

ANALOG Quad Low Power, 3.6 MHz, Low Noise, Rail-to-Rail Output Operational Applificate

Preliminary Technical Data

ADA4691-4

FEATURES

Low power: 180 µA typical Low distortion: 0.003% THD + N Low noise: 16 nV/√Hz typical

3.6 MHz bandwidth

Offset voltage: 500 µV typical

Low offset voltage drift: 4 µV/°C maximum Very low input bias currents: 0.5 pA typical

2.7 V to 5 V single supply or ±1.35 V to ±2.5 V dual supply Available in very small 2 mm × 2mm LFCSP packages

APPLICATIONS

Photodiode amplifier Sensor amplifier Portable instrumentation Portable medical devices

Portable audio: MP3, PDA, smart phone, notebook

Headphone speaker driver

Communications Low-side current sense **ADC** driver **Active filter** Sample-and-hold

Automotive sensors

GENERAL DESCRIPTION

The ADA4691-4 is a quad rail-to-rail output, single-supply amplifier featuring low power, wide bandwidth, and low noise. The ADA4691-4 has two independent shutdown pins, allowing further reduction in supply current. These amplifiers are ideal for a wide variety of applications. Audio preamps, filters, IR/photodiode amplifiers, charge amps, and high impedance sensors all benefit from this combination of performance features. The ADA4692-4 is a quad version without shutdown in a 14-lead TSSOP package.

Applications for these amplifiers include consumer audio personal players with low noise and low distortion that provide enough gain and slew rate response over the audio band at low power. Industrial applications with high impedance sensors, such as pyroelectric sensors and other IR sensors, benefit from the high impedance input, low offset drift, and enough bandwidth and response for low gain applications.

The ADA4691-4 is specified over the extended industrial temperature range (-40°C to +125°C). The ADA4691-4 is available in a 16-lead LFCSP packages.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATION

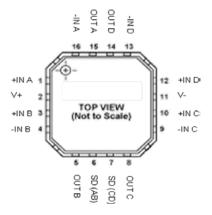


Figure 1. 16-Lead LFCSP

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—2.7 V OPERATION

 V_{SY} = 2.7 V, V_{CM} = $V_{SY}/2$, T_A = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$		0.5	2.5	mV
		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}$			4.0	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	4	μV/°C
Input Bias Current	I _B			0.5	5	рА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			360	pА
Input Offset Current	I _{os}			1	5	рА
		-40°C < T _A < +125°C			225	рА
Input Voltage Range		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$	-0.3		+1.6	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$	70	90		dB
•		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	62			dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 k\Omega, V_{OUT} = 0.5 V \text{ to } 2.2 V$	90	100		dB
		-40°C < T _A < +85°C	80			dB
		-40°C < T _A < +125°C	67			dB
		$R_1 = 600 \Omega, V_{OUT} = 0.5 V \text{ to } 2.2 V$	85	95		dB
Input Capacitance	C _{IN}	2 7 001				
Differential Mode	C _{INDM}			2.5		рF
Common Mode	C _{INCM}			7		pF
Logic High Voltage (Enabled)	V _{IH}	-40°C < T _A < +125°C	+1.6			V
Logic Low Voltage (Power-Down)	V _{IL}	-40°C < T _A < +125°C			0.5	V
Logic Input Current (per Pin)	I _{IN}	$-40^{\circ}\text{C} < \text{T}_{A}^{\circ} < +125^{\circ}\text{C}, 0 \text{ V} \le \text{V}_{\text{SD}} \le 2.7 \text{ V}$			1	μΑ
OUTPUT CHARACTERISTICS	IIN	A 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
Output Voltage High	V _{OH}	$R_1 = 2 k\Omega$ to GND	2.65	2.67		V
3	On	-40°C < T _A < +125°C	2.6			V
		$R_1 = 600 \Omega$ to GND	2.55	2.59		V
		-40°C < T _A < +125°C	2.5			V
Output Voltage Low	V _{OL}	$R_{L} = 2 k\Omega \text{ to } V_{SY}$		24	30	mV
	- 0L	-40°C < T _A < +125°C			40	mV
		$R_L = 600 \Omega \text{ to } V_{SY}$		78	95	mV
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			125	mV
Short-Circuit Current	I _{sc}	$V_{OUT} = V_{SY}$ or GND		±15	5	mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_v = -100$		372		Ω
Output Pin Leakage Current	-001	-40° C < TA < $+125^{\circ}$ C, shutdown active, $V_{SD} = V_{SS}$		1		nA
POWER SUPPLY		10 C 1 11 1 1 1 2 C) 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		
Power Supply Rejection Ratio	PSRR	$V_{S} = 2.7 \text{ V to } 5.5 \text{ V}$	80	90		dB
. Sirer Supply Rejection Hatio	. 5	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$	75	,,		dB
Supply Current Per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$, ,	165	200	μΑ
Supply Carretter of Ampliner	'SY	$v_{\text{OUT}} - v_{\text{SY}}/2$ -40°C < T _A < +125°C		100	240	μΑ
Supply Current Shutdown Mode	I _{SD}	All amplifiers shut down, $V_{SD} = V_{SS}$		10	2 10	nA
Sapply Carrette Stratagowit Mode	'SD	$-40^{\circ}\text{C} < \text{TA} < +125^{\circ}\text{C}$			2	μΑ

ADA4691-4

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 600 \Omega, C_L = 20 \text{pF}, A_V = +1$		1.1		V/µs
		$R_L = 2 k\Omega, C_L = 20 pF, A_V = +1$		1.4		V/µs
Settling Time to 0.1%	t _s	Step = 0.5 V, $R_L = 2 k\Omega$, 600 Ω		1		μs
Gain Bandwidth Product	GBP	$R_L = 1 M\Omega, C_L = 35 pF, A_V = +1$		3.6		MHz
Phase Margin	Φ_{M}	$R_L = 1 M\Omega, C_L = 35 pF, A_V = +1$		49		Degrees
Turn-on, Turn-off Time		$R_L = 600 \Omega$		1		μs
NOISE PERFORMANCE						
Distortion	THD + N	$A_V = -1$, $R_L = 2 \text{ k}\Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.15 \text{ V rms}$		0.009		%
		$A_V = -1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, V_{IN} rms = 0.15 V rms		0.01		%
		$A_V = +1$, $R_L = 2 k\Omega$, $f = 1 kHz$, V_{IN} rms = 0.15 V rms		0.006		%
		$A_V = +1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, V_{IN} rms = 0.15 V rms		0.007		%
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		3.1		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		16		nV/√Hz
		f = 10 kHz		13		nV/√Hz

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 $\rm V_{SY} = 5$ V, $\rm V_{CM} = V_{SY}/2$, $\rm T_A = 25^{\circ}C$, unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$		0.5	2.5	mV
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}$			4.0	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	4	μV/°C
Input Bias Current	I _B			0.5	5	рА
		-40°C < T _A < +125°C			360	pА
Input Offset Current	I _{os}			1	5	pА
		-40°C < T _A < +125°C			260	pА
Input Voltage Range		-40°C < T _A < +125°C	-0.3		+3.9	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$	75	98		dB
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	68			dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 \text{ k}\Omega, V_O = 0.5 \text{ V to } 4.5 \text{ V}, V_{CM} = 0 \text{ V}$	95	110		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	80			dB
		-40°C < T _A < +125°C	75			dB
		$R_L = 600 \Omega, V_O = 0.5 V \text{ to } 4.5 V, V_{CM} = 0 V$	90	100		dB
Input Capacitance						
Differential Mode	C _{INDM}			2.5		рF
Common Mode	C _{INCM}			7		рF
Logic High Voltage (Enabled)	V _{IH}	-40°C < T _A < +125°C	+2.0			V
Logic Low Voltage (Power-Down)	V _{IL}	-40°C < T _A < +125°C			8.0	V
Logic Input Current (per Pin)	I _{IN}	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}, 0 \text{ V} \le \text{V}_{SD} \le 2.7 \text{ V}$			1	μΑ
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 \text{ k}\Omega$	4.95	4.97		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	4.90			V
		$R_L = 600 \Omega$ to GND	4.85	4.88		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	4.80			V

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Output Voltage Low	V _{OL}	$R_L = 2 k\Omega$		28	35	mV
		-40 °C \leq T _A \leq $+125$ °C			50	mV
		$R_L = 600 \Omega$		90	110	mV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			145	mV
Short-Circuit Limit	I _{sc}	$V_{OUT} = V_{SY}$ or GND		±55		mA
Closed-Loop Output Impedance	Z _{out}	ADA4691-2, $f = 1 \text{ MHz}$, $A_v = -100$		364		Ω
		ADA4691-2, $f = 1 \text{ MHz}$, $A_v = -100$		246		Ω
Output Pin Leakage Current		-40 °C < TA < $+125$ °C, shutdown active, $V_{SD} = V_{SS}$		1		nA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 \text{ V to } 5.5 \text{ V}$	80	90		dB
		-40 °C \leq T _A \leq $+125$ °C	75			dB
Supply Current per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$		180	225	μΑ
		-40 °C \leq T _A \leq $+125$ °C			275	μΑ
Supply Current Shutdown Mode	I _{SD}	All amplifiers shutdown, $V_{SD} = V_{SS}$		10		nA
		-40 °C \leq T _A \leq $+125$ °C			2	uA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 \text{ k}\Omega$, 600 Ω , $C_L = 20 \text{ pF}$, $A_V = +1$		1.3		V/µs
Settling Time to 0.1%	t _s	$V_{IN} = 2 \text{ V step}, R_L = 2 \text{ k}\Omega \text{ or } 600 \Omega$		1.5		μs
Gain Bandwidth Product	GBP	$R_L = 1 \text{ M}\Omega, C_L = 35 \text{ pF, } A_V = +1$		3.6		MHz
Phase Margin	Φ_{M}	$R_L = 1 \text{ M}\Omega, C_L = 35 \text{ pF}, A_V = +1$		52		Degree
Turn-on, Turn-off Time		$R_L = 600 \Omega$		1		μs
NOISE PERFORMANCE						
Distortion	THD + N	$A_V = -1$, $R_L = 2 k\Omega$, $f = 1 kHz$, V_{IN} rms = 0.8 V rms		0.008		%
		$A_V = -1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, V_{IN} rms = 0.8 V rms		0.006		%
		$A_V = +1$, $R_L = 2 k\Omega$, $f = 1 kHz$, V_{IN} rms = 0.8 V rms		0.003		%
		$A_V = +1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.8 \text{ V rms}$		0.001		%
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		3.2		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		16		nV/√Hz
	e _n	f = 10 kHz		13		nV/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Input Current ¹	±10 mA
Shutdown Pin Rise/Fall Times	50 μs maximum
Differential Input Voltage ²	±V _{SY}
Output Short-Circuit Duration to GND	Indefinite
Temperature	
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

 $^{^1}$ Input pins have clamp diodes to the supply pins. Limit the input current to $10\,\mathrm{mA}$ or less whenever the input signal exceeds the power supply rail by $0.3\,\mathrm{V}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified.

Table 4. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
8-Lead SOIC_N (R-8)	155	45	°C/W
8-Lead LFCSP (CP-8-6)	115	40	°C/W
9-Ball WLCSP (CB-9-3)	77	N/A	°C/W
10-Lead LFCSP (CP-10-11)	132	46	°C/W
14-Lead TSSOP (RU-14)	112	35	°C/W
16-Lead LFCSP	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Differential input voltage is limited to 5 V or the supply voltage, whichever is less