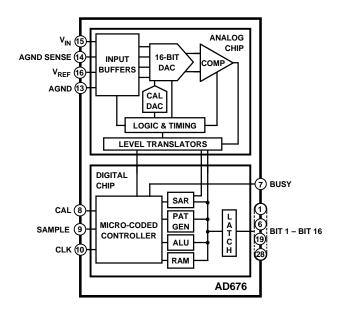


16-Bit 100 kSPS Sampling ADC

AD676

FEATURES
Autocalibrating
On-Chip Sample-Hold Function
Parallel Output Format
16 Bits No Missing Codes
±1 LSB INL
-97 dB THD
90 dB S/(N+D)
1 MHz Full Power Bandwidth


PRODUCT DESCRIPTION

The AD676 is a multipurpose 16-bit parallel output analog-to-digital converter which utilizes a switched-capacitor/charge redistribution architecture to achieve a 100 kSPS conversion rate (10 μ s total conversion time). Overall performance is optimized by digitally correcting internal nonlinearities through on-chip autocalibration.

The AD676 circuitry is segmented onto two monolithic chips—a digital control chip fabricated on Analog Devices DSP CMOS process and an analog ADC chip fabricated on our BiMOS II process. Both chips are contained in a single package.

The AD676 is specified for ac (or "dynamic") parameters such as S/(N+D) Ratio, THD and IMD which are important in signal processing applications. In addition, dc parameters are specified which are important in measurement applications.

FUNCTIONAL BLOCK DIAGRAM

The AD676 operates from +5 V and ± 12 V supplies and typically consumes 360 mW during conversion. The digital supply (V_{DD}) is separated from the analog supplies (V_{CC}, V_{EE}) for reduced digital crosstalk. An analog ground sense is provided for the analog input. Separate analog and digital grounds are also provided.

The AD676 is available in a 28-pin plastic DIP or 28-pin sidebrazed ceramic package. A serial-output version, the AD677, is available in a 16-pin 300 mil wide ceramic or plastic package.

AD676-SPECIFICATIONS

AC SPECIFICATIONS $(T_{MIN}$ to T_{MAX} , V_{CC} = +12 V ± 5%, V_{EE} = -12 V ± 5%, V_{DD} = +5 V ± 10%)¹

		AD676J/A			AD676K/B		
Parameter	Min	Typ	Max	Min	Typ	Max	Units
Total Harmonic Distortion (THD) ²							
$@$ 83 kSPS, T_{MIN} to T_{MAX}		-96	-88		-97	-90	dB
		0.0016	0.004		0.0014	0.003	%
@ 100 kSPS, +25°C		-96			-97		dB
		0.0016			0.0014		%
$@$ 100 kSPS, T_{MIN} to T_{MAX}		-92			-92		dB
		0.0025			0.0025		%
Signal-to-Noise and Distortion Ratio $(S/(N+D))^{2,3}$							
$@$ 83 kSPS, T_{MIN} to T_{MAX}	85	89		87	90		dB
@ 100 kSPS, +25°C		89			90		dB
$\stackrel{\smile}{@}$ 100 kSPS, T_{MIN} to T_{MAX}		86			86		dB
Peak Spurious or Peak Harmonic Component		-98			-98		dB
Intermodulation Distortion (IMD) ⁴							
2nd Order Products		-102			-102		dB
3rd Order Products		-98			-98		dB
Full Power Bandwidth		1			1		MHz
Noise		160			160		μV rms

DIGITAL SPECIFICATIONS (for all grades T_{MIN} to T_{MAX} , $V_{CC}=+12$ V \pm 5%, $V_{EE}=-12$ V \pm 5%, $V_{DD}=+5$ V \pm 10%)

Parame	eter	Test Conditions	Min	Тур	Max	Units
LOGIC	INPUTS					
V_{IH}	High Level Input Voltage		2.4		$V_{\rm DD} + 0.3$	V
V_{IL}	Low Level Input Voltage		-0.3		0.8	V
I_{IH}	High Level Input Current	$V_{\rm IH} = V_{\rm DD}$	-10		+10	μΑ
I_{IL}	Low Level Input Current	$V_{IL} = 0 V$	-10		+10	μA
C_{IN}	Input Capacitance			10		pF
LOGIC	OUTPUTS					
V_{OH}	High Level Output Voltage	$I_{OH} = 0.1 \text{ mA}$	$V_{\rm DD}$ –1 V			V
		$I_{OH} = 0.5 \text{ mA}$	2.4			V
V_{OL}	Low Level Output Voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V

NOTES

Specifications subject to change without notice.

-2- REV. A

 $^{^{1}}V_{REF}$ = 10.0 V, (Conversion Rate (fs) = 83 kSPS, f_{IN} = 1.0 kHz, V_{IN} = -0.05 dB, Bandwidth = fs/2 unless otherwise indicated. All measurements referred to a 0 dB (20 V p-p) input signal. Values are post-calibration.

²For other input amplitudes, refer to Figure 13.

³For other input ranges/voltages reference values see Figure 12.

⁴fa = 1008 Hz. fb = 1055 Hz. See Definition of Specifications section and Figure 15.

DC SPECIFICATIONS $(T_{MIN}$ to T_{MAX} , $V_{CC}=+12$ V \pm 5%, $V_{EE}=-12$ V \pm 5%, $V_{DD}=+5$ V \pm 10%)¹

	AD676J/A			AD676K/B				
Parameter	Min	Typ	Max	Min	Typ	Max	Units	
TEMPERATURE RANGE								
J, K Grades	0		+70	0		+70	°C	
A, B Grades	-40		+85	-40		+85	°C	
ACCURACY								
Resolution	16			16			Bits	
Integral Nonlinearity (INL)								
$@$ 83 kSPS, T_{MIN} to T_{MAX}		±1			±1	±1.5	LSB	
@ 100 kSPS, +25°C		±1			±1		LSB	
$@$ 100 kSPS, T_{MIN} to T_{MAX}		±2			±2		LSB	
Differential Nonlinearity (DNL)–No Missing Codes		16		16	= 2		Bits	
Bipolar Zero Error ² (at Nominal Supplies)		0.005		10	0.005		% FSF	
Gain Error (at Nominal Supplies)		0.003			0.005		/0 1 31	
(a) 83 kSPS ²		0.005			0.005		% FSF	
		0.005			0.005			
@ 100 kSPS, +25°C							% FSF	
@ 100 kSPS 2		0.01			0.01		% FSF	
Temperature Drift, Bipolar Zero ³							% FSF	
J, K Grades		0.0015			0.0015		% FSF	
A, B Grades		0.003			0.003		% FSF	
Temperature Drift, Gain ³								
J, K Grades		0.0015			0.0015		% FSR	
A, B Grades		0.003			0.003		% FSF	
VOLTAGE REFERENCE INPUT RANGE 4 (V_{REF})	5		10	5		10	V	
ANALOG INPUT ⁵								
Input Range (V _{IN})			$\pm V_{REF}$			$\pm V_{REF}$	V	
Input Impedance		*	TC.		*	ILLI		
Input Settling Time		2			2		μs	
Input Capacitance During Sample			50*			50*	pF	
Aperture Delay		6	30		6	30	ns	
Aperture Jitter		100			100		ps	
POWER SUPPLIES								
Power Supply Rejection		⊥1			⊥1		LSB	
$V_{CC} = +12 V \pm 5\%$		±1			±1			
$V_{EE} = -12 \text{ V} \pm 5\%$		±1			±1		LSB	
$V_{DD} = +5 V \pm 10\%$		± 1			± 1		LSB	
Operating Current								
I_{CC}		14.5	18		14.5	18	mA	
$ m I_{EE}$		14.5	18		14.5	18	mA	
$I_{ m DD}$		2	5		2	5	mA	
Power Consumption					360		mW	

Specifications subject to change without notice.

REV. A -3-

 $^{^{1}\}mathrm{V}_{\mathrm{REF}}$ = 5.0 V, Conversion Rate = 83 kSPS unless otherwise noted. Values are post-calibration.

 $^{^2}$ Values shown apply to any temperature from T_{MIN} to T_{MAX} after calibration at that temperature. 3 Values shown are based upon calibration at +25°C with no additional calibration at temperature. Values shown are the worst case variation from the value at +25°C.

⁴See "APPLICATIONS" section for recommended voltage reference circuit, and Figure 12 for dynamic performance with other reference voltage values.

⁵See "APPLICATIONS" section for recommended input buffer circuit.

^{*}For explanation of input characteristics, see "ANALOG INPUT" section.

AD676

TIMING SPECIFICATIONS(T_{MIN} to T_{MAX} V_{CC} = +12 V \pm 5%, V_{EE} = -12 V \pm 5%, V_{DD} = +5 V \pm 10%, V_{REF} = 10.0 V)¹

Parameter	Symbol	Min	Тур	Max	Units
Conversion Time ²	t _C	10		1000	μs
CLK Period ³	t _{CLK}	480			ns
Calibration Time	t _{CT}			85,530	t_{CLK}
Sampling Time (Included in t _C)	t_{S}	2			μs
CAL to BUSY Delay	t _{CALB}		75	150	ns
BUSY to SAMPLE Delay	t _{BS}	2			μs
SAMPLE to BUSY Delay	t_{SB}		15	100	ns
CLK HIGH ⁴	t _{CH}	50			ns
$\mathrm{CLK}\ \mathrm{LOW}^4$	$t_{\rm CL}$	50			ns
SAMPLE LOW to 1st CLK Delay	t _{SC}	50			ns
SAMPLE LOW	$t_{\rm SL}$	100			ns
Output Delay	t _{OD}		125	200	ns
Status Delay	t_{SD}	50			ns
CAL HIGH Time	t _{CALH}	50			ns

NOTES

 $^{^{4}}t_{CH} + t_{CL} = t_{CLK}$ and must be greater than 480 ns.

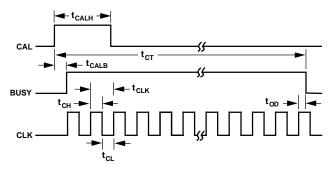


Figure 1. Calibration Timing

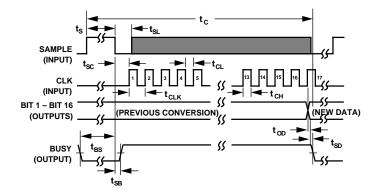


Figure 2a. General Conversion Timing

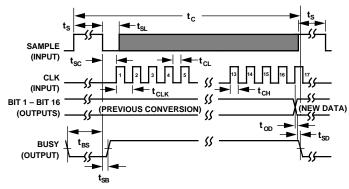


Figure 2b. Continuous Conversion Timing

- REV. A

¹See the "CONVERSION CONTROL" and "AUTOCALIBRATION" sections for detailed explanations of the above timing.

²Depends upon external clock frequency; includes acquisition time and conversion time. The maximum conversion time is specified to account for the droop of the internal sample/hold function. Longer conversion times may degrade performance. See "General Conversion Guidelines" for additional explanation of maximum conversion time.

³580 ns is recommended for optimal accuracy over temperature.

ORDERING GUIDE

Model	Temperature Range ¹	S/(N+D)	Max INL	Package Description	Package Option ²
AD676JD	0°C to +70°C	85 dB	±1.5 LSB	Ceramic 28-Pin DIP	D-28
AD676KD	0°C to +70°C	87 dB		Ceramic 28-Pin DIP	D-28
AD676AD	-40°C to +85°C	85 dB		Ceramic 28-Pin DIP	D-28
AD676BD	-40°C to +85°C	87 dB		Ceramic 28-Pin DIP	D-28

NOTES

ABSOLUTE MAXIMUM RATINGS*

V_{CC} to V_{EE}
V_{DD} to DGND0.3 V to +7 V
V_{CC} to AGND0.3 V to +18 V
V_{EE} to AGND
AGND to DGND ±0.3 V
Digital Inputs to DGND 0 V to +5.5 V
Analog Inputs, V _{REF} to AGND
$(V_{CC} + 0.3 \text{ V})$ to $(V_{EE} - 0.3 \text{ V})$
Soldering +300°C, 10 sec
Storage Temperature65°C to +150°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

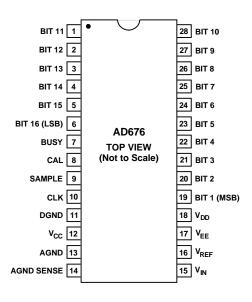
CAUTION

The AD676 features input protection circuitry consisting of large "distributed" diodes and polysilicon series resistors to dissipate both high energy discharges (Human Body Model) and fast, low energy pulses (Charged Device Model). Per Method 3015.2 of MIL-STD-883C, the AD676 has been classified as a Category 1 Device.

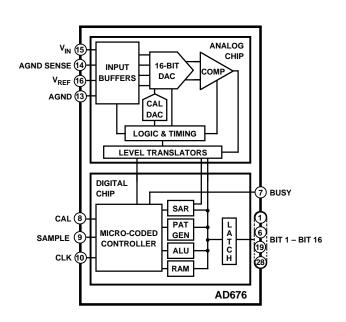
Proper ESD precautions are strongly recommended to avoid functional damage or performance degradation. Charges as high as 4000 volts readily accumulate on the human body and test equipment, and discharge without detection. Unused devices must be stored in conductive foam or shunts, and the foam discharged to the destination socket before devices are removed. For further information on ESD Precaution. Refer to Analog Devices' *ESD Prevention Manual*.

REV. A -5-

¹For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the AD676/883 data sheet. ²D = Ceramic DIP.


AD676

PIN DESCRIPTION


Pin	Name	Type	Description
1–6	BIT 11-BIT 16	DO	BIT 11-BIT 16 represent the six LSBs of data.
7	BUSY	DO	Status Line for Converter. Active HIGH, indicating a conversion or calibration in progress. BUSY should be buffered when capacitively loaded.
8	CAL	DI	Calibration Control Pin (Asynchronous).
9	SAMPLE	DI	V _{IN} Acquisition Control Pin. Active HIGH. During conversion, SAMPLE controls the state of the internal sample-hold amplifier and the falling edge initiates conversion (see "Conversion Control" paragraph). During calibration, SAMPLE should be held LOW. If HIGH during calibration, diagnostic information will appear on the two LSBs (Pins 5 and 6).
10	CLK	DI	Master Clock Input. The AD676 requires 17 clock cycles to execute a conversion.
11	DGND	P	Digital Ground.
12	V_{CC}	P	+12 V Analog Supply Voltage.
13	AGND	P/AI	Analog Ground.
14	AGND SENSE	AI	Analog Ground Sense.
15	V_{IN}	AI	Analog Input Voltage.
16	V_{REF}	AI	External Voltage Reference Input.
17	V _{EE}	P	$-12~{ m V}$ Analog Supply Voltage. Note: the lid of the ceramic package is internally connected to ${ m V}_{ m EE}$.
18	V_{DD}	P	+5 V Logic Supply Voltage.
19–28	BIT 1-BIT 10	DO	BIT 1-BIT 10 represent the ten MSB of data.

Type: AI = Analog Input DI = Digital Input DO = Digital Output

P = Power

Package Pinout

Functional Block Diagram

-6- REV. A