are the Data Access
Exception trap, the Coprocessor Exception trap,
the Timer interrupt, and the Trace trap. These
are caused by bits in various registers.in the
processor and are held by these registers until
taken or cleared. The relevant bits are: the
Transaction Fauited (TF) bit of the Channel Con-
trol Register for Data Access Exception and
Coprocessor Exception traps, the Interrupt (IN)
bit of the Timer Reload Register for Timer inter-
rupts, and the Trace Pending (TP) bit of the Cur-
rent Processor Status Register for Trace traps.

4. Alltraps of Priorities 2 and 3 in Figure 52, except
for the Unaligned Access trap, are not regener-
ated. These traps are mutually exclusive and are
given high priority because they cannot be re-
generated; they must be taken if they occur. If
one of these traps occurs at the same time as a
reset or WARN trap, it is not taken, and its occur-
rence is lost.)

5. The Unaligned Access trap is regenerated inter-
nally when an external access is restarted by the
Channel Address, Channel Data, and Channel
Control registers. Note that this trap is not nec-
essarily exclusive to the traps discussed in (4)
above.

Note that the Channel Address, Channel Data, and
Channel Controi registers are set fora WARN trap only if
anexternal access Is in progress when the trap is taken.

Exception Reporting and Restarting

When an instruction encounters an exceptional condi-
tion, the Program Counter 0, Program Gounter 1, and
Program Counter 2 registers report the relevant instruc-
tion address(es), and allow the Iinstruction sequence to
be restarted once the exceptional condition has been
remedied (if possible). Similarly, when an-external ac-
cess or coprocessor transfer encounters an exceptional
condition, the Channel Address, Channel Data, and
Channel Control registers report information on the ac-
cessortransfer, and allow it to be restarted. This section
describes the interpretation and use of these registers.

The “PC1” column in Figure 52 describes the value held

inthe Program Counter 1 Register (PC1) whenthe inter-
rupt ortrap is taken. Fortraps in the “inst” category, PC1

62 Am23005 Microprocessor

ADVANCED MICRO DEVICES'

28E D

ADVANCE INFORMAHON‘T—49—17—32, v B

.Prlortty Type Of Interrupt Or Trap Inst/Async PC1 | Channel Rggs'
1 WARN async next | seeNoto
(highest)
Unaligned Access inst next all
Coprocessor not Present inst next all
Out of Range inst next N/A
Floating-Point Exceptions inst next N/A
Assart Instructions inst next N/A
Floating-Point Instructions inst next N/A
2 MULTIPLY inst next N/A
MULTM Inst next N/A
DIVIDE inst next N/A
MULTIPLU inst next N/A
MULTMU Inst next N/A
DIVIDU inst next -‘N/A
EMULATE inst next N/A
Data Access Exception async next all
3 Coprocessor Exception async next all
4 TRAP, async next multiple
5 TRAP, async next multiple
6 INTR, async next multiple
7 INTR, async next multiple
8 NR async next multiple
9 WNTR, async next multiple
10 Timer async next multiple
1 Trace async next multiple
12 Instruction Access Violation Inst cur N/A
13 lllegal Opcode inst curr N/A
(lowest) Protection Violation inst curr N/A

Note: The Channel Address, Channel Data, and Channel Control registers are set for a WARN trap only if an

oxtemal access Is in progress when the trap is taken.

Flgure 52. Interrupt and Trap Priority Table

contains either the address of the instruction causing
the trap, indicated by “curr,” or the address of the in-
struction following the instruction causing the trap, indi-
cated by “next.”

For interrupts and traps In the “async” category, PC1
contains the address of the first instruction, which was
not executed due to the taking of the interrupt or trap.
Thisis the next instruction to be executed upon interrupt
return, as indicated by “next” in the PC1 column.

Instructlon Exceptions

Fortraps caused by the execution of aninstruction (e.g.,
the Out of Range trap), the Program Counter 2 Register
contains the address of the instruction causing the trap.

In all of these cases, PC1 is in the “next” category. The
Exception Opcode Register contains the operation code
of the Instruction causing the trap.

The traps associated with instruction fetches (i.e., those
of Priority 13) occur only if the processor attempts the
execution of the associated instruction, An exception
may be detected during an instruction prefetch, but the
associated trap does not occur if a nonsequential fetch
occurs before the processor attempts the execution of
the invalid instruction. This prevents the spurious indica-
tion of instruction exceptions.

Am29005 Microprocessor . 63

BN 0257525 0033273 T ER AMD

ADVANCED MICRO DEVICéS

NAMD ADVANCE INFORMATION

28E D WM 0257525 0033274 1 W AMD
T-49-17-32

Data Exceptions

The “Channel Regs" column of Figure 52 indicates the
cases for which the Channel Address, Channel Data,
and Channel Control registers contain information re-
lated to an external access or coprocessor transfer
(these registers collectively are termed “channel regis-
ters™ in the following discussion). For the cases indi-
cated, the access or transfer was not completed be-
cause of some exceptional condition. Note that the
Channel Data Register contains relevant information
only in the case of a store.

Forthe WARN trap, the channel registers are valid only if
a load or store were in progress when the trap was
taken. Recall that the WARN trap does not walit for any
in-progress access to be completed.

For the traps with an “all” in the “Channel Regs” column
of Figure 52, the channel registers contain information
relevant to the trap in all cases. These traps are associ-
ated with exceptional events during external accesses
or coprocessor transfers.

For the traps with a “multiple” in the “Channel Regs”
column, the channel registers might contain information
for restarting an interrupted Load Multiple or Store Mul-
tiple operation. In these cases, the operation did not
encounter an exception, but was simply canceled for la-
tency considerations.

The information contained in the channel registers al-
lows the processor to restart the related operation dur-
ing aninterrupt return sequence, without any special as-
sistance by software. Software must only ensure that
the relevant information is retainedin, or restored to, the
channel registers before an interrupt return is executed.

Arithmetic Exceptions

Integer and floating-polnt instructions can cause Out of
Range or Floating-Point Exception traps, respectively, if
anexception is detected during the arithmetic operation.
This section describes the conditions under whichthese
traps occur and the additional operations performed be-
yond those deécribed inthe Interrupt and Trap Handling
saction.

Integer Exceptions

Some integer add and subtract instructions—ADDS,
ADDU, ADDCS, ADDCU, SUBS, SUBU, SUBCS,
SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU—
cause an Out of Range trap upon overflow or underflow
of a 32-bit signed or unsigned result, depending on the
Instruction.

Two integer multiply instructions—MULTIPLY and
MULTIPLU—cause an Out of Range trap upon overflow
of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is 0. If the
MO bit is 1, these muitiply instructions cannot cause an
Out of Range trap.

Two integer divide instructions—DIVIDE and DIVIDU-—
take the Out of Range trap upon overflow of a 32-bit
signed or unsigned result, respectively, if the DO bit
of the Integer Environment Register is 0. If the DO bit
is 1, the divide instructions cannot cause an Qut of
Range trap unless the divisor is zero. If the divisor is
zero, an Out of Range trap always occurs, regardless of
the DO bit.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when an Out of Range trap is taken:

1. Theoperationcode ofthe instruction causingthe
exception is placed in the 10P field of the Excep-
tion Opcode Register.

2. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the absolute register num-
bers of the excepting instruction's source and
destination registers are placed into the Indirect
Pointer A, Indirect Pointer B, and Indirect Pointer
C registers.

3. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the destination register or
registers are unchanged.

Floating-Polnt Exceptions

A Floating-Point Exception trap occurs when an excep-
tionis detected during a floating-point operation, andthe
exception is not masked by the corresponding bit of the
Floating-Point Mask Register. inthis coritext, a floating-
point operation is defined as any operation that accepts
a floating-point number as a source operand, that pro-
duces a floating-point result, or both, Thus, for example,
the CONVERT instruction may create ah exception
while attempting to convert a floating-point value to an
integer value.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when a Floating-Point Exception trap Is
taken:

1. Theoperationcode ofthe instruction causingthe
exception is placed in the 10P field of the Excep-
tion Opcode Register.

2. The status of the trapping operation is written
into the trap status bits of the: Floating-Point
Status Register. The status bits that are written
do not depend on the values of the correspond-
ing mask bits in the Floating-Point Environment
Register.

3. The absolute register numbers of the excepting
instruction's source and destination registers
are placed into the Indirect Pointer A, Indirect
Pointer B, and Indirect Pointer C registers. If the
RB or RC fields specify a function code, that

64 Am29005 Microprocessor

T meresme cTrers TR e

-
V..

ADVANCED MICRO DEVICES

ADVANCE

28E D -
INFORMAT ION T-49-17-32

A R SR S ke s At ot 5 et AT e Iy i b D R

AMD n

code Is transferred to the corresponding indirect
pointer. Note that if the most-signiticant bit of
this function code is 1, the value of the Stack
Pointer has been added to the RB field and must
be subtracted to recover the original field.

4. The destination register or registers are left
unchanged.

Exceptions During Interrupt
and Trap Handling

In most cases, interrupt and trap handling routines are
executed withthe DA bitin the Current Processor Status
having avalue of 1. It is assumed that these routines do
not create many of the exceptions possible in most other
procassor routines, so most of these are ignored.

If the assumption of no exceptions is not valid for a par-
ticular interrupt or trap handler, it is important that the
handler save the state of the processor and reset the FZ
bit of the Current Processor Status, so that the handler
itsett may be restarted properly. This must be accom-
plished before any interrupts or traps can be taken. In
this case, the state (or the state of some other process)
must be restored before aninterrupt return is executed.

itis possible that errors reported via the TERR and DERR
signals are associated with hardware errors, indepen-
dent of any routine baing executed. For this reason, the
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps cannot be disabled by
the DA bit, and the processor may take one of these
traps even while handling another interrupt or trap.

If the processor does take an unmaskable trap while
handling another interrupt or trap, and the state of the
interrupt or trap handleris not reflected in processor reg-
isters, it is not possible to return to the point at which the
unmaskable trap is taken. When the unmaskable trap is
taken, the processor state saved is that state associated
with the original interrupt or trap, not with the unmask-
able trap; however, the Old Processor Status Register is
modified to reflect the Current Processor Status Regis-
ter of tha Interrupt or trap handler. This situation, Indi-
cated by the DA bit being 1 in the Old Processor Status
Register, may not be recoverable.

CHANNEL DESCRIPTION

The processor channel provides the bandwidth required
for performance, while permitting the connection of
many different types of devices. This section describes
the channel and methods of connecting devices and
memories to the processor.

The channel consists of three 32-bit synchronous buses
with associated control and status signals: the Address
Bus, Data Bus, and Instruction Bus. The Address Bus
transters addresses and control information to devices
and memories. The Data Bus transfers data to and from
devices and memories. The Instruction Bus transfers in-
structions to the processor from instruction memories.

In addition, a set of signals allows control of the channel
to be relinquished to an external master.

There are five logical groups of signals performing five
distinct functions, as follows (since some signals per-
form more than one function; a signal may appear in
more than one group):

1. Instruction Address Transfer and Ins _'l n Ac-
cess Requests: As~Ao, SUP/US, FEN, TREQ,
IREQT, PIA, BINV

2. Instruction Transfer: lai—lo, IBREQ, IRDY, IERR,
TBACK

3. Data Address Transfer and Data Access Re-
quests: As-Ao, R/W, SUP/US, LOCK, PEN,
DREQ, DREQT-DREQTo, OPT—OPTo, PDA,
BINV

4. Data Transfer: Dai—-Do, DBR
DBACK, CDA

5. Arbitration: BREQ, BGRT, BINV

DRDY, DER

&

User-Defined Signals

There are user-defined outputs on the processor to con-
trol devices and memories directly in a system-depend-
ent manner. Each of these outputs is valid simultane-
ously with—and for the same duration as--the address
for an access.

The set of signals OPT=—OPTo is determined by bits
18-16 of the load of store instruction that initiates an ac-
cess. These signals are valid only for data accesses,
and have a predefined interpretation for coprocessor
data transfers.

Standard interpretations of OPT-OPTo are given inthe
Pin Description section. Since the OPT=-OPTo signals
are determined by instructions, they have an impact on
application-software compatibility, and system hard-
ware should use the given definitions of OPT=—OPTo.
The OPT=-OPTo signals are used to encode byte and
half-word accesses. However, for a load, the system
should return an entire aligned word, regardless of the
indicated data width.

Note that the standard lnterpretatlons of OPT=-OPTo
apply only to accesses fo instruction/data memory and
input/output. Other interpretations may be used for
coprocessor transfers.

For intemupt and trap vector fetches, the OPT=-OPTo
outputs are all Low.
Instruction Accesses

Instruction accesses occur to one of two address
spaces: instruction/data memory and instruction read-
only memory (instruction ROM). The distinction be-

- tween these address spaces is made by the IREQT sig-

nal, which is in turn derived from the ROM Enable (RE)

Am29005 Microprocessor 65

M 0257525 0033275 3 W AMD

ADVANCED MICRO DEVICES

uAMD ADVANCE

28E D
INFORMATION

L L e e

bit of the Current Processor Status Register. These are
truly distinct address spaces; each may be populated in-
dependently based on the needs of a particular system.

Instructiorvdata memory contains both instructions and
data. In centain systems, it may be required to access in-
structions via loads and stores, eventhoughinstructions
may be contained in physically separate memories. For
example, this requirement might be imposedbecause ot
the needto load instructions into memory. Note aiso that
the OPT=-OPTo signals may be used to allow the
access of instructions In instruction ROM, using loads;
the Am29005 microprocessor does not prevent a store
to the instruction ROM, and protection against stores to
the Instruction ROM must be provided externally, if
required.

Allprocessor instruction fetches are read accesses, and
the R/W signal is High for all instruction fetches.

Data Accesses

Data accesses occur to one of three address spaces:
instruction/data memory, inpu¥output (O}, and the
coprocessor. The distinction between these spaces is
made by the DREQT-DREQT. signals, which are in
turn determined by the load or store instruction that initi-
ates adata access. Each of these address spacesisdis-
tinct from the others.

The protocolfor datatransfers to and from the coproces-
sor is slightly different than the protocol for instruction/
data memory and 1/O accesses.

Data accesses may occur either from a slave device or
memory 1o the processor (for a load), or from the pro-
cessorto a slave device or memory (for a store). The di-
rection of transfer is determined by the R/W signal. In
the case of a load, the processor requires that data on
the data bus be held valid only for a short time before the
end of a cycle. In the case of a store, the processor
drives the data bus as soon as the bus Is available and
holds the data valid untilthe slave device or memory sig-
nals that the access is complete.

Reporting Errors

The successfulcompletion of an instruction access is in-
dicated by an active level onthe IRDY input, and the suc-
cessful completion of a data access is indicated by an
active level on the DRDY input. if there are exceptional
conditions for which an instruction or data access can-
not be completed successfully, the unsuccessful com-
pletion Is indicated by an active level on the TERR or
DERR input, as appropriate.

if the processor receives an TERR or DERR in response
to an instruction or data access, it ignores the content of
the Instruction or data bus and the value of TRDY or

DRDY. AnTERRresponse causes an Instruction Access
Exceptiontrap, unless it is associated withan instruction
that the processor does not ultimately execute (because
of a nonsequential instruction fetch). A DERR response

always causes either a Data Access Exceptiontrapora
Coprocessor Exception Trap.

The processor supports the restarting of unsuccessful
accesses upon an interrupt return. Inthe case of an un-
successful instruction access, the restart Is performed
by the Program Counter 0 and Program Counter 1 regis-
ters. Inthe case of an unsuccessful data access, the re-
start Is performed by the Channel Address, Channel
Data, and Channel Control registers. In any event, the
control program must determine whether or not an ac-
cess can and/or should be restarted.

The Instruction Access Exception and Data Access Ex-
ception traps cannot be masked. if one of these traps
occurs within an interrupt or trap handler, the processor
state may not be recoverable.

Access Protocols

Figure 53 shows a control flowchart for accesses per-
formed by the Am29005 microprocessor. This ¢ontrol
flow applies independently to.both instruction and data
accesses. Since the processor performs concurrent in-
struction and data accesses, these accesses may be at
different points in the control flow at any given poirit in
time.

Note that the items on the flowchart of Figure §3 do not
represent actual states and have no particular relation-
ship to processor cycles. The flowchart provides only a
high-level understanding of the controf flow. Also, ex-
ceptions and error conditions are not shown.

The channel supports three protocols for accesses: sim-
ple, pipelined, and burst-mode. These are described in
the following sections. The various profocols are de-
fined to accommodate minimum-latency accesses as
well as maximum-transfer-rate accesses. The protocols
allow an access to complete in a single cycle, although
they support accesses requiring arbitrary numbers of
cycles. Address transfers for accesses may be inde-
pendent of instruction or data transfers.

Simple Accesses

For a simple access, the processor holds the address
valid throughout the entire access. This protocol is used
for single-cycle accesses, and for accesses to simple
devices and memories.

Onany cycle before the completion of the access, a sim-
ple access may be converted to a pipelined access (by
the assertion of PEN) orto a burst-mode access (by the
assertion of IBACK or DBACK, if the processor is assert-
ing TBREQ or DBREQ). Thus, the protocol for simple ac-
cesses also may be used during the initial cycles of
pipelined and/or burst-mode accesses. This is advanta-
geous, for example, in cases where the slave device or
memory either requires the address to be held for mul-
tiple cycles at the beginning of the pipelined or burst-
mode access, or cannot respond to the pipelined or
burst-mode request within one cycle.

66 Am29005 Microprocessor

Y S S S Y

M 0257525 003327k 5 MR AMD

T-49-17-32

- ESITR PGS £33 < S C Y - e

ADVANCED MICRO DEVICES. cdE D WR 0257525 UQBBE?? 7 IR AMD
ADVANCE INFORMATION T—49~17—32 AMoﬂ

Slave Device

1 Initiate Access)
Assert TREQ, DREG

Latch Resuit

Drive resuit and

o

NO

Primary

+ Assert IBACK
Complete access or
Drive result and
v Burst-mode Access
' ' , see Figures 54 thru 57 .
' y Primary
! s Access
H ! Complete
1]
ceeatemmanaan deesmunacacana R -
] L]
L] 1]
] [}
cmedeccccaaas Joeeaaa ameemMeccssceaanteenaa mmemeaa . [P, -
1]
NO Pipelinad Access :
Initiate pipelined N 1
accass v l :
)
Assert PIA, FDA Start Accass '
(optional) '
»e ¥ '
]
1]
1
4

interrupt
or Exception,
?

Remove pipelined
access from
channel

_ Deassert PIA, FDA

access complete
3 activi

e)

wveodecacesw

Figure 53. Channel Flowchart

Am28005 Microprocessor

67

ADVANCED MICRO DEVICES

u AMD

ADVANCE

26E D WM 0257525 0033278 9 M AMD
INFORMATION

T-49-17-32

Pipelined Accesses

Aplpelined access is one that starts before an earlier in-
progress access is completed. The in-progress access
Is called a primary access and the second access is
called a pipelined access. A pipelined access is of the
same type as the primary access. For example, an in-
struction access that begins before the completion of a
data access is not considered to be a pipelined access,
whereas a second data access is.

The Am29005 microprocessor allows only one pipe-
lined access at any given time.

Tradeoffs

For accesses that require more than one cycle to com-
plete, pipelined accesses perform better than simple ac-
cesses because they allow the overlap of portions of two
accesses. In addition, the ability to latch addresses in
support of pipelined accesses reduces utilization of the
address bus, thereby reducing contention between in-
struction and data accesses. However, devices and
memories that support pipelined accesses are some-
what more complex than devices and memories that
support only simple accesses.

Support for pipelined operations is required for both the
primary access and the pipelined access. The slave per-
forming the primary access must contain some means
for storing the address and other information about the
access. The slave performing the pipelined access must
be able to restrict its use of the instruction bus or data
Bus, and must be prepared to cancel the access (as ex-
plained below).

Pipelined Operatlon
Plpslined accesses are controlled by the signals PEN,

PIA, and PDA. Because of internal data-flow con-
straints, the Am29005 microprocessor does not perform
a pipelined store operation while a load is in progress.
Howaever, the protocol does not restrict pipelined opera-
tions. Other channel masters may perform a pipelined
store during a load.

Except as noted above, the processor attempts to per-
form pipelining for every access; the input PEN indicates
whether or_not pipelining Is supported for a given ac-
cess. The PEN input can be driven by individual devices,
or can be tied active or inactive to enable or disable sys-
tem-wide pipelined accesses. The processor ignores
the value of PEN unless it is performing an access.

The processor smles'FTE—ﬁon every cycle during a pri-
mary access. If PEN Is active on any cycle, the proces-
sor ceases to drive the address and associated controls
forthe primary access in the next cycle. if the processor
requires another access before the primary access is
completed, it drives the address and controls for the
second access, asserting PIA or PDA to indicate that the
second access Is a pipelined access.

The output IREQ or DREQ, as appropriate, is not as-
serted for a pipelined access. Devices and memorles

that cannot support pipelined accesses should there-
fore ignore PIA and/or PDA, and base their operation
upon IREQ and/or DREQ.

A device or memory that receives a request for a
pipelined access may treat it as any other access, with
one exception: the pipelined access canriot use the In-
struction and data buses or the associated controls
{e.g., IRDY or DRDY). In the case of a data read or in-
struction access, the results of the pipelined access
cannot be driven onthe appropriate bus. Inthe case ofa
data write, the data do not appear on the data bus. Any
other operations for the access, such as address decod-
ing, can occur.

When the primary access is completed (as indicated by
IRDY or DRDY), the pipelined access becomes a pri-
mary access. The processor indicates this by asserling
REQ or DREQ, depending on the type of access. The
device or memory performing the pipelined access may
complete the access as soon as IREQ or DREQ Is as-
serted (possibly in the same cycle). When the access
becomes a primary access, it controls the channel as
any other primary access. For example, it may deter-
mine whether or not another pipelined access ¢an be
performed.

When the pipelined access becomes a primary access,
the output FiA or PDA remains asserted for one cycle to
ensure continuity of control within the slave device or
memory. In the cycle after IREQ or DREQ Is asserted,
PIA or PDA is deasserted unless the processor initiates

another pipelined access, in which case FiAor PDA re-

mains asserted for the new access.

Cancellatlon of Pipelined Accesses

if the processor takes an Interrupt or trap before a
pipelined access becomes a primary access, the re-
quest for the pipelined access is removed from the
channel. This may occur, for example, when [ERR or
DERR is signaled for the primary access.

ifthe pipelined access is removed from the channel, the
slave device or memory does not recgive an IREQ or
DREQ forthe pipelined access. Hence, the pipelined ac-
cess does not become a primary access, and cannot be
completed. A pipelined access may be canceled in this
manner at any time before it becomes a primary access.
Because of this, a pipelined access should not change
the state of a stave device or memory until the pipelined
access bacomes a primary access.

Burst-Mode Accesses

A burst-mode access allows muftiple instructions or
data words at sequential addresses to be accessed with
a single address transfer. The number of accesses per-
formed and the timing of each access within the se-
quence are controlled dynamically by the burst-mode
protocol. Burst-mode accesses take advantage of se-
quential addressing patterns, and provide several bene-
fits over simple and pipelined accesses:

68 Am29005 Microprocessor

P INULTENN

ol

ADVANCED MICRO DEVICES
ADVANCE INFORMATION T—49-17—32

28E D .

AMD n

1. Simultaneous Instruction and data accesses.
Burst-mode accesses reduce the utilization
of the address bus. This is especially important
for instruction accesses, which are normally
sequential. Burst-mode instruction accesses
eliminate most of the address fransfers for in-
structions, allowing the address bus to be used
for simultaneous data accesses.

2. Faster access times. By eliminating the ad-
dress-transfer cycle, burst-mode accesses al-
low addresses to be generated in a manner that
Improves access times.

3. Faster memory access modes. Many memories
have special high-bandwidth access modes
(e.g., fast page mode DRAM). These modes
generally require a sequential addressing pat-
tern, even though addresses may not be pre-
sented explicitly to the memory for all accesses.
Burst-mode accesses allow the use of these ac-

cess modes without hardware to detect sequen-
tial addressing patterns.

Burst-Mode Overview

The control-flow diagrams in Figure 54 and Figure 55 il-
lustrate the operation of the processor and an instruc-
tion memory during a burst-mode instruction access.
The control-flow diagrams in Figure 56 and Figure 57
illustrate the operation of the processor and a data
memory or device during a burst-mode data access.
These diagrams are for iflustration only; nodes on these
diagrams do not necessarily correspondto processoror
slave states, and transitions on these diagrams do not
necessarily correspond to processor gycles.

A burst-mode access is in one of the following opera-
tional conditions at any giventime: -

1. Established: The processor and slave device
have successfully initiated the

burst-mode access. A burst-

Nonsequential
Fetch

If no exception
refransmit address

{1) IPB = Instruction Prefetch Buffer

Mode,

v ACTIVE
'
]
]
]
[]
(]
L]
1
' IPBM location
N available and
' Active
:
1]
1]
H i TPBM Tocation ~
' RDY not a'-\‘lailable
] .
Acti or Halt or
' 1P " Step Modes
1 location
' available TBACRK H
' Inactive |
' BREQ o
t ERR active,sor
: SUSPENDED oad Test.nStr,

Terminated

1-kb boundary
or channel arbitration

Figure 54. Processor Burst-Mode Instruction Accesses: Control Flow

Am29005 Microprocessor 69

§

R e o e s T TS TIT Y

B 0257525 0033279 0 AHD

e

ADVANCED MICRO DEVICES 28E D WM 0257525 0033280 7 EE AMD
ADVANCE INFORMATION

n AMD

Terminated,
Preempted, or
Cancsled by Presmpted
Processor

T-49-17-32 - -
R EEE D] EEEEEEE :
]]
1 []
]]
)]
)
1 1 Unsuccessful
: ' Fetch
1 t
] o]
: Active Active Fotch :
) ‘
] [}
]]
: Drive Instruction ' Deactivate Activate
' Activate TRDY ' TBACK TEFR
i 1
o el - 1 Successful
: ' Fetch Unsucoesstul
)] Fetch
1 1
]]
' ' Drive Instruction '\
! t i
! ' Activate TRDY Activale
L SUSPENDED, _ J ____ bur ! T

Canceled

Note: A similar state transition may be used to support suspended burst-mode data accesses
or a channel master other than the processor.

Flgure 55. Slave Burst-Mode Instruction Accesses: Control Flow

2. Active:

3. Suspended:

mode access that has been es-
tablished is either active or sus-
pended. An established burst-

mode access may become 4. Preempted:

preempted, terminated or can-
celed.

Instruction or data accesses and
transfers are being performed
as the result of the burst-mode

access. An active burst-mode 5. Terminated:

access may become sus-
pended.

6. Canceled:

No accesses ortransfers are be-
ing performed as the result of
the burst-mode access, but the
burst-mode access remains es-
tablished. Additional accesses
and transfers may occur at
some later time (i.e., the burst-
mode access may become ac-

tive) without the retransmission
of the address for the access.

The burst-mode access can no
longer continue because of
some condition, but the burst-
mode access can be
reestablished within a short
amount of time.

All required accesses have
been performed.

The burst-mode access can no
longer continue because of
some exceptional condition.
The access may be re-
establishedonly after the excep-
tional condition has been cor-
rected, if possible.

70

Am29005 Microprocessor

AT

ADVANCED MICRO DEVICES

ADVANCE INFORMATION

28E D -

T-49-17-32 oA

ACTIVE

Deactivats
DEREG

1f no exception
retransmit address

1-kb boundary
or channel arbitration

Deactivate

DERR Active,
Accoss of interruptirap taken

Note: The Am29005 microprocessor does not suspend burst-mode data accesses.

Flgure 5§6. Processor Burst-Mode Data Accesses: Control Flow

Each of the above conditions, except for the terminated
condition, is under the control of both the processor and
slave daevice or memory. The terminated condition is
determined by the processor, because only the proces-
sor can determine that all required accesses have been
performed. The following sections discuss each of the
above conditions with respect to the burst-mode
protocol.

Establishing Burst-Mode Accesses

The Am29005 microprocessor attermnpts to perform all
instruction prefetches using burst-mode accesses, ex-
copt for instruction fetches at the lastword before a 1-kb
address boundary. For data accesses, the processor
attempts to perform Load Multiple and Store Muitiple
operations using burst-mode accesses. The processor
indicates that it desires a burst-mode access by assert-

ing IBREQ or DBREQ during the cycle in which the initial
address is placed on the address bus (however, note
that these signals become valid later in the cycle than
the address).

The inputs IBACK and DBACK indicate that a requested
burst-mode access Is supported. The processorignores
the value of IBACK unless IBREQ Is asserfed, and it ig-
nores the value of DBACK unless DBREQ is asserted.

When it desires a burst-mode access, the processor
continues to drive TBREQ or DBREQ on every cycle for
which the address is valid on the address bus. During
this time, the device or memory involved in the access’
may assert IBACK or DBACK to indicate that it can per-
formthe burst-mode access. If IBACK or DBACK (as ap-
propriate) is asserted while the initial address appears

Am29005 Microprocessor 71

or A T e e e AT A T T £

TS I I YT Y TR eI

B 0257525 0033281 9 WM AMD

ADVANCED HICRO DEVICES 'EBE D MWW 0257525 0033282 0 - AMD
uAMD ADVANCE INFORMATION T..49 17-32
Start DBREQ, DBACK Active
T acTvE [T :
T Unsuccessful
Accoss

Activate DRDY
Drive data if

Inactive

Activate DRDY

Terminated,
Preempted, or
Canceled by
Procassor

Preempted

Succasstul

Accoss Unsuccessful

Accass

Drive data if
read

Cancelod

Flgure 57. Slave Burst-Mode Data Accesses: Control Flow .

on the address bus, the burst-mode access Is estab-
lished. Inthe following cycle, the processor removes the
request address and deasserts IREQ or DREQ. How-
ever, it continues to assert IBREQ or DBREQ.

If the burst-mode access Is not established on the first
access, the processor attempts to establish a burst-
mode access on each subsequent address transfer, as
long as there are more accesses yet to be performed.
During any subsequent access, the addressed device or
memory may establish a burst-mode access by assen-
ing IBACK or DBACK, If the burst-mode access is never
established, the default behavior is to have the proces-
sor transmit an address for every access.

Active and Suspended Burst-Mode Accesses

After the burst-mode access is established, IBREQ and
DBREQ are used during subsequent accesses to indi-
cate that the processor requires at least one more ac-
cess. If IBREQ or DBREQ s active at the end of the cycle
Inwhich an access is successfully completed (i.e., when
IRDY or DRDY is active), the processor requires ano!her
access. If the slave device or memory previously has
not preempted the burst-mode access, and does not
preempt (by deasserting IBACK or DBACK) or cancel
(by asserting IERR or DERR) the burst-mode access in
the cycle that the access completes, the additional ac-
cess must be performed.

The execution rate of instructions is known only dynami-
cally, so that in certain situations, a burst-mode instruc-
tion access must be suspended. if TBREQ is inactive
during the cycle in which an Instruction access is com-
pleted, the burst-mode access is suspended (it it is nei-
ther preempted nor canceled at the same time). The
burst-mode access remains suspended unless the
processor requests a new instruction access (in which
case TREQ Is asserted), or unless the instruction mem-
ory preempts the burst-mode access.

A suspended burst-mode instruction access becomes
active wheneverthe processor can accept more instruc-
tions. The processor activates the burst-mode access
by asserting IBREQ. If the Instruction memory does not
preempt the burst-mode access during this cycle, anin-
struction access must be performed.

When a suspended burst-mode instruction access is ac-
tivated, the resulting instruction access is not permitted
tobe completed inthe cycle inwhich IBREQ is asseried,

but may be completed in the next cycle. The reason for
this restriction Is that the burst-mode protocol is defined
such that the combination of an active level on IBREQ
and IRDY causes an instruction access (as previously
discussed). lfthe instruction access is completed imme-
diately in the cycle where a suspended burst-mode ac-
cess is activated, there is an ambiguity in the protocol:

r
72 Am29005 Microprocessor

ADVANCED MICRO DEVICES

e e

c8E D WM 0257525 0033243 2 W AMD

ADVANCE INFORMATION T-49-17-32 ,AMDn'

it is possible to Interpret a single-cycle assertion of
IBREQ as a request for two instructions.

The above ambiguity is resolved by delaying the instruc-
tion access resulting from a reactivated burst-mode ac-
cess for a cycle. Since this restriction applies only when
the Instruction Prefetch Buffer is full and the Instruction
memory is capable of a very fast access, the delayed in-
struction response has no performance impagct.

The Am29005 microprocessor does not suspend burst-
mode data accesses because the data transfers occur
to and from general-purpose registers, which are al-
ways avallable. Howaver, other channel masters may
suspend burst-mode data accesses (during direct mem-
ory accesses, for example). The principles for suspend-
ing burst-mode accesses are the same as those for in-
struction accesses discussed above.

Processor Preemptlon, Termination,
and Canceliation

The processor may preempt, terminate or cancel a
burst-mode access by deasserting TBREQ or DBREQ
and asserting TREQ or DREQ at some later point. Nor-
mally, the processor receives one more instruction or
data word after IBREQ or DBREQ is deasserted. How-
ever, this access may be completed in the same cycle
that IBREQ or DBREQ Is deasserted. During the period
after IBREQ or DBREQ is deasseried and before TREQ

. orDREQ Is asserted, the burst-mode access is in a sus-

pended condition.

The slave device or memory cannot distinguish be-
tween preempted, terminated, and canceled burst-
mode accesses, when these are caused by the proces-
sor, until the processor asserts IREQ or DREQ. f the
slave continues to assert IBACK or DBACK after IBREQ
or DBREQ Is deasserted, the stave should be prepared
to accept any new request during the cycle In which
IREQor DREQis asserted to begin the new access. The
reason for this is that the processor may attempt to es-
tablish a burst-mode access for the new access: if the
slave Is asserting IBACK or DBACK because of a previ-
ously preempted, terminated, or canceled burst-mode
access, the processor interprets the active TBACK or
DBACK as establishing the new burst-mode access and
removes the request in the following cycle.

The processor preempts a burst-mode access when an
external channel master arbitrates for the channel, or
when a burst-mode fetch crosses a 1-kb address
boundary. The burst-mode access Is reestablished us-
ing the new address.

Note that the preemption resulting from 1-kb address
boundaries is advantageous for devices or memories
that require counters to follow the burst-mode address
sequence. Since all burst-mode accesses are word
accesses and the processor retransmits an address at
every 1-kb address boundary, an 8-bit counter in the
slave device or memory is suificient to follow the burst-

mode address sequence. Additional address bits are
simply latched.

The processor terminates a burst-mode access when-
ever all required instructions or data have been ac-
cessed. In the case of instruction accesses, the burst-
mode access is terminated when a nonsequential fetch
occurs. In the case of data accesses, the burst-mode
access Is terminated when the courtt indicates a single
load or store remains. The last load or store is executed
as a simple access.

The processor cancels a burst-mode access when an
interrupt or trap is taken. Note that a trap may be caused
by the burst-mode access, for example when a XDERR
response Is recelved to an access in the sequence. If
the processor cancels a burst-mode access when an
access in the sequence remains to be completed, this
access must be completed in spite of the cancellation.

Canceled burst-mode data accesses may be restarted
at some (possibly miuch later) point in execution via the
Channel Address, Channel Data, and Channel Control
registers. In this case, the burst-mode access is re-
started at the point at which it was canceled, rather than
at the beginning of the original address sequence.

Slave Preemptlon and Cancellation

The slave device or memory involved in a burst-mode
access may preempt the access by deasserting IBACK
or DBACK. The processor samples IBACK and DBACK
when TRDY and DRDY are active so that TBACK and
DBACK may be deasserted as the last supported ac-
cess is completed. However, IBACK and DBACK also
may be deasserted in any cycle before the access is
completed. If IBACK or DBACK is deasserted when the
processor is in a state where it expects an access, the
access must be completed.

In general, the slave device or memory preempts the
burst-mode access whenever it cannot support any fur-
ther accesses in the burst-mode sequence. This nor-
mally occurs whenever an implementation-dependent
address boundary is encountered (e.g., a cache-block
boundary), but may occur for any reason. By preempt-
ing the burst-mode access, the slave receives a new re-
quest with the address of the next instruction or data
word required by the processor.

The slave device or memory may cancel a burst-mode-
access by asserling IERR or DERR in response to a re-
quested access. The signals IBACK or DBACK need not
be deasserted at this time, but should be deasserted in
the next cycle.

Note that the IERR and DERR signals cause non-mask-
abletraps, exceptinthe case where IERR s asserted for
an instruction that the processor does not execute.

Am29005 Microprocessor . 73

ADVANCED MICRO DEVICES

28E D

1-49-17-32

Arbitration

External masters can gain access to the address, data,
and instruction buses by asserting the BREQinput. The
processor completes any pending access, preempts
any burst-mode access, and asserts the BGRT output.
Atihis time, the processor places allchannel outputs as-
sociated with the address, data, and instructionbuses in
the high-impedance state.

For the first cycle in which BGRT is asserted, the output
BINV s also asserted. If the external master cannot con-
trol the address bus and associated controls in the cycle
where BGRT Is asserted, the active levet on BINV may
be used to define an idle cycle for the channel (i.e., any
spurious access requests are ignored). The BINV signal
is assertad only for a single cycle, so the external master
must take control of the channel in the cycle after BGRT
Is asserted. .

While the BREQ input remains asserted, the processor
continues to assert BGRT. The external master has con-
trol over the channel during this time.

To release the channel to the processor, the external
master deasserts BREQ, but must continue to control
the channel for the first cycle in which BREQ is
deasserted. In the cycle after BREQ is deasserted, the
processor asserts BINV and deasserts BGRT; the exter-
nal master should release control of the channel at this
time. On the foliowing cycle, the processor deasserts
BINV and is able to use the channel. The processor
reastablishes any burst-mode access preempted by
arbitration.

The gocessordoes not relinquish the channelwhen the
K signal is active. This prevents external masters
from interfering with exclusive accesses.

Bus Sharing—Electrical Considerations

When buses are shared among multiple masters and
slaves, itis importantto avoid situations where these de-
vices are driving a bus at the same time. This may occur
whenmore than one master or slave is allowedto drive a
bus inthe same cycle if bus arbitration Is incompletely or
incorrectly performed. However, it also occurs when a
master or slave releases a bus inthe same cycle thatan-
other master or slave gains control, and the first master
or slave is slow in disabling its bus drivers, compared to
the point at which the second master or slave begins to
drive the bus. The latter situation is called a bus collision
In the following discussion.

In addition to the logical errors that can occur when mul-
tiple devices drive a bus simultaneously, such situations
may cause bus drivers to carry large amounts of electri-
cal current. This can have a significant impact on driver
reliability and power dissipation. Since bus collisions
usually occur for a smali amount of time, they are of less
concern, but may contribute to high-frequency electro-
magnetic emissions.

The Am29005 microprocessor channet is defined to
prevent all situations where multiple drivers are driving a
bus simultaneously. However, bus collisions may be al-
lowed to occur, depending on the system design.

Inthe case of the Am29005 microprocessor channel, ar-
bitration for the channe! prevents the processor from
driving the address and data buses at the same time as
another channel master, If there is more than one exter-
nal master, the system design must include some
means for ensuring that only one external master gains
control of the channel, and that no external master gains
control of the channel atthe same time as the processor.

When the processor relinquishes control of the channel
to an external master, bus collisions may be prevented
by not allowing the external master to drive any bus
while BiNV s active. This ensures that all processor out-
puts are disabled by the time the external master takes
control of the channel. However, there is nothing in the
channel protocol to prevent the external master from
taking control as soon as BGRT is asserted.

Slave devices and memories are prevented from simul-
taneously driving the instruction bus or data bus by
allowing only the device or memory performing a pri-
mary access to drive the appropnate bus. When a
pipelined access becomes a primary access, it may
drive the instruction or data bus immediately, so there is
a potential bus collision if the pipelined access is
performed by a slave other than the stave performing
the original primary access. This bus collision may be
prevented by restricting all slaves to driving the instruc-
tion and data buses in the second half-cycle {using
SYSCLK, for example). Since the processor samples
data only at the end of a cycle, this restriction does not
affect performance.

When the processor performs a store immediately fol-
lowing a load, it drives the data bus for the store in the
second cycle following the cycle in which the data for the
load appears on the dala bus. This provides a complete
cycle for the slave involved in the load to disable its data
drivers. The processor continues to drive the data bus
until it receives a DRDY or DERR in response to the
store; it ceases to drives the data bus inthe cycle follow-
ing the response.

Channel Behavior for Interrupts
and Traps

If aninterrupt or trap is taken, any burst-mode accesses
are canceled. If a request for a pipelined accessisonthe
address bus, this request is removed. Any other ac-
cesses are completed and no new accesses are started,
other than those required for the interrupt or trap. Note
that any accesses that the processor expects to com-
plete must be completed, even though burst-mode and
pipelined accesses are canceled.

When interrupt or trap processing is complete, any can-
celed burst-mode access transactions are reestab-

74 Am29005 Microprocessor

B 0257525 0033284 4 WE AMD
o ADVANCE INFORMATION

e oy S b e

ADVANCED MICRO DEVICES

ADVANCE INFORMATION T—49—17-32

R Y S

28E D WM 0257525 0033285 b ER AMD

AMD P |

lished using the address of the access that was to be
performed next when the interrupt or trap was taken.
Uncompleted pipelined accesses are restarted, either
by the interrupt return sequence in the case of an In-
struction access, or by restarting the initiating instruction
in the case of a data access.

Note that the restarting of a pipelined access Is not per-
formed by the Channel Address, Channel Data, and
Channel Control registers, since these registers may be
required to restart the primary access. The instruction
initiating the pipelined access is not allowed to be com-
pleted until the primary access is completed, so that the
Program Counter 1 (PC1) register contains the address
of the Initiating instruction when a pipselined access is
canceled. The address in PC1 can restart this instruc-
tion on interrupt retum.

Effect of the LOCK Output

The [GCK output provides synchronization and exclu-
sion of accesses In a multiprocessor environment.
LOCK has no predefined effect for a system, other than
the fact that the Am29005 microprocessor does not
grant the channel to an external master while LOCK is
active.

The LOCK outputis asserted forthe address cycle ofthe
Load-and-Lock and Store-and-Lock instructions, and is
asserted for both the read and write accesses of a Load
and Set instruction. LOCK may also be active for an ex-
tended pericd of time under contro! of the Lock bit inthe
Current Processor Status Register (this capability is
available only to Supervisor-mode programs).

LOCK may be defined to provide any level of resource
locking for a particular system. For example, it may tock
the channel, an individual device or memory, or a loca-
tion within a device or memory.

Whena resource is locked, itis available for access only
by the processor with the apprapriate access privilege.
The mechanisms for restricting accesses and the meth-
ods for reporting attempted violations of the restrictions
are systém-dependent.

Initialization and Reset

When power is first applied to the processor, it Is in an
unknown state and must be placed in a known state.
Also, under certain circumstances, it may be necessary

to place the processor in 4 defined state. This is accom-
plished by the Reset mode, which is invoked by activat-
ing the RESET pin for the required duration. The Reset
mode configures the processor state as foliows:

Instruction execution Is suspended.
Instruction fetching is suspended.
Any interrupt or trap conditions are ignored.

> L p o=

The Current Processor Status Register is set as
shown in Figure 58. :

5. The Data Width Enable bit of the Configuration
Register is reset.

6. The Contents Valid bit of the Channel Control
Register is reset.

Except as previously noted, the contents of all general-
purpose registers and special-purpose registers are un-
defined.

The Reset mode also configures the processor to initi-
ate an instruction felch using an address of 0. Since the
ROM enable (RE) bit of the Current Processor Status is
1, this fetch is directed to external instruction read-only
memory. This fetch occurs when the Reset mode is
exited (i.e., when the RESET input is deasserted).

The Reset mode is invoked by asserting the RESET In-
put and can be entered only if the SYSCLK pin is operat-
ing normally, whether or not the SYSCLK pin is being
driven by the processor. The Reset mode is entered
within four processor cycles after RESET is asserted.
The RESET input must be asserted for at least four pro-
cessor cycles to accomplish a processor reset.

The Reset mode can be entered from any other proces-
sor mode (e.g., the Reset mode can be enteredfromthe
Halt mode). If the RESET input is asserted at the time
that power is first applied to the processor, the proces-
sor enters the Reset mode only after four cycles have
occurred on the SYSCLK pin.

The Reset mode is exited when the RESET Input is de-
asserted. Either three or four cycles after RESET Is de-
assertad (depending on internal synchronization time),
the processor performs an initial instruction access on
the channel. The initial instruction access is directed to

31 23

15 7 0
ojojojoiojojojojojojo|ojofojojofolofofolo]|t1]ojtlolxixl1]lolol1}1
- —v AR EER RN

Reserved T T R I T B - T T

1 1P} TP, FZ! RE! Res! SM ! DI |

9 L] 1 L] L] L] L]]

CA TE TU LK WM Hes IM DA

Figure 58. Current Processor Status Register In Reset Mode

Am29005 Microprocessor 75

LR

ADVANCED MICRO DEVICES

aAMD ADVANCE

28E D

INFORMATION

B R T

T-49-17-32

Address 0 in the instruction read-only memory (instruc-
tion ROM). If instruction ROM is not implemented in a
particular system, another device or memory must re-
spond to this Instruction fetch.

Ifthe CNTLi-CNTLo inputs are 10 or 01 when RESET is
deasserted, the processor enters the Halt or Step mode,
respectively. if the processor enters the Halt mode
immediately after reset, the protection checking that
normally applies to the Halt instruction is disabled so
that the Hait Instruction can be used as an instruction
breakpoint in a User-made program. The Load Test in-
struction mode cannot be directly entered from the Re-
set mode. if the CNTLi—CNTLo inputs are 00 immedi-
ately after RESET Is deasserted, the effect on processor

operation is unpredictable. if the CNTLi—-CNTLo inputs
are 11, the processor enters the Executing made.

The processor samples the STATe output intemally
when RESET Is asserted. A High level on STATo in'this
case is used to enable a special test configuration and
causes the processor to be inoperable. When RESET is
asserted, the processor drives STATo Low in order to
disable this test contfiguration, However, if processor
outputs are disabled by the Test mode, the processor is
not able to drive: STATs. Thus, if RESET is asserted
when the processor is in the Test mode, the STATo pin
must be driven Low externally. (In a master/slave con-
figuration, STATe s driven Low by the master processor
when RESET is asserted.)

76 Am29005 Microprocessor

BN 0257525 003328k & WE AMD

Hobbmi s

ADVANCED MICRO DEVICES

- - T P

c8E D- WM 0257525 00332487 T MR AMD
ADVANCE INFORMATION AMDu
ABSOLUTE MAXIMUM RATINGS OPERATING RANGES T-49-17-32
Storage Temperature —65 to +150°C Commerclal {C) Devices
Voltage on any Pin with Case Temperature (Tg) eedan 0 to +85°C
RespecttoGND ~0.5to Vec +0.5V Supply Voltage (Vce) +4.75t0+5.25V

Stresses above those listed under ABSOLUTE MAXI-
MUM RATINGS may cause permanent device failure.
Functionality at or above these limits Is not implied. Ex-
posure to absolute maximum ratings for extended peri-
ods may affect device reliability.

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating range

Advance Information

Parameter | Parameter
Symbol Description Test Conditions Min Max Unit
Vi Input Low Voltage -0.5 0.8 v
ViH input High Voltage 2.0 Veo +0.5 \'
ViLincLk INCLK Input Low Voltage -0.5 0.8 \'2
Vimerx INCLK Input High Voltage 2.0 Veo +0.5 v
ViLsyscix SYSCLK Input Low Voltage -0.5 0.8 Vv
Vinsyscix SYSCLK Input High Voltage Vec -0.8 Vee +0.5 \
Vou Cutput Low Voltage for

All Outputs except SYSCLK lo.=3.2 mA 0.45 \'4
Vou Qutput High Voltage for

All Outputs except SYSCLK lon=—400 pA 2.4 v
lu Input Leakage Current 0.45V < Vin< Veo —0.45V +10 HA
o Qutput Leakage Current 0.45V < Vour < Vec —0.45V +10 pA
lecor Operating Power-Supply Vee=5.25V, Outputs

Current Floating; Holding RESET 22 mA/MHz

active with externally
supplied SYSCLK

Vore SYSCLK Qutput Low Voltage | loic=20 mA 0.6 vV
Vore SYSCLK Output High Voltage | lonc=20 mA Vec~0.6 \
losano SYSCLK GND Short

Circuit Current Vec=5.0V 100 mA
losvee SYSCLK Vce Short

Circuit Current Vec=5.0V 100 mA
CAPACITANCE
Parameter | Parameter
Symbot Description Test Conditions Min Max unit
Cw Input Capacitance 15 pF
CucLk INCLK Input Capacitance 20 - pF
CsyscLk SYSCLK Capacitance fC=1MHz 90 pF
Cour Output Capacitance 20 pF
Cwo 1/0 Pin Capacitance 20 pF

Am29005 Microprocessor 77

ADVANCED MICRO DEVICES

u AMD

P PR

O SNV AN Y

cdE D WM 0257525 0033248 1 mE AMD

ADVANCE INFORMAT

1ON

7-49-17-32

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Advance Information
16 MHz
No. Parameter Description Tast Conditions Min Max Unit
1 System Clock (SYSCLK)
Pariod (T) Note 1 60 1000 ns
1A SYSCLK at 1.5 V to SYSCLK
at 1.5 V when used as an output Note 13 05T -2 05T +2 ns
2 SYSCLK High Time when
used as an input Note 13 27 ns
3 SYSCLK Low Time when
used as an input Note 13 22 ns
SYSCLK Rise Time Note 2 5 ns
SYSCLK Fall Time Note 2 ns
Synchronous SYSCLK Output
Valid Delay Notes 3, 12 3 16 ns
6A Synchronous SYSCLK Output
Valid Delay for Dy~Do Note 12 4 20 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output Invalid Delay 14, 15 3 30 ns
8 Synchronous SYSCLK
Output Valid Delay Notes 5, 12 3 16 ns
8A Three-State SYSCLK Synchronous Notes 5,
Qutput Invalid Delay 14, 15 3 30 ns
9 Synchronous Input Setup Time Note 7 15 ns
9A Synchronous Input Setup Time
for Dy=De, b=l 8 ns
98 Synchronous Input Setup Time
for DRDY 16 ns
10 Synchronous Input Hold Time Note 6 2 ns
11 Asynchronous [nput Minimum
Pulse Width Note 8 T+10 ns
12 INCLK Period 30 500 ns
12A | INCLK to SYSCLK Delay 15 ns
128 INCLK to SYSCLK Delay 15 ns
13 INCLK Low Time 12 ns
14 INCLK High Time 12 ns
15 INCLK Rise Time ns
16 INCLK Fall Time ns
17 INCLK to Deassertion of RESET (for
phase synchronization of SYSCLK) Note 9 0 5 ns
18 WARN Asynchronous Deassartlon
Hold Minimum Pulse Width Note 10 4T ns
19 BINV Synchronous Output Valid
Delay from Note 12 1 9 ns
20 Three-State Synchronous SYSCLK Notes 11,
Output Invalid Delay for Ds-Do 14, 1§ 3 25 ns
78 Am29005 Microprocessor

cdE D WM 0257525 0033289 3 WM AMD
ADVANCE INFORMATION AMD‘I

Notes:

© O N,

. AC measurements made felative to 1.5 V, except where noted. T—4g-1 7-32
. S8YSCLK rise and fall times measured between 0.8 V and (Ves—~1.0 V).)
. Synchronous Outputs relative to SYSCLK rising edge include: Ay—A., BGRT, R/W, SUP/US, LOCK, MPGM,-MPGM,,

1REQ, IREQT, FIA, DREQ, DREQT,~DREQT,, PDA, OPT,~OPT,, STAT~STAT,, and MSERR.

. Three-state Synchronous Outputs relative to SYSCLK rising edge include: Ay-A,, RMW, SUP/US, TOCK,

MPGM,-MPGM,, IREQ, IREQT, PIA, DREQ, DREQT,~-DREQT,, PDA, and OPT~OPT,.

. Synchronous Outputs relative to SYSCLK falling edge (SYSCLK): IBREQ, DBREQ. .

. Synchronous Inputs include: BREQ, PEN, TRDY, IERR, IBACK, DERR, DBACK, CDA, 1:—k, DRDY and Dy~D,.
. Synchronous Inputs include: BREQ, PEN, TRDY, TERR, IBACK, DERR, DBACK, and CDA.

. Asynchronous inputs include: WARN, INTR~INTH,, TRAP,~TRAF,, and CNTL,—~CNTL,

. RESET s an asynchronous Input on assertion/deassertion. As an optiontathe user, RESET deassertion can be used to

forca the state of the Internal divide-by-twa flip-flop to synchronize the phase of SYSCLK (it internally generated) rela-
tive to RESET/INCLK. -

10. WARN has a minimum pulse width requiremant upon deassertion,

11. To guarantee Store/Load with one-cycle memories, Dy—D, must be asserted relative to SYSCLK falling edge from an
external drive source.

12. Refer to Capacitive Output Delay table when capacitive loads exceed 80 pF.

13. When used as an Input, SYSCLK presents a 90-pF max. load to the external driver. When SYSCLK is used as an out-
put, timing Is specified with an external load capacitance of 200 pF.

14. Three-State Output Inactive Test Load. Three-State Synchronous Output Invalid Delay is measured as the timeto a
1500 mV change from prior output level.

15. When a three-state output makes a synchronous transition from a valid logic leve! to a high-impedance state, data is
guaranteed to be held valld for an amount of time equal to the lesser of the minimum Three-State Synchroncus Qutput
Invalid Delay and the minimum Synchronous Output Valid Delay. :

Conditions:
. a. All inputs/outputs are TTL compatible for Vi, Vie, Vor, and Vo unless otherwise noted.
[b. All output timing specifications are for 80 pF of loading.
o c. All setup, hold, and delay times are measured relative to SYSCLK or INCLK unless otherwise noted.
d. Allinput Low levels must be driven to 0.45 V and all input High levels must be driven to 2.4 V except SYSCLK.

Am29005 Microprocessor 79

S e Ty T S8 B =Enr e

o

ADVANCED MICRO DEVICES

G NP

'28E D W 0257535

& avp ADVANCE INFORMATION , 7
SWITCHING WAVEFORMS T-49-17-32
le 'O >
() >
SYSCLK
Vee-1.0V Vee=1.0V
1.5V TsV //1.sv 15V
08V 08V
—(PAD—>
[+
SYSCLK
Synchronous 15V -
Outputs
SYSCLK /
Synchronous 15V
Outputs
(19
BINV 15V
9,9A
.
(19
Synchronous Inputs
15V 15V
Relative to SYSCLK
80 Am29005 Microprocessor

0033290 T MR AMD

ADVANCED MICRO DI::VICES' 24E D WH 0257525 0033291 1 W AMD
ADVANCE INFORMATION 7 AMDV;!
SWITCHING WAVEFORMS (continued)

T-49-17-32 ‘
INCLK
RESET
WARN 15V
IA .
« ® .|
((—
77
ﬁ::)yur:ghmnous 15V 15V
Idd
rld
_, INCLK and Asynchronous Inputs
Am29005 Microprocessor 81

ADVANCED MICRO DEVICES
X v ADVANCE INFORMATION

-17-32
SWITCHING WAVEFORMS (continued) T-49-11

O]
U

Zl Veo ~1.0V Vee-1.0V /
165V 1.5V 1.5V
08V 08V 7
—Q® o O

SYSCLK Definition

7 . R 15V
"SYSCLK 1

INCLK

INCLK to SYSCLK Delay

82 Am29005 Microprocessor

ADVANCED MICRO DEVICES

28kt D

Ml 0257525 0033293 5 ER AMD

ADVANCE INFORMATION

Capacitive Output Delays
For loads greater than 80 pF

- T-49-17-32
This table describes the additional output delays for capacitive loads greater than 80 pF. Values in the Maximum
Additional Delay column should be added to the value listed in the Switching Characteristics table. For loads less

than or equal to 80 pF, refer to the delays listed in the Switching Characteristics table.

AmD X

Total Maximum

7 External Additlonal
F No. Parameter Description Capacitance Delay
o [} Synchronous SYSCLK Output Valid Delay 100 pF +1ns
150 pF +2ns
200 pF +4ns
250 pF +6 ns
300 pF +8 ns
8A Synchronous SYSCLK Output Valid Delay for Dy~D, 100 pF +ins
150 pF +6 ns
200 pF +10ns
250 pF +15ns
300 pF +19ns
8 Synchronous SYSCLK Output Valid Delay 100 pF +ins
150 pF +2ns
200 pF +4ns
250 pF +6ns
300 pF +8 ns
19 BINV Synchronous Output Valid Delay from SYSCLK 100 pF +1ns
) 150 pF +3ns
200 pF +4 ns
250 pF +6ns
300 pF +7ns

SWITCHING TEST CIRCUIT

Vi

Vu

lon = 400 uA

o = 3.2mA

Am239005
Pin Under Test

lCL

090758-001A
1C001030

C, Is guaranteed to 80 pF. For capacitive loading greater
than 80 pF, refer to the Capacitive Output Delay table.

Am29005 Microprocessor

n AMD

= e A e st £ T a— Ca———y Ty

ADVANCE INFORMATION T-49-17-32hm'
PHYSICAL DIMENSIONS T
QFP168 (PQFP)
(EIAJ)
| 31.90 +/- .15 >
- 27.80 +/- .85
- 38.00 +/-.85 g
| [o - » 43 W

300 +/- .05 ——— 85 Y ==
F =0 VE=
[ot]

) |

| | 31.90 +/- .05

] 1

i 1
.65 +/- .05 —L‘E': ‘ =1
=1l ¥ \BI==:]
= 126]]

127 - 168
_——— - — - — y
TOP VIEW

a_‘{oi.oi_j _______ Il

97.801.05——————-1
"
3—) 28/00 +.05 i|>| L_)

MAX) 8

127 +.05

14835A

SIDE VIEW

Am238005 Microprocessor

R

c8E D M 0257525 0033294 7 ER AMD

S s Ee—- mamra o

ADVANCED MICRO DEVICES - c4E D WM 0257525 0033295 9 W AMD
ADVANCE INFORMATION . AvD A
PHYSICAL DIMENSIONS (continued) T-49-17-32
QFP168 (MCQFP)

MOLDED CARRIER QUAD FLAT PACK

—» w— 1.8 (2X)
41.50 >
1 llllllllllllllllllllllllllIII(Ill|[lllll|lllllllllll|llIllllllll|llll 4.00R(8x)
<_—
T T 5N} F—2.50R (6X)
o)l £
‘\‘\:: &L é
68 - r 3 .
= 1 mﬁ? E {850
l J I ;) PITCH
! I é
] I E
I] 3
Y
=42 - >384 g
% g E-1.50 DIA TYP
S i 7 E |
1.40 CHAMF

TOP VIEW) -

- 46.000 +/- .050
- 45.200 +/- .050 >
27.800 +/- .050
Package Top .

le————— 28.0004/-.050 _______]
Package Bottom

38.000 +/- .050

I 41.000 +/- .050

SIDE VIEW 180004

AMD Is a ragistered trademark and Am29000, Am29005, Am29027, and 29K are trademarks of Advanced Micro Devices, Inc.
Ada is a registered trademark of Department of Defense.

Am29005 Microprocessor 85

e e e m e e e e e e e e e EES

ot L

A e A i

