

3.3 V, ±15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers

ADM3486E/ADM3490E/ADM3491E

FEATURES

TIA/EIA RS-485/RS-422 compliant ±15 kV ESD protection on RS-485 input/output pins Data rates

ADM3486E: 2.5 Mbps

ADM3490E/ADM3491E: 12 Mbps

Half- and full-duplex options Up to 32 nodes on the bus

Low power shutdown current (ADM3486E/ADM3491E only)

Outputs high-Z when disabled or powered off

Common-mode input range: -7 V to +12 V

Thermal shutdown and short-circuit protection

Industry-standard 75176 pinout

8-lead and 14-lead narrow SOIC packages

APPLICATIONS

Power/energy metering Telecommunications EMI-sensitive systems Industrial control Local area networks

GENERAL DESCRIPTION

The ADM3486E/ADM3490E/ADM3491E are 3.3 V, low power data transceivers with ±15 kV ESD protection suitable for full- and half-duplex communication on multipoint bus transmission lines. They are designed for balanced data transmission, and they comply with TIA/EIA standards RS-485 and RS-422. The ADM3486E is a half-duplex transceiver that shares differential lines and has separate enable inputs for the driver and receiver. The full-duplex ADM3490E/ADM3491E transceivers have dedicated differential line driver outputs and receiver inputs. The ADM3491E also features enable inputs for the driver and receiver.

The devices have a 12 k Ω receiver input impedance, which allows up to 32 transceivers on a bus. Because only one driver should be enabled at any time, the output of a disabled or powered-down driver is tristated to avoid overloading the bus.

FUNCTIONAL BLOCK DIAGRAMS

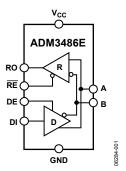
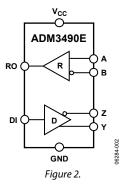



Figure 1.

RO R A B B DE DI D Y Y GND Figure 3.

(continued on Page 3)

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagrams	1
Revision History	2
Specifications	4
Driver Timing Specifications	5
Receiver Timing Specifications	6
Absolute Maximum Ratings	7
ESD Caution	7
Pin Configurations and Function Descriptions	8
Test Circuits and Switching Characteristics	9
Typical Performance Characteristics	. 11

C	ircuit Description	13
	Devices with Receiver/Driver Enable—ADM3486E/ ADM3491E	13
	Devices Without Receiver/Driver Enable—ADM3490E	13
	Low Power Shutdown Mode—ADM3486E/ADM3491E	13
	Driver Output Protection	13
	Propagation Delay	13
	Line Length vs. Data Rate	13
	±15 kV ESD Protection	13
	Human Body Model	14
	Typical Applications	14
O	utline Dimensions	16
	Ordering Guide	16

REVISION HISTORY

8/06—Revision 0: Initial Version

GENERAL DESCRIPTION

(continued from Page 1)

The driver outputs of the ADM3486E are slew rate limited, in order to reduce EMI and data errors caused by reflections from improperly terminated buses. The receiver has a fail-safe feature that ensures a logic high output when the inputs are floating.

Excessive power dissipation caused by bus contention or by output shorting is prevented with a thermal shutdown circuit.

The parts are fully specified over the industrial temperature range and are available in 8-lead and 14-lead narrow SOIC packages.

Table 1. Selection Table

Part No.	Guaranteed Data Rate (Mbps)	Supply Voltage (V)	Half/Full Duplex	Slew Rate Limited	Driver/Receiver Enable	±15 kV ESD Protection on Bus Pins	Pin Count
ADM3486E	2.5	3.0 to 3.6	Half	Yes	Yes	Yes	8
ADM3490E	12	3.0 to 3.6	Full	No	No	Yes	8
ADM3491E	12	3.0 to 3.6	Full	No	Yes	Yes	14

SPECIFICATIONS

 V_{CC} = 3.3 V \pm 0.3 V, T_{A} = T_{MIN} to $T_{\text{MAX}},$ unless otherwise noted.

Table 2. ADM3486E/ADM3490E/ADM3491E

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DRIVER						
Differential Outputs						
Differential Output Voltage	V _{OD}	2.0			V	$R_L = 100 \Omega$ (RS-422) (see Figure 7)
		1.5			V	$R_L = 54 \Omega$ (RS-485) (see Figure 7)
		1.5			V	$R_L = 60 \Omega$ (RS-485) (see Figure 8)
$\Delta V_{\text{OD}} $ for Complementary Output States ¹	ΔV_{OD}			0.2	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 7)
Common-Mode Output Voltage	Voc			3	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 7)
$\Delta V_{OC} $ for Complementary Output States ¹	ΔV_{OC}			0.2	V	$R_L = 54 \Omega$ or 100 Ω (see Figure 7)
Short-Circuit Output Current	I _{OSD}	-250			mA	$V_{OUT} = -7 \text{ V}$
				250	mA	V _{OUT} = 12 V
Output Leakage (Y, Z) (ADM3491E Only)	Io					
Normal Mode				20	μΑ	$DE = 0 \text{ V}, \overline{RE} = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V},$
						V _{OUT} = 12 V
		-20			μΑ	$DE = 0 \text{ V}, \overline{RE} = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V},$
						$V_{OUT} = -7 \text{ V}$
Shutdown Mode				1	μΑ	$DE = 0 \text{ V}, \overline{RE} = V_{CC}, V_{CC} = 0 \text{ V or } 3.6 \text{ V},$
						$V_{OUT} = 12 V$
		-1			μΑ	$DE = 0 \text{ V}, \overline{RE} = V_{cc}, V_{cc} = 0 \text{ V or } 3.6 \text{ V},$
						$V_{OUT} = -7 V$
Logic Inputs						
Input High Voltage	V _{IH}	2.0			V	DE, DI, RE
Input Low Voltage	V _{IL}			8.0	V	DE, DI, RE
Logic Input Current	I _{IN1}			±2	μΑ	DE, DI, RE
RECEIVER						
Differential Inputs						
Differential Input Threshold Voltage	V_{TH}	-0.2		0.2	V	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
Input Hysteresis	ΔV_{TH}		50		mV	$V_{CM} = 0 V$
Input Resistance (A, B)	R _{IN}	12			kΩ	$-7 \text{ V} < \text{V}_{\text{CM}} < +12 \text{ V}$
Input Current (A, B)	I _{IN2}			1.0	mA	$DE = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V}, V_{IN} = 12 \text{ V}$
·		-0.8			mA	$DE = 0 \text{ V}, V_{CC} = 0 \text{ V or } 3.6 \text{ V}, V_{IN} = -7 \text{ V}$
RO Logic Output						
Output High Voltage	V _{OH}	V _{CC} – 0.4			V	$I_{OUT} = -1.5 \text{ mA}, V_{ID} = 200 \text{ mV}$ (see Figure 9
Output Low Voltage	Vol			0.4	V	$I_{OUT} = 2.5 \text{ mA}, V_{ID} = 200 \text{ mV} \text{ (see Figure 9)}$
Short-Circuit Output Current	I _{OSR}	±8		±60	mA	$0 \text{ V} < \text{V}_{RO} < \text{V}_{CC}$
Tristate Output Leakage Current	lozr			±1	μΑ	$V_{CC} = 3.6 \text{ V}, 0 \text{ V} < V_{OUT} < V_{CC}$
POWER SUPPLY						
Voltage Range	Vcc	3.0		3.6	V	
Supply Current	Icc		1.1	2.2	mA	No load, DI = 0 V or V_{CC} , DE = V_{CC} ,
cappy carrent	100					$\overline{RE} = 0 \text{ V or V}_{CC}$
			0.95	1.9	mA	$\frac{\text{No load, DI} = 0 \text{ V or V}_{CC}, \text{ DE} = 0 \text{ V},}{\text{RE} = 0 \text{ V}}$
Shutdown Current	I _{SHDN}		0.002	1	μΑ	$DE = 0 \text{ V}, \overline{RE} = V_{CC}, DI = 0 \text{ V or } V_{CC}$
ESD PROTECTION						
A, B, Y, Z Pins			±15		kV	Human body model
All Pins Except A, B, Y, Z Pins]	±4		kV	Human body model

 $^{^1}$ $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in V_{OD} and V_{OC} , respectively, when DI input changes state.

DRIVER TIMING SPECIFICATIONS

 V_{CC} = 3.3 V, T_A = 25°C.

Table 3. ADM3486E

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
MAXIMUM DATA RATE		2.5			Mbps	
DIFFERENTIAL OUTPUT DELAY	t _{DD}	20	42	70	ns	$R_L = 60 \Omega$ (see Figure 10)
DIFFERENTIAL OUTPUT TRANSITION TIME	t _{TD}	15	28	60	ns	$R_L = 60 \Omega$ (see Figure 10)
PROPAGATION DELAY						
From Low to High Level	t _{PLH}	20	42	75	ns	$R_L = 27 \Omega$ (see Figure 11)
From High to Low Level	t _{PHL}	20	42	75	ns	$R_L = 27 \Omega$ (see Figure 11)
tplh - tphl PROPAGATION DELAY SKEW1	t _{PDS}		-6	±12	ns	$R_L = 27 \Omega$ (see Figure 11)
ENABLE/DISABLE TIMING						
Enable Time to Low Level	t _{PZL}		52	100	ns	$R_L = 110 \Omega$ (see Figure 13)
Enable Time to High Level	t _{PZH}		52	100	ns	$R_L = 110 \Omega$ (see Figure 12)
Disable Time from Low Level	t _{PLZ}		40	80	ns	$R_L = 110 \Omega$ (see Figure 13)
Disable Time from High Level	t _{PHZ}		40	80	ns	$R_L = 110 \Omega$ (see Figure 12)
Enable Time from Shutdown to Low Level	t _{PSL}		700	1000	ns	$R_L = 110 \Omega$ (see Figure 13)
Enable Time from Shutdown to High Level	t _{PSH}		700	1000	ns	$R_L = 110 \Omega$ (see Figure 12)

 $^{^{1}}$ Measured on $\left|t_{PLH}\left(Y\right)-t_{PHL}\left(Y\right)\right|$ and $\left|t_{PLH}\left(Z\right)-t_{PHL}\left(Z\right)\right|.$

 $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}.$

Table 4. ADM3490E/ADM3491E

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
MAXIMUM DATA RATE		12	15		Mbps	
DIFFERENTIAL OUTPUT DELAY	t _{DD}	1	22	35	ns	$R_L = 60 \Omega$ (see Figure 10)
DIFFERENTIAL OUTPUT TRANSITION TIME	t _{TD}	3	11	25	ns	$R_L = 60 \Omega$ (see Figure 10)
PROPAGATION DELAY						
From Low to High Level	t _{PLH}	7	23	35	ns	$R_L = 27 \Omega$ (see Figure 11)
From High to Low Level	t _{PHL}	7	23	35	ns	$R_L = 27 \Omega$ (see Figure 11)
tplh - tphl PROPAGATION DELAY SKEW1	t _{PDS}		-1.4	±8	ns	$R_L = 27 \Omega$ (see Figure 11)
ENABLE/DISABLE TIMING (ADM3491E ONLY)						
Enable Time to Low Level	t _{PZL}		42	90	ns	$R_L = 110 \Omega$ (see Figure 13)
Enable Time to High Level	t _{PZH}		42	90	ns	$R_L = 110 \Omega$ (see Figure 12)
Disable Time from Low Level	t _{PLZ}		35	80	ns	$R_L = 110 \Omega$ (see Figure 13)
Disable Time from High Level	t PHZ		35	80	ns	$R_L = 110 \Omega$ (see Figure 12)
Enable Time from Shutdown to Low Level	t _{PSL}		650	900	ns	$R_L = 110 \Omega$ (see Figure 13)
Enable Time from Shutdown to High Level	t _{PSH}		650	900	ns	$R_L = 110 \Omega$ (see Figure 12)

 $^{^{1}}$ Measured on $\left|t_{PLH}\left(Y\right)-t_{PHL}\left(Y\right)\right|$ and $\left|t_{PLH}\left(Z\right)-t_{PHL}\left(Z\right)\right|.$

RECEIVER TIMING SPECIFICATIONS

 $V_{\text{CC}} = 3.3$ V, $T_{\text{A}} = 25^{\circ}\text{C}.$

Table 5. ADM3486E/ADM3490E/ADM3491E

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
PROPAGATION DELAY						
From Low to High Level	t _{RPLH}	25	62	90	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V, } C_{L} = 15 \text{ pF (see Figure 14)}$
From High to Low Level	t _{RPHL}	25	62	90	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V, } C_{L} = 15 \text{ pF (see Figure 14)}$
trplh - trphl PROPAGATION DELAY SKEW	t _{RPDS}		6	±10	ns	$V_{ID} = 0 \text{ V to } 3.0 \text{ V, } C_{L} = 15 \text{ pF (see Figure 14)}$
ENABLE/DISABLE TIMING (ADM3486E/ADM3491E)						
Enable Time to Low Level	t _{RPZL}		25	50	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Enable Time to High Level	t _{RPZH}		25	50	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Disable Time from Low Level	t _{RPLZ}		25	45	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Disable Time from High Level	t _{RPHZ}		25	45	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Enable Time from Shutdown to Low Level	t _{RPSL}		720	1400	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Enable Time from Shutdown to High Level	t _{RPSH}		720	1400	ns	$C_L = 15 \text{ pF (see Figure 15)}$
Time to Shutdown ¹	t _{SHDN}	80	190	300	ns	

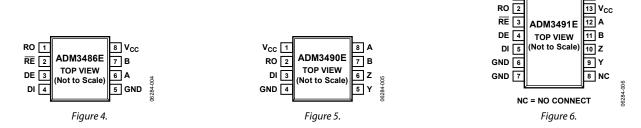
¹ The transceivers are put into shutdown mode by bringing the RE high and the DE low. If the inputs are in this state for less than 80 ns, the parts are guaranteed not to enter shutdown. If the parts are in this state for 300 ns or more, the parts are guaranteed to enter shutdown.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

	T
Parameter	Rating
V _{CC} to GND	−0.3 V to +6 V
Digital Input/Output Voltage (DE, $\overline{\text{RE}}$, DI)	−0.3 V to +6 V
Receiver Output Voltage (RO)	$-0.3 \text{ V to } (V_{CC} + 0.3 \text{ V})$
Driver Output (A, B, Y, Z)/Receiver Input	
(A, B) Voltage	-8 V to +13 V
Driver Output Current	±250 mA
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
$ heta_{JA}$ Thermal Impedance	
8-Lead SOIC_N	158°C/W
14-Lead SOIC_N	120°C/W
Lead Temperature, Soldering (20 sec)	260°C


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NC 1

14 V_{CC}

Table 7. Pin Function Descriptions

ADM3486E Pin No.	ADM3490E Pin No.	ADM3491E Pin No.	Mnemonic	Description
1	2	2	RO	Receiver Output. If A > B by 200 mV, RO is high; if A < B by 200 mV, RO is low.
2	N/A	3	RE	Receiver Output Enable. A low level enables the receiver output. A high level places it in a high impedance state. If RE is high and DE is low, the device enters a low power shutdown mode.
3	N/A	4	DE	Driver Output Enable. A high level enables the driver differential A and B outputs. A low level places it in a high impedance state. If RE is high and D is low, the device enters a low power shutdown mode.
4	3	5	DI	Driver Input. With a half-duplex part when the driver is enabled, a logic low on DI forces A low and B high; a logic high on DI forces A high and B low. With a full-duplex part when the driver is enabled, a logic low on DI forces low and Z high; a logic high on DI forces Y high and Z low.
5	4	6, 7	GND	Ground.
N/A	5	9	Υ	Noninverting Driver Output.
6	N/A	N/A	Α	Noninverting Receiver Input A and Noninverting Driver Output A.
N/A	8	12	Α	Noninverting Receiver Input A.
N/A	6	10	Z	Inverting Driver Output.
7	N/A	N/A	В	Inverting Receiver Input B and Inverting Driver Output B.
N/A	7	11	В	Inverting Receiver Input B.
8	1	13, 14	Vcc	Power Supply, 3.3 V \pm 0.3 V. Bypass V _{CC} to GND with a 0.1 μ F capacitor.
N/A	N/A	1, 8	NC	No Connect. Not internally connected. Can be connected to GND.

TEST CIRCUITS AND SWITCHING CHARACTERISTICS

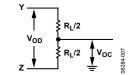


Figure 7. Driver Differential Output Voltage and Common-Mode Output Voltage

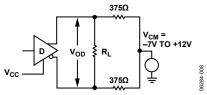


Figure 8. Driver Differential Output Voltage with Varying Common-Mode Voltage

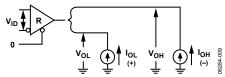
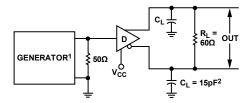



Figure 9. Receiver Output Voltage High and Output Voltage Low

 ^{1}PPR = 250kHz, 50% DUTY CYCLE, $t_{R} \leq$ 6.0ns, Z_{O} = 50 Ω . $^{2}\text{C}_{L}$ INCLUDES PROBE AND STRAY CAPACITANCE.

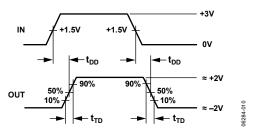
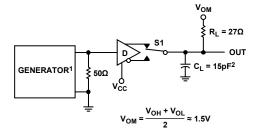



Figure 10. Driver Differential Output Delay and Transition Times

 ^{1}PPR = 250kHz, 50% DUTY CYCLE, t_{R} \leq 6.0ns, Z_{O} = 50 $\!\Omega$. $^{2}\text{C}_{L}$ INCLUDES PROBE AND STRAY CAPACITANCE.

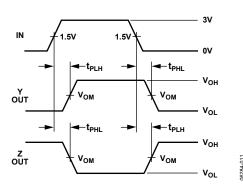
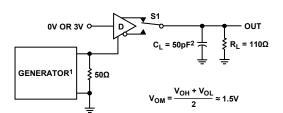



Figure 11. Driver Propagation Delays

^1PPR = 250kHz, 50% DUTY CYCLE, $t_R \le$ 6.0ns, Z_O = 50 Ω . 2C_L INCLUDES PROBE AND STRAY CAPACITANCE.

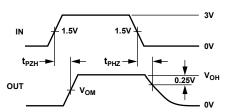
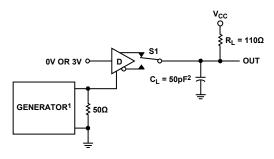



Figure 12. Driver Enable and Disable Times (tpzh, tpsh, tphz)

 ^{1}PPR = 250kHz, 50% DUTY CYCLE, t_{R} \leq 6.0ns, $\rm Z_{O}$ = 50 $\!\Omega$. $^{2}\rm C_{L}$ INCLUDES PROBE AND STRAY CAPACITANCE.

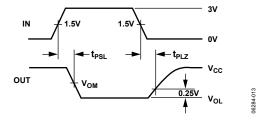
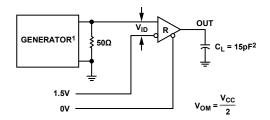



Figure 13. Driver Enable and Disable Times (tpzl, tpsl, tplz)

 ^{1}PPR = 250kHz, 50% DUTY CYCLE, $t_{R} \leq 6.0\text{ns},$ Z_{O} = 50 $\Omega.$ $^{2}\text{C}_{L}$ INCLUDES PROBE AND STRAY CAPACITANCE.

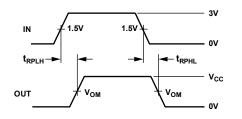
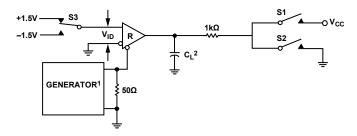



Figure 14. Receiver Propagation Delays

^1PPR = 250kHz, 50% DUTY CYCLE, $t_R \le$ 6.0ns, Z_O = 50 Ω . 2C_L INCLUDES PROBE AND STRAY CAPACITANCE.

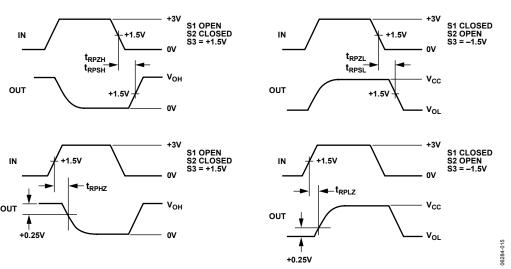


Figure 15. Receiver Enable and Disable Times

TYPICAL PERFORMANCE CHARACTERISTICS

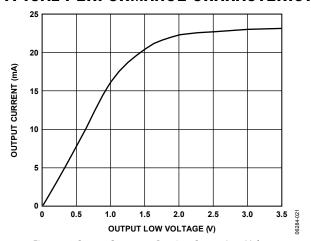


Figure 16. Output Current vs. Receiver Output Low Voltage

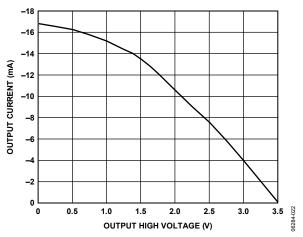


Figure 17. Output Current vs. Receiver Output High Voltage

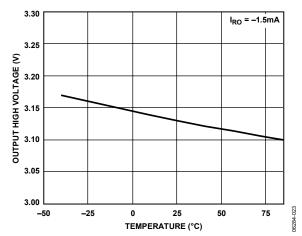


Figure 18. Receiver Output High Voltage vs. Temperature

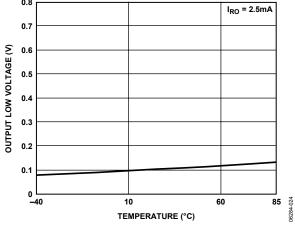


Figure 19. Receiver Output Low Voltage vs. Temperature

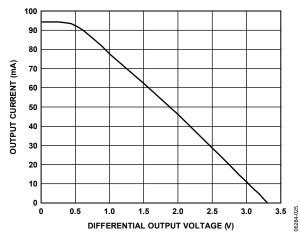


Figure 20. Driver Output Current vs. Differential Output Voltage

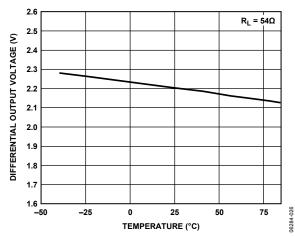


Figure 21. Driver Differential Output Voltage vs. Temperature

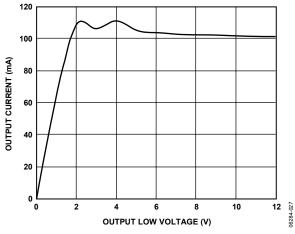


Figure 22. Output Current vs. Driver Output Low Voltage

Figure 23. Output Current vs. Driver Output High Voltage

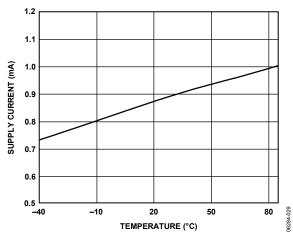


Figure 24. Supply Current vs. Temperature

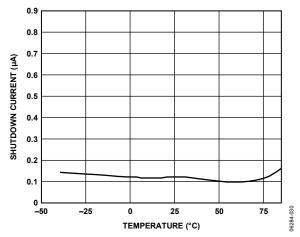


Figure 25. Shutdown Current vs. Temperature

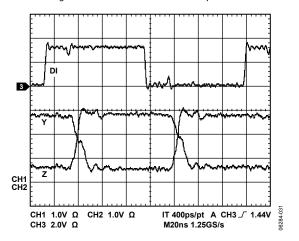


Figure 26. ADM3490E/ADM3491E Driver Propagation Delay

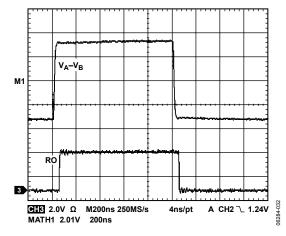


Figure 27. ADM3490E/ADM3491E Receiver Propagation Delay, Driven by External RS-485 Device

CIRCUIT DESCRIPTION

The ADM34xxE are low power transceivers for RS-485 and RS-422 communications. The ADM3486E operates at data rates up to 2.5 Mbps, and the ADM3490E/ADM3491E transmit at up to 12 Mbps. The ADM3490E/ADM3491E are full-duplex transceivers, and the ADM3486E is half duplex. Driver enable (DE) and receiver enable ($\overline{\text{RE}}$) pins are included on the ADM3486E/ADM3491E. When disabled, the driver and receiver outputs are high impedance.

DEVICES WITH RECEIVER/DRIVER ENABLE— ADM3486E/ADM3491E

Table 8. Transmitting Truth Table

Tran	smitting	Inputs	Transmit	ting Outputs	
RE	DE	DI	A^1, Y^2	B^1, Z^2	Mode
X ³	1	1	1	0	Normal
X^3	1	0	0	1	Normal
0	0	X_3	High-Z⁴ High-Z⁴	High-Z⁴	Normal
1	0	X^3	High-Z⁴	High-Z⁴	Shutdown

¹ ADM3486E only.

Table 9. Receiving Truth Table

	Rec	eiving	Inputs	Receiving Output	
RE	DE ¹	DE^2	A – B	RO	Mode
0	0	X ³	≥ +0.2 V	1	Normal
0	0	X^3	\leq -0.2 V	0	Normal
0	0	X^3	Inputs open	1	Normal
1	0	X^3	X^3	High-Z⁴	Shutdown

¹ ADM3486E only.

DEVICES WITHOUT RECEIVER/DRIVER ENABLE—ADM3490E

Table 10. Transmitting Truth Table

Transmitting Input		Transmitting Outputs
DI	Z	Υ
1	0	1
0	1	0

Table 11. Receiving Truth Table

Receiving Input	Receiving Output	
A – B	RO	
≥ +0.2 V	1	
≤ −0.2 V	0	
Inputs open	1	

LOW POWER SHUTDOWN MODE—ADM3486E/ ADM3491E

The ADM3486E/ADM3491E are <u>put</u> into a low power shutdown mode by bringing both \overline{RE} high and DE low. The devices do not shut down unless both the driver and the receiver are disabled (high impedance). In shutdown mode, the devices typically draw less than 1 μA of supply current. For these devices, the t_{PSH} and the t_{PSL} enable times assume the part was in the low power shutdown mode; the t_{PZH} and the t_{PZL} enable times assume the receiver or the driver was disabled, but the part was not shut down.

DRIVER OUTPUT PROTECTION

The ADM34xxE family implements two ways to prevent excessive output current and power dissipation caused by faults or by bus contention. A current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Performance Characteristics section). In addition, a thermal shutdown circuit forces the driver outputs into a high impedance state if the die temperature rises excessively.

PROPAGATION DELAY

Figure 11, Figure 14, Figure 26, and Figure 27 show the typical propagation delays. Skew time is simply the difference between the low-to-high and the high-to-low propagation delays. Small driver/receiver skew times help maintain a symmetrical markspace ratio (50% duty cycle). The driver skew time is 8 ns for the ADM3490E/ADM3491E and 12 ns for the ADM3486E.

LINE LENGTH VS. DATA RATE

The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, Figure 32 illustrates an example of a line repeater.

±15 kV ESD PROTECTION

Two coupling methods are used for ESD testing: contact discharge and air-gap discharge. Contact discharge calls for a direct connection to the unit being tested. Air-gap discharge uses a higher test voltage but does not make direct contact with the test unit. With air-gap discharge, the discharge gun is moved toward the unit under test, developing an arc across the air gap, therefore the term air-gap discharge. This method is influenced by humidity, temperature, barometric pressure, distance, and rate of closure of the discharge gun. The contact discharge method, while less realistic, is more repeatable and is gaining acceptance and preference over the air-gap method.

² ADM3491E only.

 $^{^{3}}$ X = don't care.

⁴ High-Z = high impedance.

² ADM3491E only.

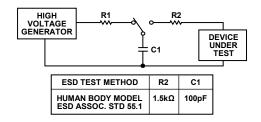
 $^{^{3}}$ X = don't care.

⁴ High-Z = high impedance.

Although very little energy is contained within an ESD pulse, the extremely fast rise time, coupled with high voltages, can cause failures in unprotected semiconductors. Catastrophic destruction can occur immediately as a result of arcing or heating. Even if catastrophic failure does not occur immediately, the device can suffer from parametric degradation that can result in degraded performance. The cumulative effects of continuous exposure can eventually lead to complete failure.

Input/output lines are particularly vulnerable to ESD damage. Simply touching or connecting an input/output cable can result in a static discharge that can damage or completely destroy the interface product connected to the input/output port. It is extremely important, therefore, to have high levels of ESD protection on the input/output lines.

The ESD discharge can induce latch-up in the device under test, so it is important that ESD testing on the input/output pins be carried out while device power is applied. This type of testing is more representative of a real-world input/output discharge, which occurs when the equipment is operating normally.


The transmitter outputs and receiver inputs of the ADM34xxE family are characterized for protection to a ± 15 kV limit using the human body model.

HUMAN BODY MODEL

Figure 28 shows the human body model and the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5 k Ω resistor.

TYPICAL APPLICATIONS

The ADM3491E full-duplex transceiver is designed for bidirectional data communications on multipoint bus transmission

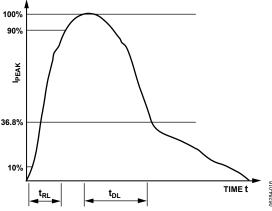
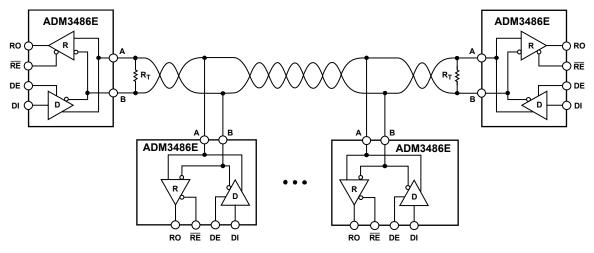



Figure 28. Human Body Model and Current Waveform

lines; Figure 31 shows a typical network applications circuit. The ADM3490E full-duplex transceiver is designed to be used in a daisy-chain network topology or in a point-to-point application (see Figure 30). The ADM3486E is a half-duplex RS-485 transceiver that can be used in a multidrop bus configuration, as shown in Figure 29. The ADM3490E/ADM3491E can also be used as a line repeater, for use with cable lengths longer than 4000 feet, as shown in Figure 32. To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible.

NOTES

- 1. MAXIMUM NUMBER OF TRANSCEIVERS ON BUS: 32.
- 2. R_{T} IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.

Figure 29. ADM3486E Typical Half-Duplex RS-485 Network

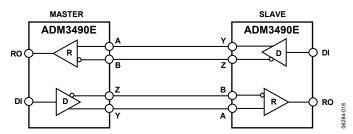
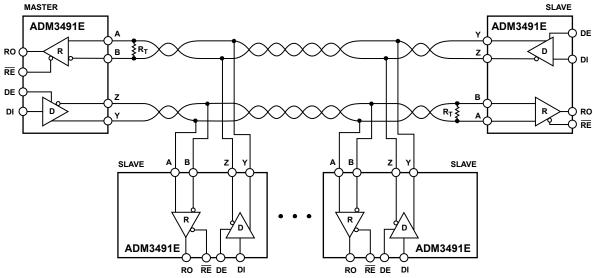



Figure 30. ADM3490E Full-Duplex Point-to-Point Applications

1. MAXIMUM NUMBER OF NODES: 32. 2. R_T IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.

Figure 31. ADM3491E Full-Duplex RS-485 Network

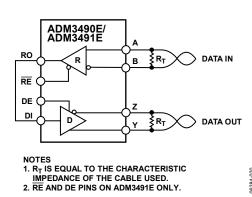
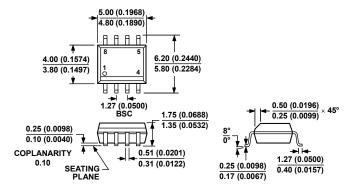
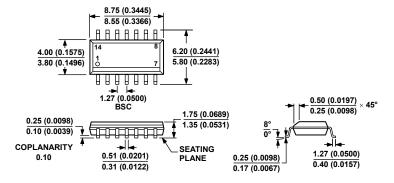



Figure 32. Line Repeater for ADM3490E/ADM3491E

OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 33. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012-AB

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14)

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

	Temperature			
Model	Range	Package Description	Package Option	Ordering Quantity
ADM3486EARZ ¹	-40°C to +85°C	8-Lead Standard Small Outline Package (SOIC_N)	R-8	
ADM3486EARZ-REEL7 ¹	-40°C to +85°C	8-Lead Standard Small Outline Package (SOIC_N)	R-8	1,000
ADM3490EARZ ¹	-40°C to +85°C	8-Lead Standard Small Outline Package (SOIC_N)	R-8	
ADM3490EARZ-REEL7 ¹	-40°C to +85°C	8-Lead Standard Small Outline Package (SOIC_N)	R-8	1,000
ADM3491EARZ ¹	-40°C to +85°C	14-Lead Standard Small Outline Package (SOIC_N)	R-14	
ADM3491EARZ-REEL7 ¹	-40°C to +85°C	14-Lead Standard Small Outline Package (SOIC_N)	R-14	1,000

¹ Z = Pb-free part.

