

250 MHz, General Purpose Voltage Feedback Op Amps

AD8047/AD8048

FEATURES

 Wide Bandwidth
 AD8047, G = +1
 AD8048, G = +2

 Small Signal
 250 MHz
 260 MHz

 Large Signal (2 V p-p)
 130 MHz
 160 MHz

5.8 mA Typical Supply Current Low Distortion, (SFDR) Low Noise -66 dBc Typ @ 5 MHz

-54 dBc Typ @ 20 MHz

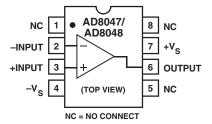
5.2 nV/ $\sqrt{\text{Hz}}$ (AD8047), 3.8 nV/ $\sqrt{\text{Hz}}$ (AD8048) Noise

Drives 50 pF Capacitive Load High Speed

Slew Rate 750 V/μs (AD8047), 1000 V/μs (AD8048) Settling 30 ns to 0.01%, 2 V Step

±3 V to ±6 V Supply Operation

APPLICATIONS


Low Power ADC Input Driver
Differential Amplifiers
IF/RF Amplifiers
Pulse Amplifiers
Professional Video
DAC Current to Voltage Conversion
Baseband and Video Communications
Pin Diode Receivers
Active Filters/Integrators

PRODUCT DESCRIPTION

The AD8047 and AD8048 are very high speed and wide bandwidth amplifiers. The AD8047 is unity gain stable. The AD8048 is stable at gains of two or greater. The AD8047 and AD8048, which utilize a voltage feedback architecture, meet the requirements of many applications that previously depended on current feedback amplifiers.

A proprietary circuit has produced an amplifier that combines many of the best characteristics of both current feedback and voltage feedback amplifiers. For the power (6.6 mA max), the AD8047 and AD8048 exhibit fast and accurate pulse response (30 ns to 0.01%) as well as extremely wide small signal and large signal bandwidth and low distortion. The AD8047 achieves –54 dBc distortion at 20 MHz, 250 MHz small signal, and 130 MHz large signal bandwidths.

FUNCTIONAL BLOCK DIAGRAM 8-Pin Plastic PDIP (N) and SOIC (R) Packages

The AD8047 and AD8048's low distortion and cap load drive make the AD8047/AD8048 ideal for buffering high speed ADCs. They are suitable for 12-bit/10 MSPS or 8-bit/60 MSPS ADCs. Additionally, the balanced high impedance inputs of the voltage feedback architecture allow maximum flexibility when designing active filters.

The AD8047 and AD8048 are offered in industrial (-40°C to +85°C) temperature ranges and are available in 8-lead PDIP and SOIC packages.

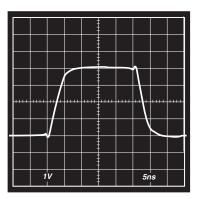


Figure 1. AD8047 Large Signal Transient Response, $V_0 = 4 V p$ -p, G = +1

AD8047/AD8048—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ($\pm V_S = \pm 5$ V, $R_{LOAD} = 100$ Ω , $A_V = 1$ (AD8047), $A_V = 2$ (AD8048), unless otherwise noted.)

n.	0 150		D8047A		AD8048A	TT **	
Parameter	Conditions	Min	Typ Max	MII	Typ I	Max	Unit
DYNAMIC PERFORMANCE Bandwidth (-3 dB) Small Signal Large Signal ¹ Bandwidth for 0.1 dB Flatness	$V_{OUT} \le 0.4 \text{ V p-p}$ $V_{OUT} = 2 \text{ V p-p}$ $V_{OUT} = 300 \text{ mV p-p}$ AD8047, $R_F = 0 \Omega$;	170 100	250 130	180 135			MHz MHz
Slew Rate, Average +/- Rise/Fall Time Settling Time	AD8047, $R_F = 0.52$, AD8048, $R_F = 200 \Omega$ $V_{OUT} = 4 \text{ V Step}$ $V_{OUT} = 0.5 \text{ V Step}$ $V_{OUT} = 4 \text{ V Step}$	475	35 750 1.1 4.3	740	50 1000 1.2 3.2		MHz V/µs ns ns
To 0.1% To 0.01%	$V_{OUT} = 2 \text{ V Step}$ $V_{OUT} = 2 \text{ V Step}$		13 30		13 30		ns ns
HARMONIC/NOISE PERFORMANCE Second Harmonic Distortion Third Harmonic Distortion Input Voltage Noise Input Current Noise	$2 \text{ V p-p; } 20 \text{ MHz}$ $R_L = 1 \text{ k}\Omega$ $2 \text{ V p-p; } 20 \text{ MHz}$ $R_L = 1 \text{ k}\Omega$ $f = 100 \text{ kHz}$ $f = 100 \text{ kHz}$		-54 -64 -60 -61 5.2 1.0		-48 -60 -56 -65 3.8 1.0		dBc dBc dBc dBc nV/√Hz pA/√Hz
Average Equivalent Integrated Input Noise Voltage Differential Gain Error (3.58 MHz) Differential Phase Error (3.58 MHz)	0.1 MHz to 10 MHz $R_L = 150 \Omega$, $G = +2$ $R_L = 150 \Omega$, $G = +2$		16 0.02 0.03		11 0.01 0.02		μV rms % Degree
DC PERFORMANCE ² , R _L = 150 Ω Input Offset Voltage ³ Offset Voltage Drift Input Bias Current Input Offset Current Common-Mode Rejection Ratio Open-Loop Gain	T_{MIN} to T_{MAX} T_{MIN} to T_{MAX} T_{MIN} to T_{MAX} $V_{CM} = \pm 2.5 \text{ V}$ $V_{OUT} = \pm 2.5 \text{ V}$ T_{MIN} to T_{MAX}	74 58 54	1 3 4 ±5 1 3.5 6.5 0.5 2 3 80 62	74 65 56	±5 1 3 0.5 2	3 4 3.5 6.5 2	mV mV μV/°C μA μA μA μA dB dB
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range			500 1.5 ±3.4		500 1.5 ±3.4		kΩ pF V
OUTPUT CHARACTERISTICS Output Voltage Range, R_L = 150 Ω Output Current Output Resistance Short-Circuit Current		±2.8	±3.0 50 0.2 130	±2.	8 ±3.0 50 0.2 130		V mA Ω mA
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$T_{ m MIN}$ to $T_{ m MAX}$	±3.0	±5.0 ±6.0 5.8 6.6 7.5	±3.0	5.9	±6.0 6.6 7.5	V mA mA dB

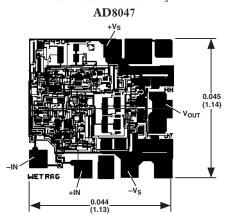
NOTES

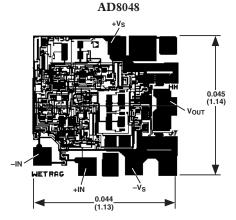
¹See Absolute Maximum Ratings and Theory of Operation sections.

 $^{^{2}}$ Measured at A_{V} = 50.

³Measured with respect to the inverting input.

Specifications subject to change without notice.


ABSOLUTE MAXIMUM RATINGS¹


Supply Voltage, $(+V_S) - (-V_S)$
Voltage Swing × Bandwidth Product
AD8047
AD8048
Internal Power Dissipation ²
Plastic Package (N) 1.3 W
Small Outline Package (R) 0.9 W
Input Voltage (Common Mode) $\pm V_S$
Differential Input Voltage ±1.2 V
Output Short-Circuit Duration
Observe Power Derating Curves
Storage Temperature Range (N, R)65°C to +125°C
Operating Temperature Range (A Grade)40°C to +85°C
Lead Temperature Range (Soldering 10 sec) 300°C
NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

METALLIZATION PHOTOS

Dimensions shown in inches and (mm) Connect Substrate to $-V_S$.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by these devices is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

While the AD8047 and AD8048 are internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150° C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.

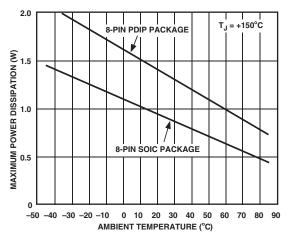


Figure 2. Plot of Maximum Power Dissipation vs. Temperature

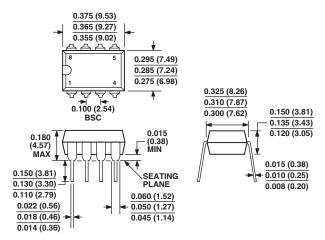
ORDERING GUIDE

Temperature Range	Package Description	Package Option*		
−40°C to +85°C	PDIP	N-8		
-40°C to $+85$ °C	SOIC	R-8		
-40°C to $+85$ °C	SOIC	R-8		
-40°C to $+85$ °C	SOIC	R-8		
-40°C to $+85^{\circ}\text{C}$	PDIP	N-8		
-40°C to $+85$ °C	SOIC	R-8		
-40°C to $+85^{\circ}\text{C}$	SOIC	R-8		
-40°C to $+85^{\circ}\text{C}$	SOIC	R-8		
	Range -40°C to +85°C	Range Description -40°C to +85°C PDIP -40°C to +85°C SOIC -40°C to +85°C SOIC -40°C to +85°C SOIC -40°C to +85°C PDIP -40°C to +85°C SOIC -40°C to +85°C SOIC SOIC SOIC		

^{*}N = PDIP, R= SOIC

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8047/AD8048 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

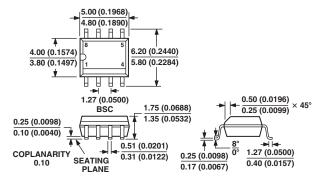

 $^{^2}$ Specification is for device in free air: 8-Lead PDIP Package, θ_{JA} = 90°C/W; 8-Lead SOIC Package, θ_{JA} = 140°C/W

OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP]

(N-8)

Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MO-095AA

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Standard Small Outline Package [SOIC]

(R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN