

High Speed, Video Difference Amplifier

AD830

FEATURES

Differential Amplification

Wide Common-Mode Voltage Range: +12.8 V, -12 V

Differential Voltage Range: ±2 V High CMRR: 60 dB @ 4 MHz

Built-In Differential Clipping Level: ±2.3 V

Fast Dynamic Performance 85 MHz Unity Gain Bandwidth 35 ns Settling Time to 0.1%

360 V/μs Slew Rate

Symmetrical Dynamic Response Excellent Video Specifications Differential Gain Error: 0.06% Differential Phase Error: 0.08° 15 MHz (0.1 dB) Bandwidth

Flexible Operation

High Output Drive of ±50 mA Min

Specified with Both ± 5 V and ± 15 V Supplies

Low Distortion: THD = −72 dB @ 4 MHz Excellent DC Performance: 3 mV Max Input

Offset Voltage

APPLICATIONS
Differential Line Receiver
High Speed Level Shifter
High Speed In-Amp
Differential to Single-Ended Conversion
Resistorless Summation and Subtraction
High Speed A/D Driver

GENERAL DESCRIPTION

The AD830 is a wideband, differencing amplifier designed for use at video frequencies but also useful in many other applications. It accurately amplifies a fully differential signal at the

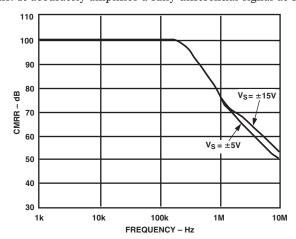
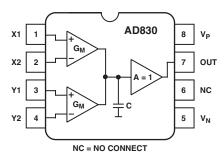



Figure 1. Common-Mode Rejection Ratio vs. Frequency

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

CONNECTION DIAGRAM

8-Lead Plastic PDIP (N), CERDIP (Q) and SOIC (RN) Packages

input and produces an output voltage referred to a user-chosen level. The undesired common-mode signal is rejected, even at high frequencies. High impedance inputs ease interfacing to finite source impedances and thus preserve the excellent common-mode rejection. In many respects, it offers significant improvements over discrete difference amplifier approaches, in particular in high frequency common-mode rejection.

The wide common-mode and differential voltage range of the AD830 make it particularly useful and flexible in level shifting applications, but at lower power dissipation than discrete solutions. Low distortion is preserved over the many possible differential and common-mode voltages at the input and output.

Good gain flatness and excellent differential gain of 0.06% and phase of 0.08° make the AD830 suitable for many video system applications. Furthermore, the AD830 is suited for general-purpose signal processing from dc to 10 MHz.

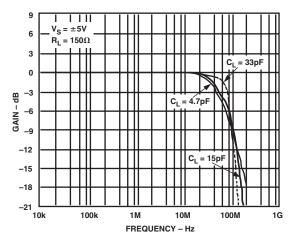


Figure 2. Closed-Loop Gain vs. Frequency, Gain = +1

$\label{eq:continuous} \textbf{AD830--SPECIFICATIONS} \quad \text{(V}_\text{S} = \pm 15 \text{ V, R}_\text{LOAD} = 150 \ \Omega\text{, C}_\text{LOAD} = 5 \text{ pF, T}_\text{A} = 25 ^{\circ}\text{C, unless otherwise noted.)}$

Parameter DYNAMIC CHARACTERISTICS 3 dB Small Signal Bandwidth	Conditions	Min	ZD.			_		
			Typ	Max	Min	Typ	Max	Unit
3 dB Small Signal Bandwidth								
	$Gain = +1$, $V_{OUT} = 100$ mV rms	75	85		75	85		MHz
0.1 dB Gain Flatness Frequency	$Gain = +1$, $V_{OUT} = 100$ mV rms	11	15		11	15		MHz
Differential Gain Error	0 V to 0.7 V, Frequency = 4.5 MHz		0.06	0.09		0.06	0.09	%
Differential Phase Error	0 V to 0.7 V, Frequency = 4.5 MHz		0.08	0.12		0.08	0.12	Degrees
Slew Rate	2 V Step, R_L = 500 Ω		360			360		V/µs
	4 V Step, $R_L = 500 \Omega$		350			350		V/µs
3 dB Large Signal Bandwidth	$Gain = +1, V_{OUT} = 1 V rms$	38	45		38	45		MHz
Settling Time, Gain = +1	$V_{OUT} = 2 \text{ V Step, to } 0.1\%$		25			25		ns
	$V_{OUT} = 4 \text{ V Step, to } 0.1\%$		35			35		ns
Harmonic Distortion	2 V p-p, Frequency = 1 MHz		-82			-82		dBc
	2 V p-p, Frequency = 4 MHz		-72			-72		dBc
Input Voltage Noise	Frequency = 10 kHz		27			27		nV/\sqrt{Hz}
Input Current Noise			1.4			1.4		pA/\sqrt{Hz}
DC PERFORMANCE								
Offset Voltage	Gain = +1		±1.5	±3		±1.5	±3	mV
	$Gain = +1, T_{MIN} - T_{MAX}$			±5			±7	mV
Open-Loop Gain	DC	64	69		64	69		dB
Gain Error	$R_L = 1 \text{ k}\Omega, G = \pm 1$		±0.1	±0.6		±0.1	±0.6	%
Peak Nonlinearity, $R_L = 1 \text{ k}\Omega$,	$\begin{vmatrix} -1 & V \leq X \leq +1 & V \end{vmatrix}$		0.01	0.03		0.01	0.03	% FS
Gain = +1	$-1.5 \text{ V} \le \text{X} \le +1.5 \text{ V}$		0.035	0.07		0.035	0.07	% FS
-	$-2 \text{ V} \leq \text{X} \leq +2 \text{ V}$		0.15	0.4		0.15	0.4	% FS
Input Bias Current	$V_{IN} = 0 \text{ V}, 25^{\circ}\text{C to T}_{MAX}$		5	10		5	10	μA
input Blub Guiltin	$V_{IN} = 0 \text{ V}, T_{MIN}$		7	13		8	17	μΑ
Input Offset Current	$V_{IN} = 0 \text{ V}, T_{MIN} - T_{MAX}$		0.1	1		0.1	1	μA
INPUT CHARACTERISTICS								
Differential Voltage Range	$V_{CM} = 0$		±2.0			±2.0		V
Differential Clipping Level ²	Pins 1 and 2 Inputs Only	±2.1	±2.3		±2.1	±2.0 ±2.3		V
Common-Mode Voltage Range	$V_{DM} = \pm 1 \text{ V}$	-12.0	12.5	+12.8	-12.0	12.5	+12.8	V
CMRR	DC , Pins 1, 2, $\pm 10 \text{ V}$	90	100	112.0	90	100	112.0	dB
CMICC	DC, Pins 1, 2, ± 10 V,	90	100		90	100		ub
	$T_{MIN} - T_{MAX}$	88			86			dB
	Frequency = 4 MHz	55	60		55	60		dB
Input Resistance	1 requeries = 4 MHZ))	370))	370		kΩ
Input Capacitance			2			2		pF
								pr
OUTPUT CHARACTERISTICS	B							
Output Voltage Swing	$R_L \ge 1 \text{ k}\Omega$	±12	+13.8, -13.8		±12	+13.8, -13.8		V
	$R_L \ge 1 \text{ k}\Omega, \pm 16.5 \text{ V}_S$	±13	+15.3, -14.7		±13	+15.3, -14.7		V
Short-Circuit Current	Short to Ground		±80			±80		mA
Output Current	$R_L = 150 \Omega$	±50			±50			mA
POWER SUPPLIES								
Operating Range		±4		± 16.5	±4		± 16.5	V
Quiescent Current	$T_{MIN} - T_{MAX}$		14.5	17		14.5	17	mA
+ PSRR (to V _P)	DC, G = +1		86			86		dB
– PSRR (to V _N)	DC, G = +1		68			68		dB
PSRR	DC, G = $+1$, ± 5 to ± 15 V _S	66	71		66	71		dB
PSRR	DC, G = $+1$, ± 5 to ± 15 V _S ,							
	$T_{MIN} - T_{MAX}$	62	68		60	68		dB

NOTES

¹See Standard Military Drawing 5962-9313001MPA for specifications.

²Clipping level function on X channel only.

Specifications subject to change without notice.

$\label{eq:conditions} \textbf{SPECIFICATIONS} \quad (\textbf{V}_{\text{S}} = \pm 5~\textbf{V},~\textbf{R}_{\text{LOAD}} = 150~\Omega,~\textbf{C}_{\text{LOAD}} = 5~\text{pF},~\textbf{T}_{\text{A}} = +25^{\circ}\text{C},~\text{unless otherwise noted.})$

		AD830J/AD830A		AD830S ¹				
Parameter	Conditions	Min	Тур	Max	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS								
3 dB Small Signal Bandwidth	Gain = $+1$, $V_{OUT} = 100 \text{ mV rms}$	35	40		35	40		MHz
0.1 dB Gain Flatness Frequency	Gain = $+1$, $V_{OUT} = 100 \text{ mV rms}$	5	6.5		5	6.5		MHz
Differential Gain Error	0 V to 0.7 V, Frequency = 4.5 MHz,							
	Gain = +2		0.14	0.18		0.14	0.18	%
Differential Phase Error	0 V to 0.7 V, Frequency = 4.5 MHz,							
	Gain = +2		0.32	0.4		0.32	0.4	Degrees
Slew Rate, $Gain = +1$	2 V Step, $R_L = 500 \Omega$		210			210		V/µs
	4 V Step, $R_L = 500 \Omega$		240			240		V/µs
3 dB Large Signal Bandwidth	$Gain = +1, V_{OUT} = 1 V rms$	30	36		30	36		MHz
Settling Time	$V_{OUT} = 2 \text{ V Step, to } 0.1\%$		35			35		ns
	$V_{OUT} = 4 \text{ V Step, to } 0.1\%$		48			48		ns
Harmonic Distortion	2 V p-p, Frequency = 1 MHz		-69			-69		dBc
	2 V p-p, Frequency = 4 MHz		-56			-56		dBc
Input Voltage Noise	Frequency = 10 kHz		27			27		nV/\sqrt{Hz}
Input Current Noise			1.4			1.4		pA/\sqrt{Hz}
DC PERFORMANCE								
Offset Voltage	Gain = +1		±1.5	±3		±1.5	±3	mV
	$Gain = +1, T_{MIN} - T_{MAX}$			± 4			±5	mV
Open-Loop Gain	DC	60	65		60	65		dB
Unity Gain Accuracy	$R_L = 1 \text{ k}\Omega$		±0.1	±0.6		±0.1	±0.6	%
Peak Nonlinearity, $R_L = 1 \text{ k}\Omega$	$-1 \text{ V} \le \text{X} \le +1 \text{ V}$		0.01	0.03		0.01	0.03	% FS
	$-1.5 \text{ V} \le \text{X} \le +1.5 \text{ V}$		0.045	0.07		0.045	0.07	% FS
	$-2 \text{ V} \leq \text{X} \leq +2 \text{ V}$		0.23	0.4		0.23	0.4	% FS
Input Bias Current	$V_{IN} = 0 \text{ V}, 25^{\circ}\text{C to T}_{MAX}$		5	10		5	10	μΑ
	$V_{\rm IN} = 0 \text{ V}, T_{\rm MIN}$		7	13		8	17	μA
Input Offset Current	$V_{IN} = 0 \text{ V}, T_{MIN} - T_{MAX}$		0.1	1		0.1	1	μΑ
INPUT CHARACTERISTICS								
Differential Voltage Range	$V_{CM} = 0$		±2.0			±2.0		V
Differential Clipping Level ²	Pins 1 and 2 Inputs Only	±2.0	±2.2		±2.0	±2.0 ±2.2		V
Common-Mode Voltage Range	$V_{DM} = \pm 1 \text{ V}$	-2.0	±2.2	+2.9	-2.0	± 2.2	+2.9	v
CMRR	DC, Pins 1, 2, +4 V to -2 V	90	100	12.5	90	100	. 2.5	dB
Civile	DC, Pins 1, 2, +4 V to -2 V,		100			100		uD
	$T_{MIN} - T_{MAX}$	88			86			dB
	Frequency = 4 MHz	55	60		55	60		dB
Input Resistance	requency = rivinz		370			370		kΩ
Input Capacitance			2			2		pF
								P-
OUTPUT CHARACTERISTICS	B > 150.0	1.2.2	12.5			12.5		***
Output Voltage Swing	$R_L \ge 150 \Omega$	±3.2	±3.5		±3.2	±3.5		V
	$R_L \ge 150 \Omega, \pm 4 V_S$	±2.2	-2.4, +2.7		±2.2	-2.4, +2.7		V .
Short-Circuit Current	Short to Ground		-55, +70			-55, +70		mA
Output Current		±40			±40			mA
POWER SUPPLIES								
Operating Range		±4		± 16.5	±4		±16.5	V
Quiescent Current	$T_{MIN} - T_{MAX}$		13.5	16		13.5	16	mA
+ PSRR (to V _P)	DC, $G = +1$, Offset		86			86		dB
– PSRR (to V _N)	DC, $G = +1$, Offset		68			68		dB
PSRR (Dual-Supply)	DC, G = $+1$, ± 5 to ± 15 V _S	66	71		66	71		dB
PSRR (Dual-Supply)	DC, G = $+1$, ± 5 to ± 15 V _S ,							
	$T_{MIN} - T_{MAX}$	62	68		60	68		dB
·	<u> </u>				<u> </u>			

NOTES

¹See Standard Military Drawing 5962-9313001MPA for specifications.

²Clipping level function on X channel only.

Specifications subject to change without notice.

AD830

ABSOLUTE MAXIMUM RATINGS1

Supply Voltage
Internal Power Dissipation ² Observe Derating Curves
Output Short-Circuit Duration Observe Derating Curves
Common-Mode Input Voltage $\dots \pm V_S$
Differential Input Voltage $\dots \pm V_S$
Storage Temperature Range (Q)65°C to +150°C
Storage Temperature Range (N)65°C to +125°C
Storage Temperature Range (RN)65°C to +125°C
Operating Temperature Range
AD830J 0°C to +70°C
AD830A
AD830S55°C to +125°C
Lead Temperature Range (Soldering 60 sec) 300°C
Nome

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating

conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD830 is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is 145°C. For the CERDIP, the maximum junction temperature is 175°C. If these maximums are exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the AD830 in the overheated condition for an extended period can result in permanent damage to the device. To ensure proper operation, it is important to observe the recommended derating curves.

While the AD830 output is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature is not exceeded under all conditions. If the output is shorted to a supply rail for an extended period, then the amplifier may be permanently destroyed.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD830AN	-40°C to +85°C	8-Lead PDIP	N-8
AD830JR	0°C to +70°C	8-Lead SOIC	RN-8
5962-9313001MPA*	−55°C to +125°C	8-Lead CERDIP	Q-8
AD830AR	-40°C to +85°C	8-Lead SOIC	RN-8
AD830AR-REEL	-40°C to +85°C	8-Lead SOIC	RN-8
AD830AR-REEL7	-40°C to +85°C	8-Lead SOIC	RN-8
AD830JR-REEL AD830JR-REEL7	0°C to 70°C 0°C to 70°C	8-Lead SOIC 8-Lead SOIC	RN-8 RN-8

^{*}See Standard Military Drawing 5962-9313001 MPA for specifications.

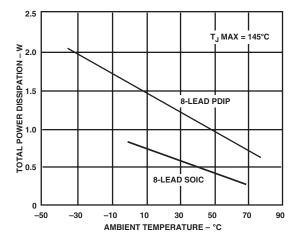


Figure 3. Maximum Power Dissipation vs. Temperature, PDIP and SOIC Packages

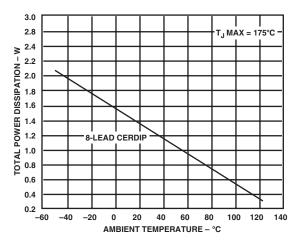


Figure 4. Maximum Power Dissipation vs. Temperature, CERDIP Package

CAUTION

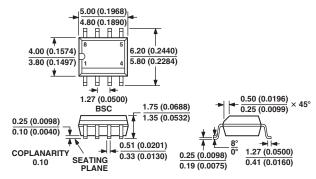
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD830 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

 $^{^2}$ 8-Lead PDIP Package: $\theta_{JA} = 90$ °C/W. 8-Lead SOIC Package: $\theta_{JA} = 155$ °C/W. 8-Lead CERDIP Package: $\theta_{IA} = 110$ °C/W.

OUTLINE DIMENSIONS

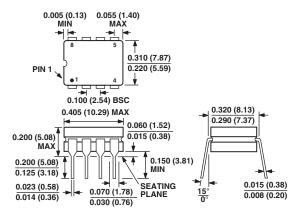
8-Lead Plastic Dual-in-Line Package [PDIP]

(N-8)


Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Standard Small Outline Package [SOIC] (R-8)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Ceramic DIP - Glass Hermetic Seal [CERDIP] (Q-8)

Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN