

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Voltage Output DACs with 2 ppm/°C Reference

Data Sheet

AD5761R/AD5721R

FEATURES

8 software-programmable output ranges: 0 V to 5 V, 0 V to 10 V, 0 V to 16 V, 0 V to 20 V, \pm 3 V, \pm 5 V, \pm 10 V, and -2.5 V to \pm 7.5 V; 5% overrange

Low drift 2.5 V reference: ±2 ppm/°C typical Total unadjusted error (TUE): 0.1% FSR maximum

16-bit accuracy: ±2 LSB maximum

Guaranteed monotonicity: ±1 LSB maximum

Single channel, 16-/12-bit DACs Settling time: 7.5 µs typical Integrated reference buffers Low noise: 35 nV/√Hz

Low glitch: 1 nV-sec (0 V to 5 V range)

1.7 V to 5.5 V digital supply range
Asynchronous updating via LDAC
Asynchronous RESET to zero scale/midscale

DSP/microcontroller-compatible serial interface

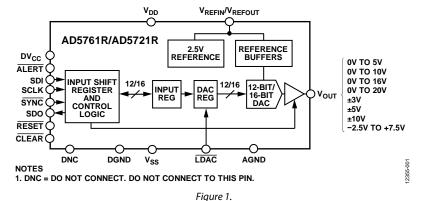
Robust 4 kV HBM ESD rating

Operating temperature range: -40°C to +125°C

APPLICATIONS

Industrial automation
Instrumentation, data acquisition
Open-/closed-loop servo control, process control
Programmable logic controllers

GENERAL DESCRIPTION


The AD5761R/AD5721R are single channel, 16-/12-bit serial input, voltage output, digital-to-analog converters (DACs). They operate from single supply voltages from 4.75 V to 30 V or dual supply voltages from -16.5 V to 0 V V_{SS} and 4.75 V to 16.5 V V_{DD} . The integrated output amplifier, reference buffer, and reference provide a very easy to use, universal solution.

The devices offer guaranteed monotonicity, integral nonlinearity (INL) of ± 2 LSB maximum, 35 nV/ $\sqrt{\text{Hz}}$ noise, and 7.5 μ s settling time on selected ranges.

The AD5761R/AD5721R use a serial interface that operates at clock rates of up to 50 MHz and are compatible with DSP and microcontroller interface standards. Double buffering allows the asynchronous updating of the DAC output. The input coding is user-selectable twos complement or straight binary. The asynchronous reset function resets all registers to their default state. The output range is user selectable, via the RA[2:0] bits in the control register.

The devices available in the 16-lead TSSOP package offer guaranteed specifications over the -40° C to $+125^{\circ}$ C industrial temperature range.

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS

Features	
Applications	
General Description	
Functional Block Diagram	
Revision History	2
Specifications	3
AC Performance Characteristics	
Timing Characteristics	2
Timing Diagrams	2
Absolute Maximum Ratings	9
ESD Caution	9
Pin Configuration and Function Descriptions	10
Typical Performance Characterstics	1
Terminology	22
Theory of Operation	24
Digital-to-Analog Converter	24
Transfer Function	2
DAC Architecture	2
Serial Interface	25
Hardware Control Pins	

Thermal Hysteresis
Register Details
Input Shift Register
Control Register
Read Back Control Register29
Update DAC Register from Input Register29
Read Back DAC Register30
Write to and Update DAC Register30
Read Back Input Register
Disable Daisy Chain31
Software Data Reset
Software Full Reset
No Operation Registers
Applications Information
Typical Operating Circuit
Power Supply Considerations
Evaluation board
Outline Dimensions
Ordering Guide

REVISION HISTORY

11/14—Revision 0: Initial Version

SPECIFICATIONS

 $V_{DD}{}^{1}=4.75~V~to~30~V, V_{SS}{}^{1}=-16.5~V~to~0~V, AGND=DGND=0~V, V_{REFIN}/V_{REFOUT}=2.5~V~external, DV_{CC}=1.7~V~to~5.5~V, R_{LOAD}=1~k\Omega~for~all~ranges~except~0~V~to~16~V~and~0~V~to~20~V~for~which~R_{LOAD}=2~k\Omega, C_{LOAD}=200~pF, all~specifications~T_{MIN}~to~T_{MAX}, unless otherwise~noted.$

Table 1.

Parameter ²	Min	Тур	Max	Unit	Test Conditions/Comments
STATIC PERFORMANCE					External reference ³ and internal reference, outputs unloaded
Programmable Output Ranges	0		5	V	
	0		10	V	
	0		16	V	
	0		20	V	
	-2.5		+7.5	V	
	-3		+3	V	
	-5		+5	V	
	-10		+10	V	
AD5761R					
Resolution	16			Bits	
Relative Accuracy, INL⁴ B Grade	2		+2	LSB	All ranges except 01/to 161/and 01/to 201/
B Grade	-2		+2	LSB	All ranges except 0 V to 16 V and 0 V to 20 V, $V_{REFIN}/V_{REFOUT} = 2.5 V$ external and internal reference
Differential Nonlinearity, DNL AD5721R	-1		+1	LSB	
Resolution Relative Accuracy, INL	12			Bits	
B Grade	-0.5		+0.5	LSB	External reference ³ and internal reference
Differential Nonlinearity, DNL	-0.5		+0.5	LSB	
Zero-Scale Error	-6		+6	mV	All ranges except ±10 V and 0 V to 20 V, external reference ³
	-10		+10	mV	0 V to 20 V, ±10 V ranges, external reference ³
	-6		+6	mV	All ranges except ± 5 V, ± 10 V and 0 V to 20 V, internal reference
	-8		+8	mV	±5 V range, internal reference
	-9		+9	mV	0 V to 20 V range, internal reference
	-13		+13	mV	±10 V range, internal reference
Zero-Scale Temperature Coefficient (TC) ⁵		±5		μV/°C	Unipolar ranges, external reference ³ and internal reference
		±15		μV/°C	Bipolar ranges, external reference ³ and internal reference
Bipolar Zero Error	-5		+5	mV	All bipolar ranges except ±10 V
	-7		+7	mV	±10 V output range
Bipolar Zero TC ⁵		±2		μV/°C	±3 V range, external reference ³ and internal reference
		±5		μV/°C	All bipolar ranges except ±3 V range, external reference ³ and internal reference
Offset Error	-6		+6	mV	All ranges except ±10 V and 0 V to 20 V, external reference ³
	-10		+10	mV	$0V$ to $20V$, $\pm 10V$ ranges, external reference ³
	-6		+6	mV	All ranges except ± 5 V, ± 10 V, and 0 V to 20 V; internal reference
	-8		+8	mV	±5 V range, internal reference
	-9		+9	mV	0 V to 20 V range, internal reference
	-13		+13	mV	±10 V range, internal reference

Parameter ²	Min	Тур	Max	Unit	Test Conditions/Comments
Offset Error TC⁵		±5		μV/°C	Unipolar ranges, external reference ³ and internal reference
		±15		μV/°C	Bipolar ranges, external reference ³ and internal reference
Gain Error	-0.1		+0.1	% FSR	External reference ³
	-0.15		+0.15	% FSR	Internal reference
Gain Error TC ⁵	0.15	±1.5	10.13	ppm FSR/°C	External reference ³ and internal reference
TUE	-0.1	±1.5	+0.1	% FSR	External reference ³
102	-0.15		+0.15	% FSR	Internal reference
REFERENCE INPUT (EXTERNAL) ⁵	0.15		10.15	70 1 511	memareteree
Reference Input Voltage (V _{REF})		2.5		V	±1% for specified performance
Input Current	-2	±0.5	+2	μΑ	±170 for specifica performance
Reference Range	2	±0.5	3	V	
REFERENCE OUTPUT (INTERNAL) ⁵	2			V	
Output Voltage		2.5		V	±3 mV, at ambient temperature
			_		±5 mv, at ambient temperature
Voltage Reference TC		2	5	ppm/°C	
Output Impedance		25		kΩ	0411 + 4011
Output Voltage Noise		6		μV p-p	0.1 Hz to 10 Hz
Noise Spectral Density		10		nV/√Hz	At ambient; f = 10 kHz
Line Regulation		6		μV/V	At ambient
Thermal Hysteresis		80		ppm	First temperature cycle
Start-Up Time		3.5		ms	Coming out of power-down mode with a 10 nF capacitor on the V _{REFIN} /V _{REFOUT} pin to improve noise performance; outputs unloaded
OUTPUT CHARACTERISTICS ⁵					periormanice, outputs amounted
Output Voltage Range	-V _{OUT}		$+V_{\text{OUT}}$		Refer to Table 6 for the different output voltage ranges available
	-10		+10	V	$V_{DD}/V_{SS} = \pm 11 \text{ V}, \pm 10 \text{ V}$ output range
	-10.5		+10.5	V	$V_{DD}/V_{SS} = \pm 11 \text{ V}, \pm 10 \text{ V}$ output range with 5% overrange
Capacitive Load Stability			1	nF	
Headroom		0.5	1	V	R_{LOAD} = 1 kΩ for all ranges except 0 V to 16 V and 0 V to 20 V ranges (R_{LOAD} = 2 kΩ)
Output Voltage TC		±3		ppm FSR/°C	±10 V range, external reference
Short-Circuit Current		25		mA	Short on the V _{OUT} pin
Resistive Load			1	kΩ	All ranges except 0 V to 16 V and 0 V to 20 V
			2	kΩ	0 V to 16 V, 0 V to 20 V ranges
Load Regulation		0.3		mV/mA	Outputs unloaded
DC Output Impedance		0.5		Ω	Outputs unloaded
LOGIC INPUTS ⁵					$DV_{CC} = 1.7 \text{ V to } 5.5 \text{ V, JEDEC compliant}$
Input Voltage					, ,
High, V _{IH}	$0.7 \times DV_{CC}$			V	
Low, V _{IL}			$0.3 \times DV_{CC}$	V	
Input Current					
Leakage Current	-1		+1	μΑ	SDI, SCLK, SYNC
_canage carrent	-1		+1	μΑ	LDAC, CLEAR, RESET pins held high
			TI	· ·	
Din Canacitar as	-55	E		μA	LDAC, CLEAR, RESET pins held low
Pin Capacitance		5		pF	Per pin, outputs unloaded
LOGIC OUTPUTS (SDO, ALERT) ⁵					
Output Voltage					
Low, V _{OL}			0.4	V	$DV_{CC} = 1.7 \text{ V to } 5.5 \text{ V, sinking } 200 \mu\text{A}$
High, V _{он}	DV _{cc} – 0.5			V	DV _{CC} = 1.7 V to 5.5 V, sourcing 200 μ A

Parameter ²	Min	Тур	Max	Unit	Test Conditions/Comments
High Impedance, SDO Pin					
Leakage Current	-1		+1	μΑ	
Pin Capacitance		5		pF	
POWER REQUIREMENTS					
V_{DD}	4.75		30	V	
V_{SS}	-16.5		0	V	
DV _{cc}	1.7		5.5	V	
I _{DD}		5.1	6.5	mA	Outputs unloaded, external reference
Iss		1	3	mA	Outputs unloaded
Dlcc		0.005	1	μΑ	$V_{IH} = DV_{CC}$, $V_{IL} = DGND$
Power Dissipation		67.1		mW	±11 V operation, outputs unloaded
DC Power Supply Rejection Ratio (PSRR) ⁵		0.1		mV/V	$V_{DD} \pm 10\%, V_{SS} = -15 \text{ V}$
		0.1		mV/V	$V_{SS} \pm 10\%$, $V_{DD} = +15 \text{ V}$
AC PSRR⁵		65		dB	V_{DD} ±200 mV, 50 Hz/60 Hz, V_{SS} = -15 V, internal reference, C_{LOAD} = 100 nF
		65		dB	V_{SS} ±200 mV, 50 Hz/60 Hz, V_{DD} = +15 V, internal reference, C_{LOAD} = 100 nF
		80		dB	V_{DD} ±200 mV, 50 Hz/60 Hz, V_{SS} = -15 V, external reference, C_{LOAD} = unloaded
		80		dB	$V_{SS} \pm 200$ mV, 50 Hz/60 Hz, $V_{DD} = +15$ V, external reference, $C_{LOAD} =$ unloaded

¹ For specified performance, headroom requirement is 1 V.

² Temperature range: -40°C to +125°C, typical at +25°C.

³ External reference means 2 V to 2.85 V with overrange and 2 V to 3 V without overrange.

⁴ Integral nonlinearity error is specified at ±4 LSB (min/max) for 16 V and 20 V ranges with V_{REFIN}/V_{REFOUT} = 2.5 V external and internal, and for all ranges with V_{REFIN}/V_{REFOUT} = 2 V to 2.85 V with overrange and 2 V to 3 V without overrange.

⁵ Guaranteed by design and characterization, not production tested.

AC PERFORMANCE CHARACTERISTICS

 $V_{\rm DD}{}^{1}=4.75~V~to~30~V, V_{SS}{}^{1}=-16.5~V~to~0~V, AGND=DGND=0~V, V_{REFIN}/V_{REFOUT}=2.5~V~external, DV_{\rm CC}=1.7~V~to~5.5~V, R_{\rm LOAD}=1~k\Omega~for~all~ranges~except~0~V~to~16~V~and~0~V~to~20~V~for~which~R_{\rm LOAD}=2~k\Omega,~C_{\rm LOAD}=200~pF,~all~specifications~T_{\rm MIN}~to~T_{\rm MAX},~unless~otherwise~noted.$

Table 2.

Parameter ²	Min	Тур	Max	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE ³					
Output Voltage Settling Time		9	12.5	μs	20 V step to 1 LSB at 16-bit resolution
		7.5	8.5	μs	10 V step to 1 LSB at 16-bit resolution
			5	μs	512 LSB step to 1 LSB at 16-bit resolution
Digital-to-Analog Glitch Impulse		8		nV-sec	±10 V range
		1		nV-sec	0 V to 5 V range
Glitch Impulse Peak Amplitude		15		mV	±10 V range
		10		mV	0 V to 5 V range
Power-On Glitch		100		mV p-p	
Digital Feedthrough		0.6		nV-sec	
Output Noise					
0.1 Hz to 10 Hz Bandwidth		15		μV p-p	
100 kHz Bandwidth		45		μV rms	0 V to 20 V and 0 V to 16 V ranges, external reference
		35		μV rms	0 V to 10 V, \pm 10 V, and -2.5 V to \pm 7.5 V ranges, 2.5 V external reference
		25		μV rms	±5 V range, 2.5 V external reference
		15		μV rms	+5 V, ±3 V ranges, 2.5 V external reference
Output Noise Spectral Density		80		nV/√Hz	±10 V range, 2.5 V external reference
		35		nV/√Hz	±3 V range, 2.5 V external reference
		70		nV/√Hz	± 5 V, 0 V to 10 V, and -2.5 V to $+7.5$ V ranges, 2.5 V external reference
		110		nV/√Hz	0 V to 20 V range, 2.5 V external reference
		90		nV/√Hz	0 V to 16 V range, 2.5 V external reference
		45		nV/√Hz	0 V to 5 V range, 2.5 V external reference

 $^{^{\}rm 1}\,\text{For specified performance, headroom requirement is 1 V.}$

 $^{^2}$ Temperature range: -40° C to $+125^{\circ}$ C, typical at $+25^{\circ}$ C.

³ Guaranteed by design and characterization, not production tested.

TIMING CHARACTERISTICS

 DV_{CC} = 1.7 V to 5.5 V, all specifications T_{MIN} to $T_{\text{MAX}},$ unless otherwise noted.

Table 3.

Parameter	Limit at T _{MIN} , T _{MAX}	Unit	Description
t ₁ ¹	20	ns min	SCLK cycle time
t_2	10	ns min	SCLK high time
t_3	10	ns min	SCLK low time
t_4	15	ns min	SYNC falling edge to SCLK falling edge setup time
t_5	10	ns min	SCLK falling edge to SYNC rising edge time
t ₆	20	ns min	Minimum SYNC high time (write mode)
t ₇	5	ns min	Data setup time
t ₈	5	ns min	Data hold time
t ₉	10	ns min	LDAC falling edge to SYNC falling edge
t ₁₀	20	ns min	SYNC rising edge to LDAC falling edge
t ₁₁	20	ns min	LDAC pulse width low
t ₁₂	9	μs typ	DAC output settling time, 20 V step to 1 LSB at 16-bit resolution (see Table 2)
	7.5	μs typ	DAC output settling time,10 V step to 1 LSB at 16-bit resolution
t ₁₃	20	ns min	CLR pulse width low
t ₁₄	200	ns typ	CLR pulse activation time
t ₁₅	10	ns min	SYNC rising edge to SCLK falling edge
t ₁₆	40	ns max	SCLK rising edge to SDO valid ($C_{L,SDO}^2 = 15 \text{ pF}$)
t ₁₇	50	ns min	Minimum SYNC high time (readback/daisy-chain mode)

 $^{^1}$ Maximum SCLK frequency is 50 MHz for write mode and 33 MHz for readback mode. 2 CL_SDO is the capacitive load on the SDO output.

TIMING DIAGRAMS

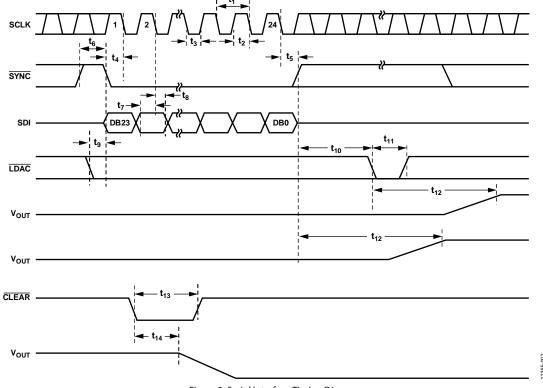


Figure 2. Serial Interface Timing Diagram Rev. 0 | Page 7 of 33

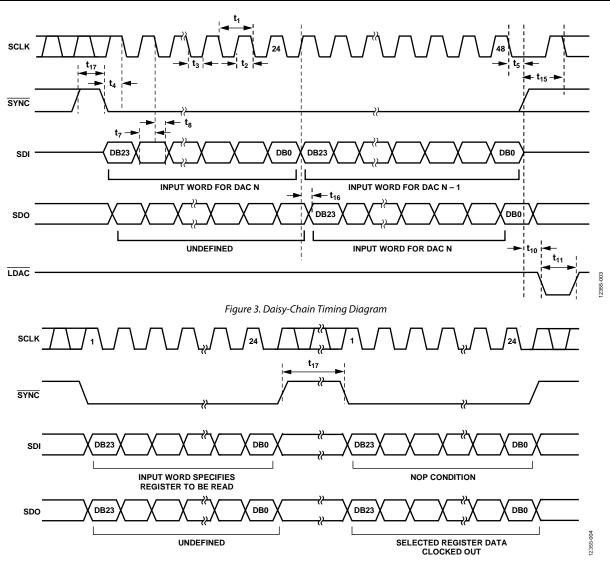


Figure 4. Readback Timing Diagram

ABSOLUTE MAXIMUM RATINGS

 T_A = 25°C, unless otherwise noted. Transient currents of up to 200 mA do not cause silicon controlled rectifier (SCR) latch-up.

Table 4

1 able 4.	
Parameter	Rating
V _{DD} to AGND	−0.3 V to +34 V
V _{SS} to AGND	+0.3 V to −17 V
V_{DD} to V_{SS}	−0.3 V to +34 V
DV _{CC} to DGND	−0.3 V to +7 V
Digital Inputs to DGND	-0.3 V to DV _{CC} + 0.3 V or 7 V (whichever is less)
Digital Outputs to DGND	-0.3 V to DV _{CC} + 0.3 V or 7 V (whichever is less)
V _{REFIN} /V _{REFOUT} to DGND	−0.3 V to +7 V
Vout to AGND	V_{SS} to V_{DD}
AGND to DGND	−0.3 V to +0.3 V
Operating Temperature Range, T_A Industrial	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature, T _{J MAX}	150°C
16-Lead TSSOP Package	
θ_{JA} Thermal Impedance	113°C/W
θ _{JC} Thermal Impedance	28°C/W
Power Dissipation	$(T_{JMAX} - T_{A})/\theta_{JA}$
Lead Temperature	JEDEC industry standard
Soldering	J-STD-020
ESD (Human Body Model)	4 kV

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

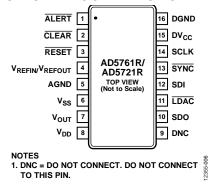


Figure 5. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	ALERT	Active Low Alert. This pin is asserted low when the die temperature exceeds approximately 150°C, or when an output short circuit or a brownout occurs. This pin is also asserted low during power-up, a full software reset, or a hardware reset, for which a write to the control register asserts the pin high.
2	CLEAR	Active Low Clear Input. Asserting this pin sets the DAC register to zero scale, midscale, or full-scale code (user selectable) and updates the DAC output. This pin can be left floating because there is an internal pull-up resistor.
3	RESET	Active Low Reset Input. Asserting this pin returns the AD5761R/AD5721R to their default power-on status where the output is clamped to ground and the output buffer is powered down. This pin can be left floating because there is an internal pull-up resistor.
4	V _{REFIN} /V _{REFOUT}	Internal Reference Voltage Output and External Reference Voltage Input. For specified performance, $V_{REFIN}/V_{REFOUT} = 2.5 \text{ V}$. Connect a 10 nF capacitor with the internal reference to minimize the noise.
5	AGND	Ground Reference Pin for Analog Circuitry.
6	V _{SS}	Negative Analog Supply Connection. A voltage in the range of $-16.5\mathrm{V}$ to $0\mathrm{V}$ can be connected to this pin. For unipolar output ranges, connect this pin to $0\mathrm{V}$. Vss must be decoupled to AGND.
7	V _{OUT}	Analog Output Voltage of the DAC. The output amplifier is capable of directly driving a 2 k Ω , 1 nF load.
8	V _{DD}	Positive Analog Supply Connection. A voltage in the range of 4.75 V to 30 V can be connected to this pin for unipolar output ranges. Bipolar output ranges accept a voltage in the range of 4.75 V to 16.5 V. V _{DD} must be decoupled to AGND.
9	DNC	Do Not Connect. Do not connect to this pin.
10	SDO	Serial Data Output. This pin clocks data from the serial register in daisy-chain or readback mode. Data is clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.
11	LDAC	Load DAC. This logic input is used to update the DAC register and, consequently, the analog output. When tied permanently low, the DAC register is updated when the input register is updated. If LDAC is held high during the write to the input register, the DAC output register is not updated, and the DAC output update is held off until the falling edge of LDAC. This pin can be left floating because there is an internal pull-up resistor.
12	SDI	Serial Data Input. Data must be valid on the falling edge of SCLK.
13	SYNC	Active Low Synchronization Input. This pin is the frame synchronization signal for the serial interface. While SYNC is low, data is transferred in on the falling edge of SCLK. Data is latched on the rising edge of SYNC.
14	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This pin operates at clock speeds of up to 50 MHz.
15	DV_cc	Digital Supply. The voltage range is from 1.7 V to 5.5 V. The applied voltage sets the voltage at which the digital interface operates.
16	DGND	Digital Ground.

TYPICAL PERFORMANCE CHARACTERSTICS

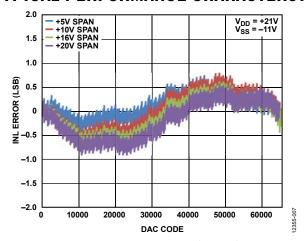


Figure 6. AD5761R INL Error vs. DAC Code, Unipolar Output

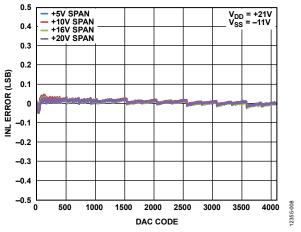


Figure 7. AD5721R INL Error vs. DAC Code, Unipolar Output

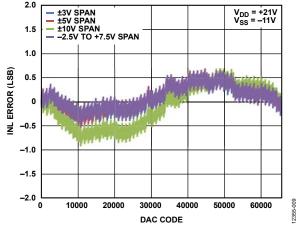


Figure 8. AD5761R INL Error vs. DAC Code, Bipolar Output

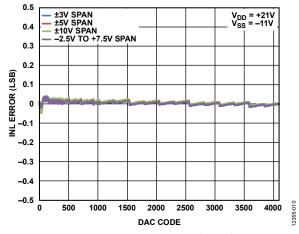


Figure 9. AD5721R INL Error vs. DAC Code, Bipolar Output

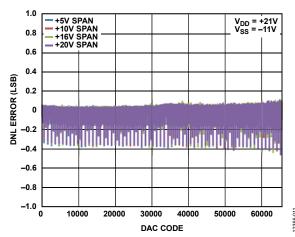


Figure 10. AD5761R DNL Error vs. DAC Code, Unipolar Output

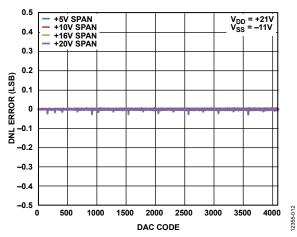


Figure 11. AD5721R DNL Error vs. DAC Code, Unipolar Output

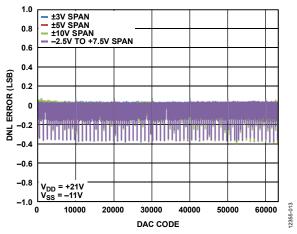


Figure 12. AD5761R DNL Error vs. DAC Code, Bipolar Output

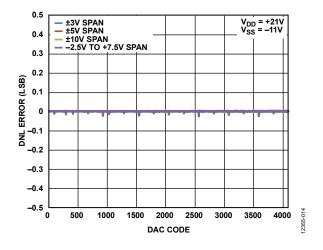


Figure 13. AD5721R DNL Error vs. DAC Code, Bipolar Output

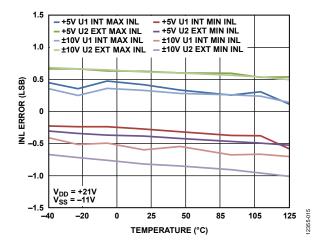


Figure 14. INL Error vs. Temperature

Figure 15. DNL Error vs. Temperature

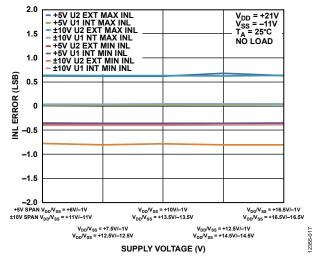


Figure 16. INL Error vs. Supply Voltage

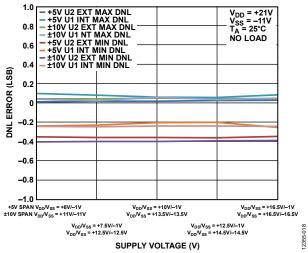


Figure 17. DNL Error vs. Supply Voltage

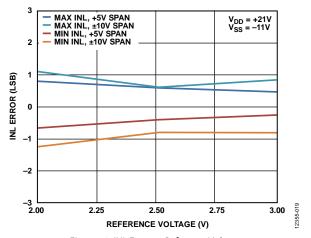


Figure 18. INL Error vs. Reference Voltage

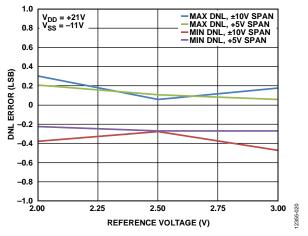


Figure 19. DNL Error vs. Reference Voltage

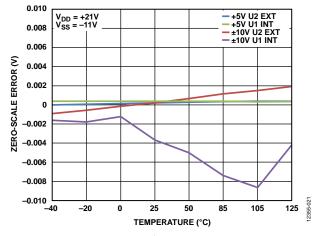


Figure 20. Zero-Scale Error vs. Temperature

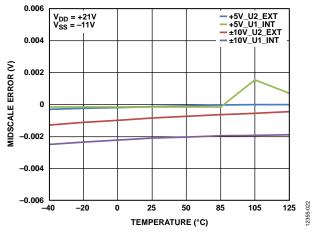


Figure 21. Midscale Error vs. Temperature

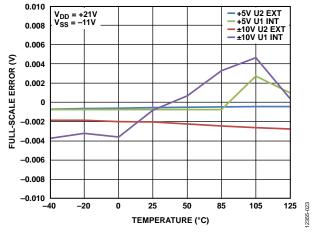


Figure 22. Full-Scale Error vs. Temperature

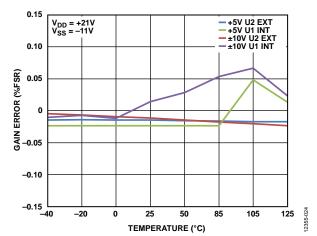


Figure 23. Gain Error vs. Temperature

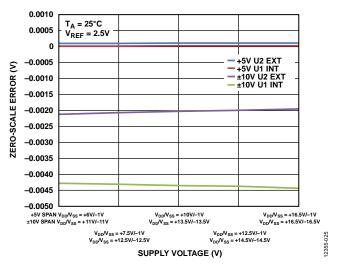


Figure 24. Zero-Scale Error vs. Supply Voltage

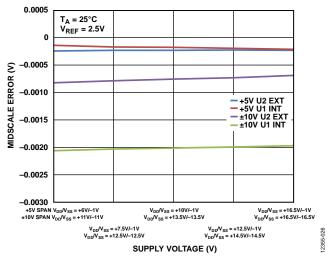


Figure 25. Midscale Error vs. Supply Voltage

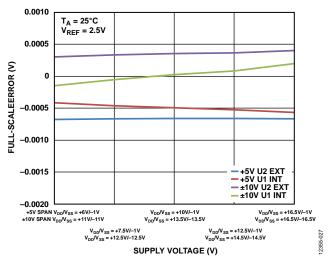


Figure 26. Full-Scale Error vs. Supply Voltage

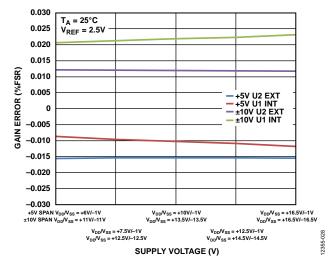


Figure 27. Gain Error vs. Supply Voltage

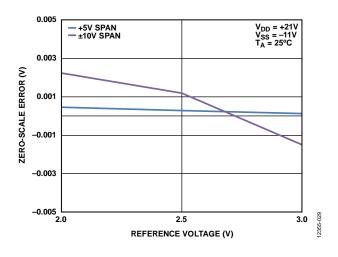


Figure 28. Zero-Scale Error vs. Reference Voltage

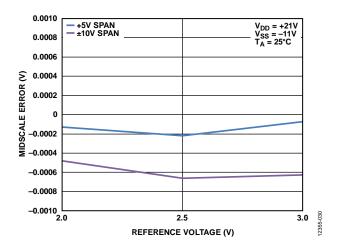


Figure 29. Midscale Error vs. Reference Voltage

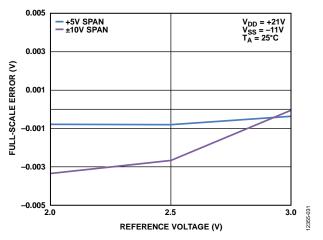


Figure 30. Full-Scale Error vs. Reference Voltage

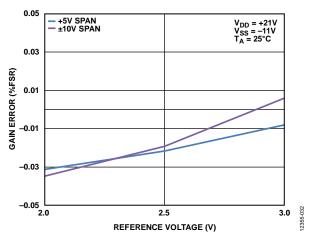


Figure 31. Gain Error vs. Reference Voltage

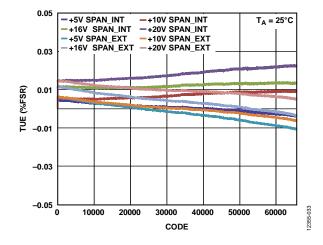


Figure 32. TUE vs. Code, Unipolar Output

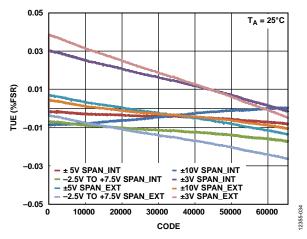


Figure 33. TUE vs. Code, Bipolar Output

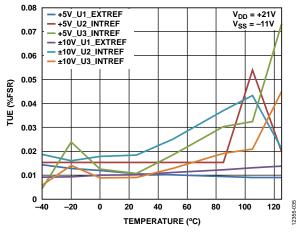


Figure 34. TUE vs. Temperature

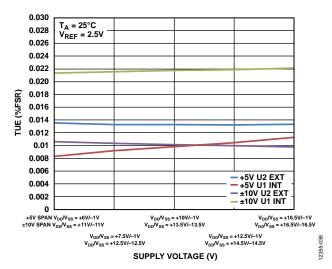


Figure 35. TUE vs. Supply Voltage

Figure 36. Reference Output Voltage Turn On Transient

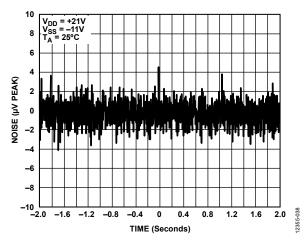


Figure 37. Internal Reference Noise (100 kHz Bandwidth)

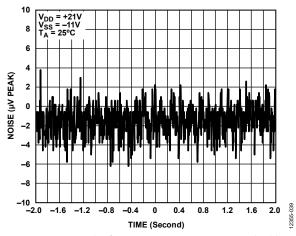


Figure 38. Internal Reference Noise (0.1 Hz to 10 Hz Bandwidth)

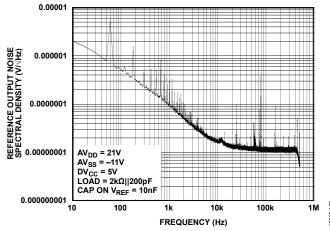


Figure 39. Reference Output Noise Spectral Density vs. Frequency

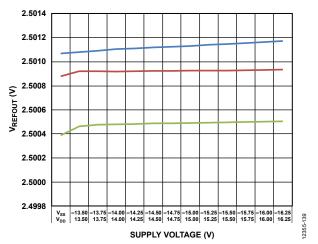


Figure 40. Reference Output Voltage (V_{REFOUT}) vs. Supply Voltage

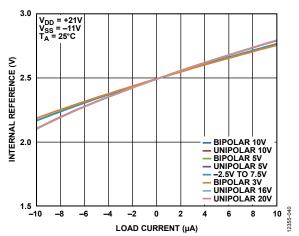


Figure 41. Internal Reference vs. Load Current

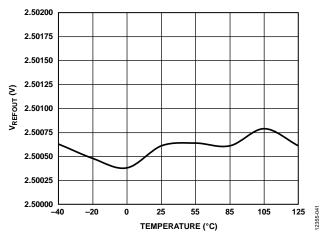


Figure 42. Reference Output Voltage vs. Temperature

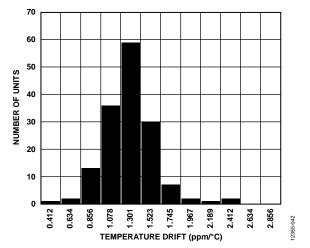


Figure 43. Reference Output TC

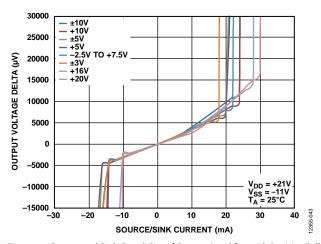


Figure 44. Source and Sink Capability of Output Amplifier with Positive Full Scale Loaded

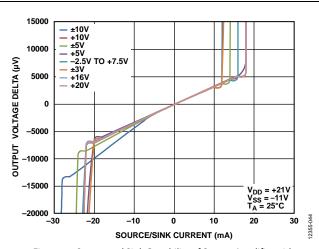


Figure 45. Source and Sink Capability of Output Amplifier with Negative Full Scale Loaded

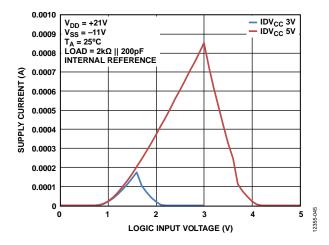


Figure 46. Supply Current vs. Logic Input Voltage

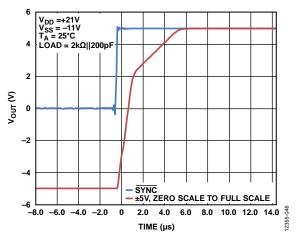


Figure 47. Full-Scale Settling Time (Rising Voltage Step), ±5 V Range

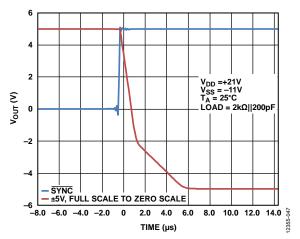


Figure 48. Full-Scale Settling Time (Falling Voltage Step), ±5 V Range

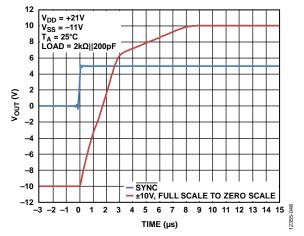


Figure 49. Full-Scale Settling Time (Rising Voltage Step), ± 10 V Range

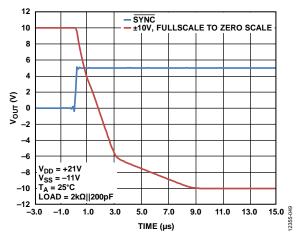


Figure 50. Full-Scale Settling Time (Falling Voltage Step), ±10 V Range

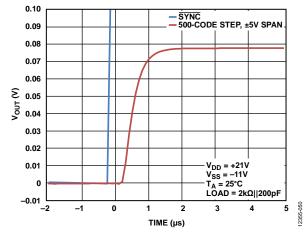


Figure 51. 500-Code Step Settling Time, ±5 V Range

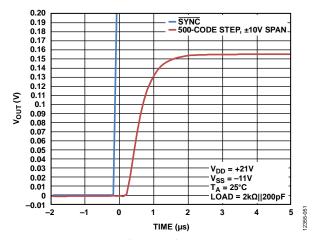


Figure 52. 500-Code Step Settling Time, ± 10 V Range

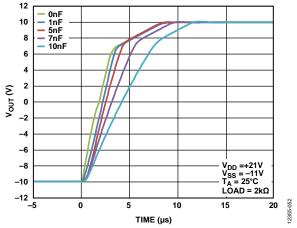


Figure 53. Full-Scale Settling Time at Various Capacitive Loads, ± 10 V Range

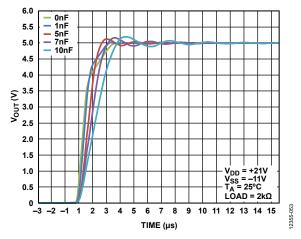


Figure 54. Full-Scale Settling Time at Various Capacitive Loads, 0 V to 5 V Range

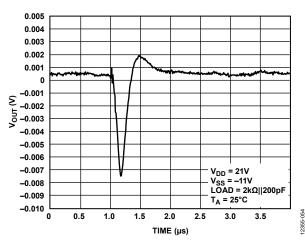


Figure 55. Digital-to-Analog Glitch Energy, 5 V Range

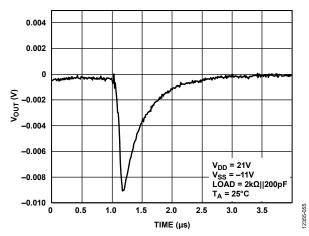


Figure 56. Digital-to-Analog Glitch Energy, ±10 V Range

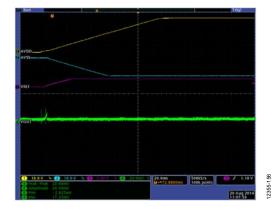


Figure 57. Power-Up Glitch

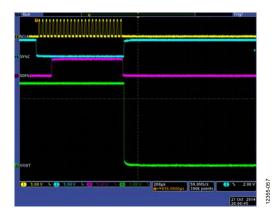


Figure 58. Software Full Reset Glitch from Full Scale with Output Loaded, 0 V to 5 V Range

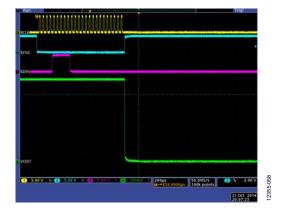


Figure 59. Software Full Reset Glitch from Midscale with Output Loaded, 5 V Range

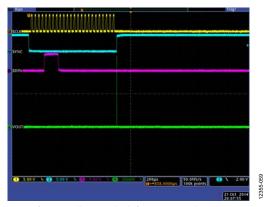


Figure 60. Software Full Reset Glitch from Zero Scale with Output Loaded, 0 V to 5 V Range

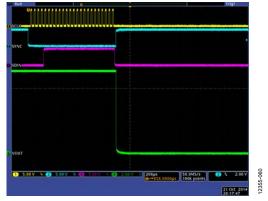


Figure 61. Software Full Reset Glitch from Full Scale with Output Loaded, ±10 V Range

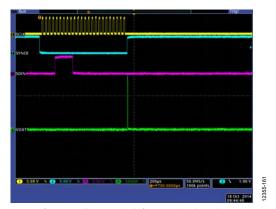


Figure 62. Software Full Reset Glitch from Midscale with Output Loaded, $\pm 10 V$ Range

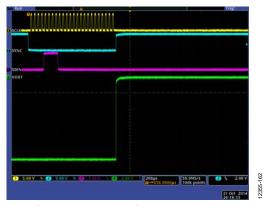


Figure 63. Software Full Reset Glitch from Zero Scale with Output Loaded, $\pm 10 \, V$ Range

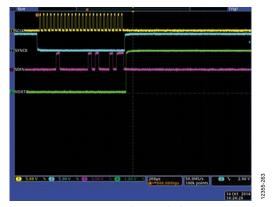


Figure 64. Output Range Change Glitch, 0 V to 5 V Range

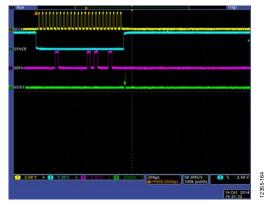


Figure 65. Output Range Change Glitch, ±10 V Range

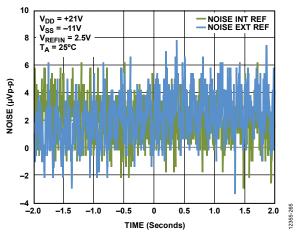


Figure 66. Peak-to-Peak Noise (Voltage Output Noise), 0.1 Hz to 10 Hz Bandwidth

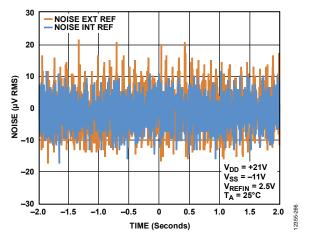


Figure 67. Peak-to-Peak Noise (Voltage Output Noise), 100 kHz Bandwidth

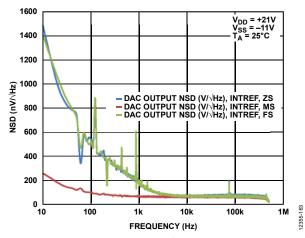


Figure 68. DAC Output Noise Spectral Density (NSD) vs. Frequency, $|\pm 10 \text{ V Range}|$

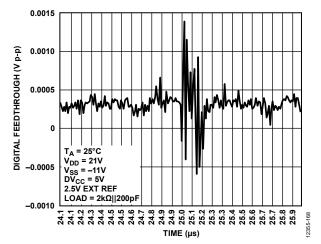


Figure 69. Digital Feedthrough

TERMINOLOGY

Total Unadjusted Error (TUE)

Total unadjusted error is a measure of the output error taking all the various errors into account, namely INL error, offset error, gain error, and output drift over supplies, temperature, and time. TUE is expressed in % FSR.

Relative Accuracy or Integral Nonlinearity (INL)

For the DAC, relative accuracy, or integral nonlinearity, is a measure of the maximum deviation, in LSB, from a straight line passing through the endpoints of the DAC transfer function. A typical INL error vs. DAC code plot is shown in Figure 6.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic. A typical DNL error vs. code plot is shown in Figure 10.

Monotonicity

A DAC is monotonic if the output either increases or remains constant for increasing digital input code. The AD5761R/AD5721R are monotonic over their full operating temperature range.

Bipolar Zero Error

Bipolar zero error is the deviation of the analog output from the ideal half-scale output of 0 V when the DAC register is loaded with 0x8000 (straight binary coding) or 0x0000 (twos complement coding) for the AD5761R/AD5721R.

Bipolar Zero Temperature Coefficient (TC)

Bipolar zero TC is a measure of the change in the bipolar zero error with a change in temperature. It is expressed in $\mu V/^{\circ}C$.

Zero-Scale Error

Zero-scale error is the error in the DAC output voltage when 0x0000 (straight binary coding) or 0x8000 (twos complement coding) is loaded to the DAC register. Ideally, the output voltage is negative full scale. A plot of zero-scale error vs. temperature is shown in Figure 20.

Zero-Scale Error Temperature Coefficient (TC)

Zero-scale error TC is a measure of the change in zero-scale error with a change in temperature. It is expressed in μV /°C.

Offset Error

Offset error is a measure of the difference between V_{OUT} (actual) and V_{OUT} (ideal) expressed in mV in the linear region of the transfer function.

Offset Error Temperature Coefficient (TC)

Offset error TC is a measurement of the change in offset error with a change in temperature. It is expressed in $\mu V/^{\circ}C$.

Gain Error

Gain error is a measure of the span error of the DAC. It is the deviation in slope of the DAC transfer characteristic from the ideal expressed in % FSR. A plot of gain error vs. temperature is shown in Figure 23.

Gain Error Temperature Coefficient (TC)

Gain error TC is a measure of the change in gain error with changes in temperature. It is expressed in μV /°C.

DC Power Supply Rejection Ratio (DC PSRR)

DC power supply rejection ratio is a measure of the rejection of the output voltage to dc changes in the power supplies applied to the DAC. It is measured for a given dc change in power supply voltage and is expressed in $\mu V/V$.

AC Power Supply Rejection Ratio (AC PSRR)

AC power supply rejection ratio is a measure of the rejection of the output voltage to ac changes in the power supplies applied to the DAC. It is measured for a given amplitude and frequency change in power supply voltage and is expressed in decibels.

Output Voltage Settling Time

Output voltage settling time is the amount of time it takes for the output to settle to a specified level for a full-scale input change. Full-scale settling time is shown in Figure 47 to Figure 50.

Digital-to-Analog Glitch Impulse

Digital-to-analog glitch impulse is the impulse injected into the analog output when the input code in the DAC register changes state. It is normally specified as the area of the glitch in nV-sec and is measured when the digital input code is changed by 1 LSB at the major carry transition (see Figure 55 and Figure 56).

Glitch Impulse Peak Amplitude

Glitch impulse peak amplitude is the peak amplitude of the impulse injected into the analog output when the input code in the DAC register changes state. It is specified as the amplitude of the glitch in mV and is measured when the digital input code is changed by 1 LSB at the major carry transition.

Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital inputs of the DAC but is measured when the DAC output is not updated. It is specified in nV-sec and measured with a full-scale code change on the data bus.

Noise Spectral Density

Noise spectral density is a measurement of the internally generated random noise characterized as a spectral density (nV/\sqrt{Hz}). It is measured by loading the DAC to full scale and measuring noise at the output. It is measured in nV/\sqrt{Hz} . A plot of noise spectral density is shown in Figure 68.

Voltage Reference Temperature Coefficient (TC)

Voltage reference TC is a measure of the change in the reference output voltage with a change in temperature. The reference TC is calculated using the box method, which defines the TC as the maximum change in the reference output over a given temperature range expressed in ppm/°C as follows:

$$TC = \left[\frac{V_{REF_MAX} - V_{REF_MIN}}{V_{REF_NOM} \times TempRange}\right] \times 10^{6}$$

where:

 $V_{\text{REF_MAX}}$ is the maximum reference output measured over the total temperature range.

 $V_{\text{REF_MIN}}$ is the minimum reference output measured over the total temperature range.

 $V_{\text{REF_NOM}}$ is the nominal reference output voltage, 2.5 V. *TempRange* is the specified temperature range, -40°C to $+125^{\circ}\text{C}$.

THEORY OF OPERATION

DIGITAL-TO-ANALOG CONVERTER

The AD5761R/AD5721R are single channel 16-/12-bit voltage output DACs. The AD5761R/AD5721R output ranges are software selectable and can be configured as follows:

- Unipolar output voltage: 0 V to 5 V, 0 V to 10 V, 0 V to 16 V, 0 V to 20 V
- Bipolar output voltage: -2.5 V to +7.5 V, $\pm 3 \text{ V}$, $\pm 5 \text{ V}$, $\pm 10 \text{ V}$

Data is written to the AD5761R/AD5721R in a 24-bit word format via a 3-wire serial interface. The devices also offer an SDO pin to facilitate daisy-chaining and readback.

TRANSFER FUNCTION

The internal reference is on by default. The input coding to the DAC can be straight binary or twos complement (bipolar ranges case only). Therefore, the transfer function is given by

$$V_{OUT} = V_{REF} \times \left[\left(m \times \frac{D}{65,536} \right) - c \right]$$

where:

 V_{REF} is 2.5 V.

D is the decimal equivalent of the code loaded to the DAC register as follows:

0 to 4095 for the 12-bit device.

0 to 65,535 for the 16-bit device.

The values for *m* and *c* are as shown in Table 6.

Table 6. m and c Values for Various Output Ranges

Range	m	С
±10 V	8	4
±5 V	4	2
±3 V	2.4	1.2
-2.5 V to +7.5 V	4	1
20 V	8	0
0 V to 16 V	6.4	0
0 V to 10 V	4	0
0 V to 5 V	2	0

DAC ARCHITECTURE

The DAC architecture consists of an R-2R DAC followed by an output buffer amplifier. Figure 70 shows a block diagram of the DAC architecture. Note that the reference input is buffered prior to being applied to the DAC. The AD5761R/AD5721R offer a 2.5 V, 5 ppm/°C maximum internal reference on chip.

The output voltage range obtained from the configurable output amplifier is selected by writing to the 3 LSBs, (RA[2:0]), in the control register.

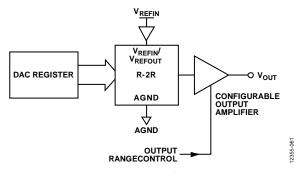


Figure 70. DAC Architecture

R-2R DAC

The architecture of the AD5761R consists of two matched DAC sections. A simplified circuit diagram is shown in Figure 71. The six MSBs of the 16-bit data-word are decoded to drive 63 switches, E0 to E62, while the remaining 10 bits of the data-word drive the S0 to S9 switches of a 10-bit voltage mode R-2R ladder network.

The code loaded into the DAC register determines which arms of the ladder are switched between V_{REF} and ground (AGND). The output voltage is taken from the end of the ladder and amplified afterwards to provide the selected output voltage.

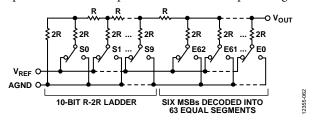


Figure 71. DAC Ladder Structure

Internal Reference

The AD5761R/AD5721R feature an on-chip reference. The on-chip reference is on at power-up, and this reference can be turned off by setting software-programmable bit, DB5, in the control register. Table 11 shows how the state of the bit corresponds to the mode of operation.

The internal reference is available at the $V_{\text{RFEFIN}}/V_{\text{REFOUT}}$ pin. A buffer is required if the reference output is used to drive external loads. Place a capacitor in the range of 1 nF to 100 nF between the reference output and DGND for reference stability.

Reference Buffer

The AD5761R/AD5721R can operate with either an external or internal reference. The reference input has an input range of 2 V to 3 V with 2.5 V for specified performance. This input voltage is then buffered before it is applied to the DAC core.

DAC Output Amplifier

The output amplifier is capable of generating both unipolar and bipolar output voltages. It is capable of driving a load of 2 k Ω in parallel with 1 nF to AGND. The source and sink capabilities of the output amplifier are shown in Figure 44.

SERIAL INTERFACE

The AD5761R/AD5721R 4-wire digital interface (SYNC, SCLK, SDI, and SDO) is serial peripheral interface (SPI) compatible. The write sequence begins after bringing the SYNC line low, and maintaining this line low until the complete data-word is loaded from the SDI pin. Data is loaded in at the SCLK falling edge transition (see Figure 2). When SYNC is brought high again, the serial data-word is decoded according to the instructions in Table 9. The AD5761R/AD5721R contain an SDO pin to allow the user to daisy-chain multiple devices together or to read back the contents of the registers.

Standalone Operation

The serial interface works with both a continuous and noncontinuous serial clock. A continuous SCLK source can be used only when SYNC is held low for the correct number of clock cycles.

In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and \overline{SYNC} must be taken high after the final clock to latch the data. The first falling edge of \overline{SYNC} starts the write cycle. Exactly 24 falling clock edges must be applied to SCLK before \overline{SYNC} is brought high again. If \overline{SYNC} is brought high before the 24th falling SCLK edge, the data written is invalid. If more than 24 falling SCLK edges are applied before \overline{SYNC} is brought high, the input data is also invalid.

The input shift register is updated on the rising edge of SYNC. For another serial transfer to take place, SYNC must be brought low again. After the end of the serial data transfer, data is automatically transferred from the input shift register to the addressed register. When the write cycle is complete, the output can be updated by taking LDAC low while SYNC is high.

Readback Operation

The contents of the input, DAC, and control registers can be read back via the SDO pin. Figure 4 shows how the registers are decoded. After a register has been addressed for a read, the next 24 clock cycles clock the data out on the SDO pin. The clocks must be applied while \$\overline{SYNC}\$ is low. When \$\overline{SYNC}\$ is returned high, the SDO pin is placed in tristate. For a read of a single register, the no operation (NOP) function clocks out the data. Alternatively, if more than one register is to be read, the data of the first register to be addressed clocks out at the same time that the second register to be read is being addressed. The SDO pin must be enabled to complete a readback operation. The SDO pin is enabled by default.

Daisy-Chain Operation

For systems that contain several devices, use the SDO pin to daisy chain several devices together. Daisy-chain mode is useful in system diagnostics and in reducing the number of serial interface lines. The first falling edge of SYNC starts the write cycle. SCLK is continuously applied to the input shift register when SYNC is low. If more than 24 clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge.

By connecting the SDO of the first device to the SDI input of the next device in the chain, a multidevice interface is constructed. Each device in the system requires 24 clock pulses. Therefore, the total number of clock cycles must equal $24 \times N$, where N is the total number of AD5761R/AD5721R devices in the chain. When the serial transfer to all devices is complete, $\overline{\text{SYNC}}$ is taken high, which latches the input data in each device in the daisy chain and prevents any further data from being clocked into the input shift register.

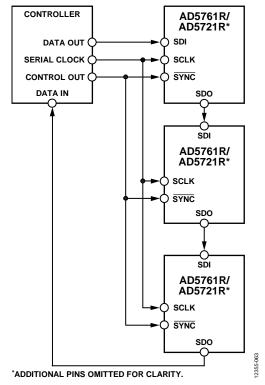


Figure 72. Daisy-Chain Block Diagram

HARDWARE CONTROL PINS Load DAC Function (LDAC)

After data transfers into the input register of the DAC, there are two ways to update the \overline{DAC} register and DAC output. Depending on the status of both \overline{SYNC} and \overline{LDAC} , one of two update modes is selected: synchronous DAC update or asynchronous DAC update.

Synchronous DAC Update

In synchronous DAC update mode, $\overline{\text{LDAC}}$ is held low while data is being clocked into the input shift register. The DAC output is updated on the rising edge of $\overline{\text{SYNC}}$.

Asynchronous DAC Update

In asynchronous DAC update mode, \overline{LDAC} is held high while data is being clocked into the input shift register. The DAC output is asynchronously updated by taking \overline{LDAC} low after \overline{SYNC} is taken high. The update then occurs on the falling edge of \overline{LDAC} .

Reset Function (RESET)

The AD5761R/AD5721R can be reset to its power-on state by two means: either by asserting the \overline{RESET} pin or by using the software full reset registers (see Table 25).

Asynchronous Clear Function (CLEAR)

The $\overline{\text{CLEAR}}$ pin is an active low clear input that allows the output to be cleared to a user defined value. The clearcode value is programmed by writing to Bit 10 and Bit 9 in the control register (see Table 10 and Table 11). It is necessary to maintain $\overline{\text{CLEAR}}$ low for a minimum amount of time to complete the operation (see Figure 2). When the $\overline{\text{CLEAR}}$ signal is returned high, the output remains at the clear value until a new value is loaded to the DAC register. The output cannot be updated with a new value while the $\overline{\text{CLEAR}}$ pin is low.

Alert Function (ALERT)

When the ALERT pin is asserted low, a readback from the control register is required to clarify whether a short-circuit or brownout condition occurred, depending on the values of Bit 12 and Bit 11, SC and BO bits, respectively (see Table 14 and Table 15). If neither of these conditions occurred, the temperature exceeded approximately 150°C.

The ALERT pin is low during power-up, a software full reset, or a hardware reset. After the first write to the control register to configure the DAC, the ALERT pin is asserted high.

In the event of the die temperature exceeding approximately 150°C, the ALERT pin is low and the value of the ETS bit determines the state of the digital supply of the device, whether the internal digital supply is powered on or powered down. If the ETS bit is set to 0, the internal digital supply is powered on when the internal die temperature exceeds approximately 150°C. If the ETS bit is set to 1, the internal digital supply is powered down when the internal die temperature exceeds approximately 150°C and device becomes nonfunctional (see Table 10 and Table 11).

The AD5761R/AD5721R temperature at power-up must be less than 150°C for proper operation of the devices.

THERMAL HYSTERESIS

Thermal hysteresis is the voltage difference induced on the reference voltage by sweeping the temperature from ambient to cold, to hot, and then back to ambient. Thermal hysteresis data was tested for the AD5761R as shown in Figure 73. It is measured by sweeping the temperature from ambient to -40° C, then to 125°C, and returning to ambient. The V_{REF} delta is then measured between the two ambient measurements (shown in Figure 73).

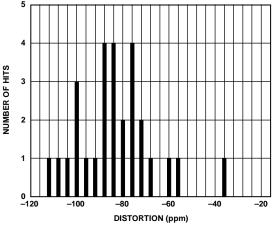


Figure 73. Thermal Hysteresis

REGISTER DETAILS

INPUT SHIFT REGISTER

The input shift register is 24 bits wide. Data is loaded into the device MSB first as a 24-bit word under the control of a serial clock input, SCLK, which can operate at up to 50 MHz. The input shift register consists of three don't care bits, one fixed value bit (DB20 = 0), four address bits, and a 16-bit or 12-bit data-word as shown in Table 7 and Table 8, respectively.

Table 7. AD5761R 16-Bit Input Shift Register Format

MSB LSB
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 to DB0

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
X ¹	X ¹	X ¹	0		Register	address		Register data

¹ X means don't care.

Table 8. AD5721R 12-Bit Input Shift Register Format

MSB LSB **DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16** DB15 to DB4 DB3 to DB0 X^1 X^1 X^1 Register address XXXX¹ 0 Register data

Table 9. Input Shift Register Commands

	Register	Address	5	
DB19	DB18	DB17	DB16	Command
0	0	0	0	No operation
0	0	0	1	Write to input register (no update)
0	0	1	0	Update DAC register from input register
0	0	1	1	Write and update DAC register
0	1	0	0	Write to control register
0	1	0	1	No operation
0	1	1	0	No operation
0	1	1	1	Software data reset
1	0	0	0	Reserved
1	0	0	1	Disable daisy-chain functionality
1	0	1	0	Readback input register
1	0	1	1	Readback DAC register
1	1	0	0	Readback control register
1	1	0	1	No operation
1	1	1	0	No operation
1	1	1	1	Software full reset

CONTROL REGISTER

The control register controls the mode of operation of the AD5761R/AD5721R. The control register options are shown in Table 10 and Table 11.

On power-up, after a full reset, or after a hardware reset, the output of the DAC is clamped to ground through a $1 \text{ k}\Omega$ resistor and the output buffer remains in power-down mode. A write to the control register is required to configure the device, remove the clamp to ground, and to power up the output buffer.

When the DAC output range is reconfigured during operation, a software full reset command (see Table 25) must be written to the device before writing to the control register.

¹ X means don't care.

Table 10. Write to Control Register

MSB LSB

DB[23:21]	DB20	DB[19:16]	DB[15:11]	DB[10:9]	DB8	DB7	DB6	DB5	DB[4:3]	DB[2:0]
		Register address	Register data							
XXX ¹	0	0100	XXXX ¹	CV[1:0]	OVR	B2C	ETS	IRO	PV[1:0]	RA[2:0]

¹ X is don't care.

Table 11. Control Register Functions

Bit Name	Description					
CV[1:0]	CLEAR voltage selection.					
	00: zero scale					
	01: midscale					
	10, 11: full scale					
OVR	5% overrange.					
	0: 5% overrange disabled					
	1: 5% overrange enabled					
B2C	Bipolar range.					
	0: DAC input for bipolar output range is straight binary coded					
	1: DAC input for bipolar output range is twos complement coded					
ETS	Thermal shutdown alert. The alert may not work correctly if the device powers on with temperature conditions >150°C					
	(greater than the maximum rating of the device).					
	0: thermal shutdown alert disabled					
	1: thermal shutdown alert enabled					
IRO	Internal reference.					
	0: internal reference turned off					
	1: internal reference turned on					
PV[1:0]	Power up voltage.					
	00: zero scale					
	01: midscale					
	10, 11: full scale					
RA[2:0]	Output range. After an output range configuration, the device must be reset.					
	000: -10 V to +10 V					
	001: 0 V to +10 V					
	010: -5 V to +5 V					
	011: 0 V to 5 V					
	100: -2.5 V to +7.5 V					
	101: –3 V to +3 V					
	110: 0 V to 16 V					
	111: 0 V to 20 V					

Table 12. Bipolar Output Range Possible Codes

Straight Binary	Decimal Code	Twos Complement	
1111	7	0111	
1110	6	0110	
1101	5	0101	
1100	4	0100	
1011	3	0011	
1010	2	0010	
1001	1	0001	
1000	0	0000	
0111	-1	1111	
0110	-2	1110	

Rev. 0 | Page 28 of 33

Straight Binary	Decimal Code	Twos Complement	
0101	-3	1101	
0100	-4	1100	
0011	-5	1011	
0010	-6	1010	
0001	-7	1001	
0000	-8	1000	

READBACK CONTROL REGISTER

The readback control register operation provides the contents of the control register by setting the register address to 1100. Table 13 outlines the 24-bit shift register for this command, where the last 16 bits are don't care bits.

During the next command, the control register contents are shifted out of the SDO pin with the MSB shifted out first. Table 14 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.

Table 13. Readback Control Register, 24-Bit Shift Register to the SDI Pin

MSB

MSB								
DB[23:21]	DB20	DB[19:16]	DB[15:10]					
		Register address	Register data					
XXX ¹	0	1100	Don't care					

¹ X is don't care.

Table 14. Readback Control Register, 24-Bit Data Read from the SDO Pin

MSB

LSB

LSB

DB[23:21]	DB20	DB[19:16]	DB[15:13]	DB12	DB11	DB[10:9]	DB8	DB7	DB6	DB5	DB[4:3]	DB[2:0]
		Register address	Register data									
XXX ¹	0	1100	XXX ¹	SC	ВО	CV[1:0]	OVR	B2C	ETS	IRO	PV[1:0]	RA[2:0]

¹ X is don't care.

Table 15. Readback Control Register Bit Descriptions

Bit Name	Description
SC	Short-circuit condition. The SC bit is reset at every control register write.
	0: no short-circuit condition detected.
	1: short-circuit condition detected.
ВО	Brownout condition. The BO bit is reset at every control register write.
	0: no brownout condition detected.
	1: brownout condition detected.

UPDATE DAC REGISTER FROM INPUT REGISTER

The update DAC register function loads the DAC register with the data saved in the input register, and updates the DAC output voltage. This operation is equivalent to a software LDAC. Table 16 outlines how data is written to the DAC register.

Table 16. Update DAC Register from Input Register **MSB**

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
					Register	Register data		
X ¹	X ¹	X ¹	0		00	Don't care		

¹ X is don't care.

READBACK DAC REGISTER

The readback DAC register operation provides the contents of the DAC register by setting the register address to 1011. Table 17 outlines the 24-bit shift register for this command. During the next command, the DAC register contents are shifted out of the SDO pin with the MSB shifted out first. Table 18 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.

Table 17. Readback DAC Register, 24-Bit Shift Register to SDI Pin

MSB LSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
					Register	Register data		
X ¹	X ¹	X ¹	0	1011				Don't care

¹ X is don't care.

Table 18. Readback DAC Register, 24-Bit Data Read from SDO Pin

MSB LSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB15 to DB0	
				Register address				Register data
X ¹	X ¹	X ¹	0	1011				Data read from DAC register

¹ X is don't care.

WRITE AND UPDATE DAC REGISTER

The write and update DAC register (Register Address 0011) updates the input register and the DAC register with the entered data-word from the input shift register, irrespective of the state of $\overline{\text{LDAC}}$.

Setting the register address to 0001 writes the input register with the data from the input shift register, clocked in MSB first on the SDI pin.

Table 19. Write and Update DAC Register

MSB LSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
					Register	Register data		
X ¹	X ¹	X ¹	0		00	Data loaded		
X ¹	X ¹	X ¹	0		00	Data loaded		

¹ X is don't care.

READBACK INPUT REGISTER

The readback input register operation provides the contents of the input register by setting the register address to 1010. Table 20 outlines the 24-bit shift register for this command. During the next command, the input register contents are shifted out of the SDO pin with MSB shifted out first. Table 21 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.

Table 20. Readback Input Register, 24-Bit Shift Register to the SDI Pin

MSB LSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
					Register	Register data		
X ¹	X ¹	X ¹	0		10	Don't care		

¹ X is don't care.

Table 21. Readback Input Register, 24-Bit Data Read from the SDO Pin

MSB LSB

DB23	DB22	DB21	DB20	DB19 DB18		DB17	DB16	DB15 to DB0
				Register address				Register data
X ¹	X ¹	X ¹	0	1010			Data read from input register	

¹ X is don't care.

DISABLE DAISY-CHAIN FUNCTIONALITY

The daisy-chain feature can be disabled to save the power consumed by the SDO buffer when this functionality is not required (see Table 22). When disabled, a readback request is not accepted because the SDO pin remains in tristate.

Table 22. Disable Daisy-Chain Functionality Register

MSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB1	DB0	
				Register address				Register data		
X ¹	X ¹	X ¹	0	1001			1001 Don't care			

LSB

LSB

Table 23. Disable Daisy-Chain Bit Description

Bit Name	Description
DDC	DDC decides whether daisy-chain functionality is enabled or disabled for the device. By default, daisy-chain functionality is enabled.
	0: daisy-chain functionality is enabled for the device.
	1: daisy-chain functionality is disabled for the device.

SOFTWARE DATA RESET

The AD5761R/AD5721R can be reset via software to zero scale, midscale, or full scale (see Table 24). The value to which the device is reset is specified by the PV[1:0] bits, which are set in the write to control register command (see Table 10 and Table 11).

Table 24. Software Data Reset Register

MSB

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
				Register address				Register data
X ¹	X ¹	X ¹	0	0111				Don't care

¹ X is don't care.

SOFTWARE FULL RESET

The device can also be reset completely via software (see Table 25). When the register address is set to 1111, the device behaves in a power-up state, where the output is clamped to AGND and the output buffer is powered down. The user must write to the control register to configure the device, remove the $1 \text{ k}\Omega$ resistor clamp to ground, and power up the output buffer.

The software full reset command is also issued when the DAC output range is reconfigured during normal operation.

Table 25. Software Full Reset Register

MSB LSB

	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0
Ī					Register address				Register data
	X ¹	X ¹	X ¹	0	1111				Don't care

¹ X is don't care.

NO OPERATION REGISTERS

The no operation registers are ignored and do not vary the state of the device (see Table 26).

Table 26. No Operation Registers

MSB LSB

								-	
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15 to DB0	
					Register	r address		Register data	
X ¹	X ¹	X ¹	0		0000/0101/01	10/1101/1110		Don't care	

¹ X is don't care.

¹ X is don't care.

APPLICATIONS INFORMATION TYPICAL OPERATING CIRCUIT

Figure 74 shows the typical operating circuit for the AD5761R/AD5721R. The only external components needed for this precision 16-/12-bit DAC are decoupling capacitors on the supply pins and supply voltage. Because the AD5761R/AD5721R incorporate a voltage reference and reference buffers, they eliminate the need for an external bipolar reference and associated buffers, resulting in overall savings in both cost and board space.

In Figure 74, $V_{\rm DD}$ is connected to 15 V and V_{SS} is connected to -15 V, but $V_{\rm DD}$ and V_{SS} can operate with supplies from 4.75 V to 30 V and from -16.5 V to 0 V, respectively.

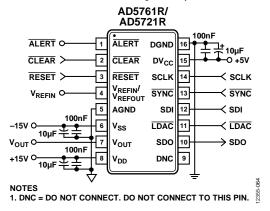


Figure 74. Typical Operating Circuit

POWER SUPPLY CONSIDERATIONS

The AD5761R/AD5721R must be powered by the following three supplies to provide any of the eight output voltage ranges available on the DAC: $V_{DD} = 11 \text{ V}$, $V_{SS} = -21 \text{ V}$, and $DV_{CC} = 5 \text{ V}$.

For applications requiring optimal high power efficiency and low noise performance, it is recommended that a switching regulator be used to convert the 5 V input rail into two intermediate rails (23 V and –13 V). These intermediate rails are then postregulated by very low noise, low dropout (LDO) regulators (ADP7142 and ADP7182). Figure 75 shows the recommended method.

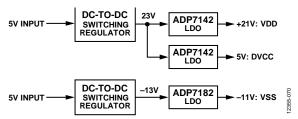
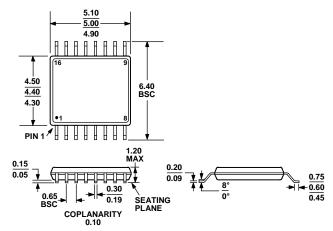



Figure 75. Postregulation by ADP7142 and ADP7182

EVALUATION BOARD

An evaluation board is available for the AD5761R to aid designers in evaluating the high performance of the device with minimum effort. The AD5761R evaluation kit includes a populated and tested AD5761R printed circuit board (PCB). The evaluation board interfaces to the USB port of a PC. Software is available with the evaluation board to allow the user to easily program the AD5761R. The AD5761R user guide, UG-751, is available, which gives full details on the operation of the evaluation board.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 76. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Resolution (Bits)	Internal Reference (V)	Temperature Range	INL (LSB)	Package Description	Package Option
AD5721RBRUZ	12	2.5	-40°C to +125°C	±0.5	16-Lead TSSOP	RU-16
AD5721RBRUZ-RL7	12	2.5	−40°C to +125°C	±0.5	16-Lead TSSOP	RU-16
AD5761RBRUZ	16	2.5	−40°C to +125°C	±2	16-Lead TSSOP	RU-16
AD5761RBRUZ-RL7	16	2.5	−40°C to +125°C	±2	16-Lead TSSOP	RU-16
EVAL-AD5761RSDZ					Evaluation Board	

 $^{^{1}}$ Z = RoHS Compliant Part.

