

High Accuracy Instrumentation Amplifier

AMP02

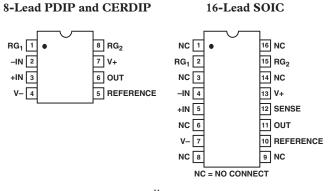
FEATURES

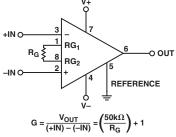
Low Offset Voltage: 100 μV max

Low Drift: 2 μ V/°C max Wide Gain Range: 1 to 10,000

High Common-Mode Rejection: 115 dB min High Bandwidth (G = 1000): 200 kHz typ Gain Equation Accuracy: 0.5% max

Single Resistor Gain Set Input Overvoltage Protection


Low Cost


Available in Die Form

APPLICATIONS

Differential Amplifier
Strain Gage Amplifier
Thermocouple Amplifier
RTD Amplifier
Programmable Gain Instrumentation Amplifier
Medical Instrumentation
Data Acquisition Systems

FUNCTIONAL BLOCK DIAGRAM

FOR SOL CONNECT SENSE TO OUTPUT

Figure 1. Basic Circuit Connections

GENERAL DESCRIPTION

The AMP02 is the first precision instrumentation amplifier available in an 8-lead package. Gain of the AMP02 is set by a single external resistor and can range from 1 to 10,000. No gain set resistor is required for unity gain. The AMP02 includes an input protection network that allows the inputs to be taken 60 V beyond either supply rail without damaging the device.

Laser trimming reduces the input offset voltage to under $100 \mu V$. Output offset voltage is below 4 mV, and gain accuracy is better than 0.5% for a gain of 1000. ADI's proprietary thin-film resistor process keeps the gain temperature coefficient under $50 \text{ ppm/}^{\circ}\text{C}$.

Due to the AMP02's design, its bandwidth remains very high over a wide range of gain. Slew rate is over 4 V/µs, making the AMP02 ideal for fast data acquisition systems.

A reference pin is provided to allow the output to be referenced to an external dc level. This pin may be used for offset correction or level shifting as required. In the 8-lead package, sense is internally connected to the output.

For an instrumentation amplifier with the highest precision, consult the AMP01 data sheet.

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

AMP02—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \text{ V}, V_{CM} = 0 \text{ V}, T_A = 25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

Parameter	Symbol	Conditions	Min	AMP02E Typ	Max	Min	AMP02F Typ	Max	Unit
OFFSET VOLTAGE Input Offset Voltage Input Offset Voltage Drift Output Offset Voltage Output Offset Voltage Drift Power Supply Rejection	V _{IOS} TCV _{IOS} V _{OOS} TCV _{OOS} PSR	$\begin{split} T_A &= 25^{\circ}C \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \\ T_A &= 25^{\circ}C \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \\ V_S &= \pm 4.8 \text{ V to } \pm 18 \text{ V} \\ G &= 100, 1000 \\ G &= 10 \\ G &= 1 \end{split}$ $V_S &= \pm 4.8 \text{ V to } \pm 18 \text{ V} \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \\ G &= 1000, 1000 \\ G &= 1 \end{split}$	115 100 80	20 50 0.5 1 4 50 125 110 90	100 200 2 4 10 100	110 95 75	40 100 1 2 9 100 115 100 80	200 350 4 8 20 200	μV μV/°C mV mV μV/°C dB dB dB dB
INPUT CURRENT Input Bias Current Input Bias Current Drift Input Offset Current Input Offset Current Drift	I_{B} TCI_{B} I_{OS} TCI_{OS}	$G = 1$ $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$	75	90 2 150 1.2 9	10	70	75 4 250 2 15	20	nA pA/°C nA pA/°C
INPUT Input Resistance Input Voltage Range Common-Mode Rejection	R _{IN} IVR CMR	Differential, $G \le 1000$ Common Mode, $G = 1000$ $T_A = 25^{\circ}C^1$ $V_{CM} = \pm 11$ V G = 1000, $100G = 10G = 1V_{CM} = \pm 11 V-40^{\circ}C \le T_A \le +85^{\circ}CG = 100$, $1000G = 10G = 1$	±11 115 100 80 110 95 75	10 16.5 120 115 95		±11 110 95 75 105 90 70	10 16.5 115 110 90 115 105 85		GΩ GΩ V dB dB dB dB
GAIN Gain Equation Accuracy Gain Range Nonlinearity Temperature Coefficient	$G = \frac{50 \text{ k}\Omega}{R_G} + 1$ G G_{TC}	G = 1000 G = 100 G = 10 G = 1 G = 1 to 1000 $1 \le G \le 1000^{2,3}$	1	0.006 20	0.50 0.30 0.25 0.02 10k	1	0.006 20	0.70 0.50 0.40 0.05 10k	% % % V/V % ppm/°C
OUTPUT RATING Output Voltage Swing Positive Current Limit Negative Current Limit	V _{OUT}	T_A = 25°C, R_L = 1 k Ω R_L = 1 k Ω , -40°C \leq T_A \leq +85°C Output-to-Ground Short Output-to-Ground Short	±12 ±11	±13 ±12 22 32		±12 ±11	±13 ±12 22 32		V V mA mA
NOISE Voltage Density, RTI Noise Current Density, RTI Input Noise Voltage	e _n i _n e _n p-p	f _O = 1 kHz G = 1000 G = 100 G = 10 G = 1 f _O = 1 kHz, G = 1000 0.1 Hz to 10 Hz G = 1000 G = 100 G = 10		9 10 18 120 0.4 0.4 0.5 1.2			9 10 18 120 0.4 0.4 0.5 1.2		nV/\Hz nV/\Hz nV/\Hz nV/\Hz nV/\Hz nV/\Hz pA/\Hz pA/\Hz μV p-p μV p-p μV p-p
DYNAMIC RESPONSE Small-Signal Bandwidth (-3 dB) G = 100, 1000 Slew Rate Settling Time	BW SR t _S	G = 1 G = 10 $G = 10, R_L = 1 \text{ k}\Omega$ $To 0.01\% \pm 10 \text{ V Step}$ G = 1 to 1000	4	1200 300 200 6		4	1200 300 200 6		kHz kHz kHz V/µs
SENSE INPUT Input Resistance Voltage Range	R _{IN}			25 ±11			25 ±11		kΩ V
REFERENCE INPUT Input Resistance Voltage Range Gain to Output	$R_{\rm IN}$			50 ±11 1			50 ±11 1		kΩ V V/V

-2- REV. E

				AMP02E			AMP02F		
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
POWER SUPPLY Supply Voltage Range Supply Current	$egin{array}{c} V_S \ I_{SY} \end{array}$	$T_A = 25^{\circ}C$ -40°C \le T_A \le +85°C	±4.5	5 5	±18 6 6	±4.5	5 5	±18 6 6	V mA mA

NOTES

ABSOLUTE MAXIMUM RATINGS^{1, 2}

Supply Voltage	±18 V
Common-Mode Input Voltage	[(V-) - 60 V] to $[(V+) + 60 V]$
Differential Input Voltage	[(V-) - 60 V] to $[(V+) + 60 V]$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Function Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 1	0 sec) 300°C

Package Type	$\theta_{\mathrm{JA}}{}^{\mathrm{3}}$	$\theta_{ m JC}$	Unit	
8-Lead Plastic DIP (P)	96	37	°C/W	
16-Lead SOIC (S)	92	27	°C/W	

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $^2\mbox{Absolute}$ maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^3\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

ORDERING GUIDE

Model	V_{IOS} max @ $T_A = 25^{\circ}C$	V_{OOS} max @ $T_A = 25^{\circ}C$	Temperature Range	Package Description
AMP02EP AMP02FP AMP02AZ/883C AMP02FS AMP02GBC AMP02FS-REEL	100 μV 200 μV 200 μV 200 μV 200 μV	4 mV 8 mV 10 mV 8 mV	-40°C to +85°C -40°C to +85°C -55°C to +125°C -40°C to +85°C	8-Lead Plastic DIP 8-Lead Plastic DIP 8-Lead CERDIP 16-Lead SOIC Die 16-Lead SOIC

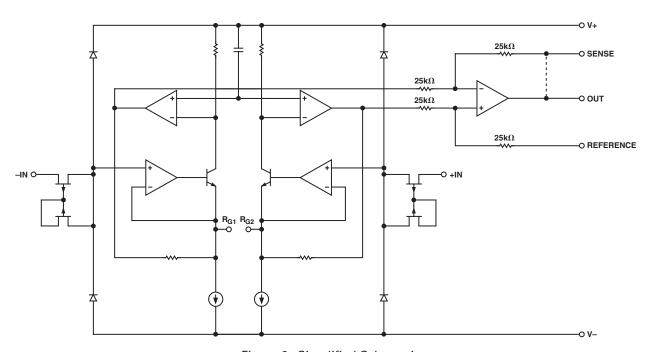
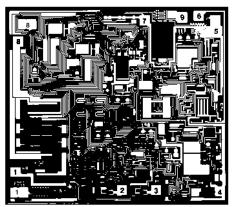


Figure 2. Simplified Schematic


¹Input voltage range guaranteed by common-mode rejection test.

²Guaranteed by design.

³Gain tempco does not include the effects of external component drift.

Specifications subject to change without notice.

AMP02

DIE SIZE 0.103 inch \times 0.116 inch, 11,948 sq. mils (2.62 mm \times 2.95 mm, 7.73 sq. mm) NOTE: PINS 1 and 8 are KELVIN CONNECTED

1. RG₁
2. -IN
3. +IN
4. V5. REFERENCE
6. OUT
7. V+
8. RG₂
9. SEÑSE
CONNECT SUBSTRATE TO V-

Die Characteristics

WAFER TEST LIMITS* (@ $V_S = \pm 15$ V, $V_{CM} = 0$ V, $T_A = 25^{\circ}$ C, unless otherwise noted.)

Parameter	Symbol	Conditions	AMP02 GBC Limits	Unit
Input Offset Voltage	V _{IOS}		200	μV max
Output Offset Voltage	V _{oos}		8	mV max
Power Supply Rejection	PSR	$V_S = \pm 4.8 \text{ V to } \pm 18 \text{ V}$ G = 1000 G = 100 G = 10 G = 1	110 110 95 75	dB
Input Bias Current	I_{B}		20	nA max
Input Offset Current	I_{OS}		10	nA max
Input Voltage Range	IVR	Guaranteed by CMR Tests	±11	V min
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$ $G = 1000$ $G = 100$ $G = 1$ $G = 1$	110 110 95 75	dB
Gain Equation Accuracy		$G = \frac{50 \text{ k}\Omega}{R_G} + 1$, $G = 1000$	0.7	% max
Output Voltage Swing	V _{OUT}	$R_L = 1 \text{ k}\Omega$	±12	V min
Supply Current	I_{SY}		6	mA max

^{*}Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

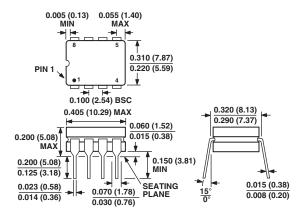
CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AMP02 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-4- REV. E

OUTLINE DIMENSIONS

8-Lead Plastic Dual-in-Line Package [PDIP] (N-8)

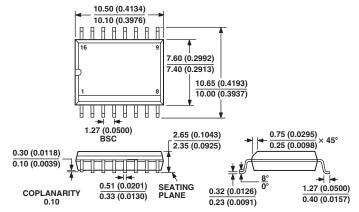

Dimensions shown in inches and (millimeters)

0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) BSC 0.150 (3.81) 0.300 (7.62) 0.135 (3.43) 0.015 0.120 (3.05) 0.180 (4.57) MAX (0.38) ▼ MIN 0.015 (0.38) 0.150 (3.81) 0.010 (0.25) SEATING 0.130 (3.30) PLANE 0.008 (0.20) 0.110 (2.79) 0.060 (1.52) 0.022 (0.56) 0.050 (1.27) 0.018 (0.46) 0.045 (1.14) 0.014 (0.36)

COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Ceramic DIP - Glass Hermetic Seal [CERDIP] (Q-8)

Dimensions shown in inches and (millimeters)



CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body

(R-16)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

REV. E -11-