

Quad, Low Power JFET-Input Op Amps

Preliminary Technical Data

ADA4062-4

FEATURES

Low input bias current: 100 pA maximum Offset voltage

1.5 mV maximum for ADA4062-4 B grade 2.5 mV maximum for ADA4062-4 A grade

Offset voltage drift: 2 µV/°C typical

Slew rate: 4 V/µs typical CMRR: 90 dB typical

Low supply current: 170 µA typical Bias current: 100 pA maximum

±15 V operation Unity-gain stable

APPLICATIONS

Power control and monitoring Active filters Industrial/process control Body probe electronics Data acquisition Integrators Input buffering

GENERAL DESCRIPTION

The ADA4062-4 is a quad JFET-input amplifiers providing industry-leading performance. The ADA4062-4 A and B grades are improved versions of the TL064A B and I grades.

The ADA4062-4 offers lower power, lower noise, lower offset voltage, lower offset drift over temperature, and lower bias current compared with the TL064. In addition, the ADA4062-4 has better common-mode rejection and slew rate.

These op amps are ideal for various applications, including process control, industrial and instrumentation equipment, active filtering, data conversion, buffering, and power control and monitoring.

All devices are available in lead-free 14-lead TSSOP and 16-lead LFCSP (3x3x0.85mm) packages. The ADA4062-4 is specified from -40°C to $+125^{\circ}\text{C}$.

PIN CONFIGURATIONS

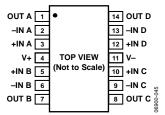


Figure 1. 14-Lead TSSOP (RU-14)

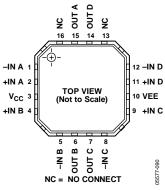


Figure 2. 16-Lead LFCSP (CP-16-4 Suffix)

Table 1. Low Power Op Amps

Supply	40 V	36 V	12 V to 16 V	5 V
Single	OP97	AD820	AD8641	AD8541
			AD8663	
Dual	OP297	OP282	AD8642	AD8542
		AD8682	AD8667	
		AD822		
Quad	OP497	OP482	AD8643	AD8544
		AD8684	AD8669	
		AD824		

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—±15 V OPERATION

 $V_{SY} = \pm 15$ V, $V_{CM} = 0$ V, $T_A = 25$ °C, unless otherwise noted.

Table 2. ADA4062-4 A Grade

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			TBD	2.5	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			TBD	mV
Input Bias Current	I _B			TBD	100	рА
		-40°C ≤ T _A ≤ +125°C			TBD	nA
Input Offset Current	los				100	рА
		-40°C ≤ T _A ≤ +125°C			TBD	nA
Input Voltage Range		-40 °C \leq T _A \leq $+125$ °C	-11.5		+15	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -11.5 \text{ V to } +11.5 \text{ V}$	85	90		dB
		-40 °C \leq T _A \leq $+125$ °C	TBD			dB
Large-Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = -10 \text{ V to } +10 \text{ V}$	TBD	86		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	TBD	73		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C ≤ T _A ≤ +125°C		2		μV/°C
Input Resistance	R _{IN}			1		TΩ
Input Capacitance, Differential Mode	CINDM			TBD		рF
Input Capacitance, Common Mode	C _{INCM}			TBD		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to } V_{CM}$	12	13.4		V
, 3 3		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	12			V
Output Voltage Low	VoL	$R_L = 10 \text{ k}\Omega \text{ to V}_{CM}$		-13.4	-12	V
, 3		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			TBD	V
Short-Circuit Current	Isc			±15		mA
Closed-Loop Output Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		TBD		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 8 \text{ V to } 36 \text{ V}$	80	86		dB
11,7,3		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	TBD			dB
Supply Current per Amplifier	I _{SY}	$I_0 = 0 \text{ mA}$		170	225	μΑ
,		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			TBD	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = 1$	1.5	4		V/µs
Settling Time	ts	To 0.1%, $V_{IN} = 2 \text{ V step}$, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega$, $A_V = 1$		TBD		μs
Overload Recovery Time				TBD		μs
Gain Bandwidth Product	GBP	$R_L = 10 \text{ k}\Omega$, $A_V = 1$		1.5		MHz
Phase Margin	Фм	$R_{L} = 10 \text{ k}\Omega, A_{V} = 1$		63		Degrees
Channel Separation	CS	f = 10 kHz		120		dB
Rise Time	t _R	$V_{IN} = 20 \text{ mV}, C_L = 100 \text{ pF}, R_L = 10 \text{ k}\Omega$		0.2		μs
Overshoot Factor	-11	$V_{IN} = 20 \text{ mV}, C_L = 100 \text{ pF}, R_L = 10 \text{ k}\Omega$		5		%
NOISE PERFORMANCE						/-
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		TBD		μV p-p
Voltage (Volse	Cu P P	f = 1 kHz	1	36		ηV β-β ηV/√Hz

ELECTRICAL CHARACTERISTICS—±15 V OPERATION

 $V_{\text{SY}} = \pm 15$ V, $V_{\text{CM}} = 0$ V, $T_{\text{A}} = 25 ^{\circ}\text{C}$, unless otherwise noted.

Table 3. ADA4062-4 B Grade

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			TBD	1.5	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			TBD	mV
Input Bias Current	I _B			TBD	100	рΑ
		-40°C ≤ T _A ≤ +125°C			TBD	nA
Input Offset Current	los				100	pА
		-40°C ≤ T _A ≤ +125°C			TBD	nA
Input Voltage Range		-40°C ≤ T _A ≤ +125°C	-11.5		+15	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -11.5 \text{ V to } +11.5 \text{ V}$	85	90		dB
•		-40°C ≤ T _A ≤ +125°C	TBD			dB
Large-Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = -10 \text{ V to } +10 \text{ V}$	TBD	86		dB
3 3 3		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	TBD	73		dB
Offset Voltage Drift	ΔV _{OS} /ΔΤ	-40°C ≤ T _A ≤ +125°C		2		μV/°C
Input Resistance	R _{IN}			1		TΩ
Input Capacitance, Differential Mode	CINDM			TBD		рF
Input Capacitance, Common Mode	CINCM			TBD		pF
OUTPUT CHARACTERISTICS						<u>'</u>
Output Voltage High	V _{OH}	$R_{L} = 10 \text{ k}\Omega \text{ to V}_{CM}$	13	13.4		V
3	0	-40°C ≤ T _A ≤ +125°C	13			V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to V}_{CM}$		-13.4	-13	V
	102	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			-13	V
Short-Circuit Current	I _{SC}	10 0 1 1 1 1 1 2 0		±15		mA
Closed-Loop Output Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		TBD		Ω
POWER SUPPLY	2001	1 100 10 12/10				
Power Supply Rejection Ratio	PSRR	$V_{SY} = 8 \text{ V to } 36 \text{ V}$	80	86		dB
rower supply rejection natio	1 31111	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	TBD	00		dB
Supply Current per Amplifier	I _{SY}	$I_0 = 0 \text{ mA}$	100	170	225	μΑ
Supply current per Ampimer	151	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		170	TBD	μΑ
DYNAMIC PERFORMANCE		-40 C S 14 S + 123 C			100	μΛ
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = 1$	1.5	4		V/µs
Settling Time	t _s	To 0.1%, $V_{IN} = 2 \text{ V step, } C_L = 20 \text{ pF, } R_L = 1 \text{ k}\Omega, A_V = 1$	1.5	TBD		
Overload Recovery Time	LS.	$10.0.1 / 0$, $v_{IN} - 2 v_{I}$ step, $C_{L} - 20 pr$, $N_{L} - 1 K22$, $A_{V} = 1$		TBD		μs
Gain Bandwidth Product	GBP	$R_L = 10 \text{ k}\Omega$, $A_V = 1$		1.5		μs MHz
		•		63		
Phase Margin	Φ _M CS	$R_L = 10 \text{ k}\Omega$, $A_V = 1$ f = 10 kHz				Degree dB
Channel Separation				120		
Rise Time	t _R	$V_{IN} = 20 \text{ mV}, C_L = 100 \text{ pF}, R_L = 10 \text{ k}\Omega$		0.2		μs
Overshoot Factor		$V_{IN} = 20 \text{ mV}, C_L = 100 \text{ pF}, R_L = 10 \text{ k}\Omega$		5		%
NOISE PERFORMANCE		6 0411 - 4011		TD 5		<u>,</u> ,
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		TBD		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		36		nV/√H:

ABSOLUTE MAXIMUM RATINGS

Table 4.

1 4014 17				
Parameter	Rating			
Supply Voltage	36 V			
Input Voltage	$GNDtoV_{SY}$			
Input Current ¹	±10 mA			
Differential Input Voltage ²	7 V			
Output Short-Circuit Duration to GND	Indefinite			
Storage Temperature Range	−65°C to +150°C			
Operating Temperature Range	−40°C to +125°C			
Junction Temperature Range	−65°C to +150°C			
Lead Temperature (Soldering, 60 sec)	300°C			

¹The input pins have clamp diodes to the supply power pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 2-layer board.

Table 5. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
14-Lead TSSOP	TBD	TBD	°C/W
16-Lead LFCSP	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Differential input voltage is limited to 7 V or the supply voltage, whichever is less.