

34 MHz, CBFET Fast Settling Op Amp

AD843

FEATURES

AC PERFORMANCE

Unity Gain Bandwidth: 34 MHz Fast Settling: 135 ns to 0.01%

Slew Rate: 250 V/µs

Stable at Gains of 1 or Greater Full Power Bandwidth: 3.9 MHz

DC PERFORMANCE

Input Offset Voltage: 1 mV max (AD843K/B)

Input Bias Current: 0.6 nA typ Input Voltage Noise: 19 nV/√Hz

Open Loop Gain: 30 V/mV into a 500 Ω Load

Output Current: 50 mA min Supply Current: 13 mA max

Available in 8-Pin Plastic Mini-DIP & Cerdip, 16-Pin SOIC, 20-Pin LCC and 12-Pin Hermetic Metal Can Packages

Available in Tape and Reel in Accordance with

EIA-481A Standard

Chips and MIL-STD-883B Parts Also Available

APPLICATIONS

High Speed Sample-and-Hold Amplifiers

High Bandwidth Active Filters

High Speed Integrators

High Frequency Signal Conditioning

PRODUCT DESCRIPTION

The AD843 is a fast settling, 34 MHz, CBFET input op amp. The AD843 combines the low (0.6 nA) input bias currents characteristic of a FET input amplifier while still providing a 34 MHz bandwidth and a 135 ns settling time (to within 0.01% of final value for a 10 volt step). The AD843 is a member of the Analog Devices' family of wide bandwidth operational amplifiers. These devices are fabricated using Analog Devices' junction isolated complementary bipolar (CB) process. This process permits a combination of dc precision and wideband ac performance previously unobtainable in a monolithic op amp.

The 250 V/ μ s slew rate and 0.6 nA input bias current of the AD843 ensure excellent performance in high speed sample-and-hold applications and in high speed integrators. This amplifier is also ideally suited for high bandwidth active filters and high frequency signal conditioning circuits.

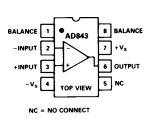
Unlike many high frequency amplifiers, the AD843 requires no external compensation and it remains stable over its full operating temperature range. It is available in five performance grades: the AD843J and AD843K are rated over the commercial temperature range of 0°C to +70°C. The AD843A and AD843B are rated over the industrial temperature range of -40°C to +85°C. The AD843S is rated over the military temperature range of -55°C to +125°C and is available processed to MIL-STD-883B, Rev. C.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

CONNECTION DIAGRAMS

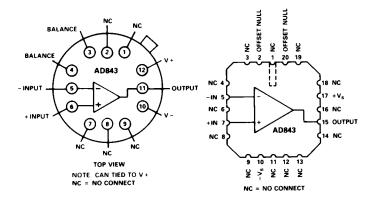
16-Pin SOIC (R-16) Package

NC 1 0 16 NC


NC 2 AD843 14 BALANCE

-INPUT 4 + NC 12 OUTPUT

-V₅ 6 NC 7 NC 8 NC 7 NC 8 NC 9 NC


NC = NO CONNECT

Plastic (N-8) and Cerdip (Q-8) Package

TO-8 (H-12A) Package

LCC (E-20A) Package

The AD843 is offered in either 8-pin plastic DIP or hermetic cerdip packages, in 16-pin SOIC, 20-Pin LCC, or in a 12-pin metal can. Chips are also available.

PRODUCT HIGHLIGHTS

- The high slew rate, fast settling time and low input bias current of the AD843 make it the ideal amplifier for 12-bit D/A and A/D buffers, for high speed sample-and-hold amplifiers and for high speed integrator circuits. The AD843 can replace many FET input hybrid amplifiers such as the LH0032, LH4104 and OPA600.
- 2. Fully differential inputs provide outstanding performance in all standard high frequency op amp applications such as signal conditioning and active filters.
- 3. Laser wafer trimming reduces the input offset voltage to 1 mV max (AD843K and AD843B).
- 4. Although external offset nulling is unnecessary in many applications, offset null pins are provided.
- 5. The AD843 does not require external compensation at closed loop gains of 1 or greater.

AD843—SPECIFICATIONS (@ $T_A = +25^{\circ}C$ and ± 15 V dc, unless otherwise noted)

Model	Conditions	Min	AD843J/A Typ	Max	Min	AD843K/E Typ	Max	Min	AD843S ¹ Typ	Max	Units
INPUT OFFSET VOLTAGE ¹	T. T.		1.0	2.0		0.5	1.0		1.0	2.0	mV
Offset Drift	T_{MIN} - T_{MAX}		1.7 12	4.0		1.2 12	2.0 35		3.0 12	4.5	mV μV/°C
INPUT BIAS CURRENT	Initial (T_J = +25°C) Warmed-Up ² T_{MIN} - T_{MAX}		50 0.8	2.5 60/160		40 0.6	1.0 23/65		50 0.8	2.5 2600	pA nA nA
INPUT OFFSET CURRENT	Initial ($T_J = +25^{\circ}C$) Warmed-Up ² T_{MIN} - T_{MAX}		30 0.25	1.0 23/64		20 0.2	0.4 9/26		30 0.25	1.0 1025	pA nA nA
INPUT CHARACTERISTICS Input Resistance Input Capacitance			10 ¹⁰ 6			10 ¹⁰ 6			10 ¹⁰ 6		Ω pF
INPUT VOLTAGE RANGE Common Mode		±10	+12, -13		±10	+12, -13		±10	+12, -13		V
COMMON-MODE REJECTION	$V_{CM} = \pm 10 \text{ V}$ T_{MIN} - T_{MAX}	60 60	72 72		70 68	76 76		60 60	72 72		dB dB
INPUT VOLTAGE NOISE Wideband Noise	f = 10 kHz 10 Hz to 10 MHz		19 60			19 60			19 60		nV/√Hz μV rms
OPEN LOOP GAIN	$V_{O} = \pm 10 \text{ V}$ $R_{LOAD} \ge 500 \Omega$ $T_{MIN}^{-}T_{MAX}$	15 10	25 20		20 10	30 25		15 10	30 25		V/mV V/mV
OUTPUT CHARACTERISTICS Voltage	$R_{LOAD} \ge 500 \Omega$	±10	+11.5, -12.6		±10	+11.5, -12.6		±10	+11.5, -12.6		v
Current Output Resistance	V _{OUT} = ±10 V Open Loop	50	12		50	12		50	12		mA Ω
FREQUENCY RESPONSE Unity Gain Bandwidth Full Power Bandwidth ³ Rise Time Overshoot Slew Rate	$V_{OUT} = 90 \text{ mV p-p}$ $V_{O} = 20 \text{ V p-p}$ $R1 \ge 500 \Omega$ $A_{VCL} = -1$ $A_{VCL} = -1$ $A_{VCL} = -1$	2.5	34 3.9 10 15 250		2.5	34 3.9 10 15 250		2.5	34 3.9 10 15 250		MHz MHz ns % V/µs
Settling Time Overdrive Recovery Differential Gain Differential Phase	10 V Step A _{VCL} = -1 to 0.1% to 0.01% -Overdrive +Overdrive f = 4.4 MHz f = 4.4 MHz		95 135 200 700 0.025 0.025			95 135 200 700 0.025 0.025		100	95 135 200 700 0.025 0.025		ns ns ns ns ns Degree
POWER SUPPLY Rated Performance Operating Range Quiescent Current Rejection Ratio	T_{MIN} - T_{MAX} ±5 V to ±18 V	±4.5	±15 12 12.3 76	±18 13 14	±4.5	±15 12 12.3 80	±18 13 14	±4.5	±15 12 12.5 76	±18 13 16	V V mA mA dB
Rejection Ratio	T _{MIN} -T _{MAX}	62	76		68	80		62	76		dB dB
TEMPERATURE RANGE Operating, Rated Performance Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Military (-55°C to +125°C) ⁴		AD843J AD843A			AD843K AD843B			AD843S			
PACKAGE OPTIONS Plastic (N-8) Cerdip (Q-8) Metal Can (H-12A) LCC (E-20A) SOIC (R-16) Tape & Reel Chips		AD843JN AD843AQ AD843JR-16 AD843JR-16-REEL AD843JR-16-REEL7 AD843JCHIPS			AD843KN AD843BQ AD843BH			AD843SQ, AD843SQ/883B AD843SH, AD843SH/883B AD843SE/883B			

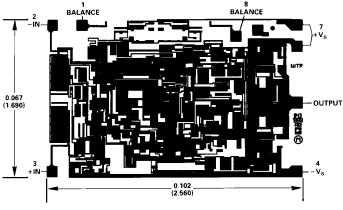
NOTES

Specifications subject to change without notice.

Specifications in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed although only those shown in **boldface** are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage	18 V
Internal Power Dissipation ²	
Plastic Package 1.50 W	atts
Cerdip Package 1.35 W	atts
12-Pin Header Package 1.80 W	atts
16-Pin SOIC Package 1.50 W	atts
20-Pin LCC Package 1.00 V	Watt
Input Voltage	$\pm V_S$
Output Short Circuit Duration Indefi	nite
Differential Input Voltage+V _S and	$-V_S$
Storage Temperature Range (N, R)65°C to +12	5°C
Storage Temperature Range (Q, H, E)65°C to +15	0°C
Operating Temperature Range	
AD843J/R 0°C to +7	0°C
AD843A/B40°C to +8	5°C
AD843S –55°C to +12	5°C
Lead Temperature Range (Soldering 60 sec) +30	0°C
ESD Rating 50)0 V


NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $^28\text{-Pin}$ Plastic Package: $\theta_{JA}=100^\circ\text{C/Watt}$ 8-Pin Cerdip Package: $\theta_{JA}=110^\circ\text{C/Watt}$ 12-Pin Header Package: $\theta_{JA}=80^\circ\text{C/Watt}$ 16-Pin SOIC Package: $\theta_{JA}=100^\circ\text{C/Watt}$ 20-Pin LCC Package: $\theta_{JA}=150^\circ\text{C/Watt}$

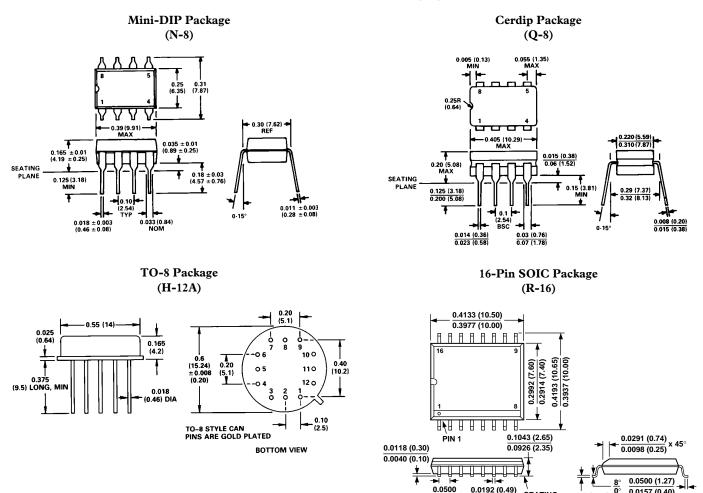
METALIZATION PHOTOGRAPH

Contact factory for latest dimensions. Dimensions shown in inches and (mm).

SUBSTRATE CONNECTED TO + Vs

¹Standard Military Drawings Available: 5962-9098001M2A (SE/883B), 5962-9098001MXA (SH/883B), 5962-9098001MPA (SQ/883B).

²Specifications are guaranteed after 5 minutes at $T_A = +25$ °C.

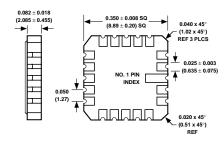

 $^{^{3}}$ Full power bandwidth = Slew Rate/2 π V peak.

 $^{^4}$ All "S" grade T_{MIN} - T_{MAX} specifications are tested with automatic test equipment at T_A = -55°C and T_A = +125°C.

0.0157 (0.40)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).


LCC Package (E-20A)

0.0192 (0.49)

0.0138 (0.35)

SEATING 0.0125 (0.32) PLANE 0.0091 (0.23)

0.0091 (0.23)

