

Precision, Unity-Gain Differential Amplifier

AMP03

FEATURES

High CMRR: 100 dB Typ Low Nonlinearity: 0.001% Max Low Distortion: 0.001% Typ Wide Bandwidth: 3 MHz Typ Fast Slew Rate: 9.5 V/μs Typ Fast Settling (0.01%): 1 μs Typ

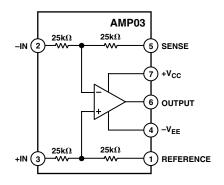
Low Cost

APPLICATIONS

Summing Amplifiers
Instrumentation Amplifiers
Balanced Line Receivers
Current-Voltage Conversion
Absolute Value Amplifier
4 to 20 mA Current Transmitter
Precision Voltage Reference Applications
Lower Cost and Higher Speed Version of INA105

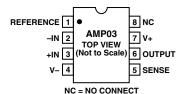
GENERAL DESCRIPTION

The AMP03 is a monolithic unity-gain, high speed differential amplifier. Incorporating a matched thin film resistor network, the AMP03 features stable operation over temperature without requiring expensive external matched components. The AMP03 is a basic analog building block for differential amplifier and instrumentation applications.

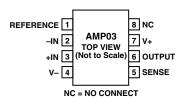

The differential amplifier topology of the AMP03 both amplifies the difference between two signals and provides extremely high rejection of the common-mode input voltage. By providing common-mode rejection (CMR) of 100 dB typical, the AMP03 solves common problems encountered in instrumentation design. As an example, the AMP03 is ideal for performing either addition or subtraction of two signals without using expensive externally matched precision resistors. The large common-mode rejection is made possible by matching the internal resistors to better than 0.002% and maintaining a thermally symmetric layout. Additionally, due to high CMR over frequency, the AMP03 is an ideal general amplifier for buffering signals in a noisy environment into data acquisition systems.

The AMP03 is a higher speed alternative to the INA105. Featuring slew rates of 9.5 V/ μ s and a bandwidth of 3 MHz, the AMP03 offers superior performance to the INA105 for high speed current sources, absolute value amplifiers, and summing amplifiers.

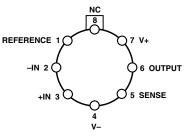
REV. F


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM



PIN CONNECTIONS


8-Lead PDIP (P Suffix)

8-Lead SOIC (S Suffix)

Header (J Suffix)

NC = NO CONNECT

AMPO3-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted.)

				AMP03I	7		AMP03B		A	MP030	G	
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
Offset Voltage	Vos	$V_{CM} = 0 \text{ V}$	-400	+10	+400	-700	+20	+700	-750	+25	+750	μV
Gain Error		No Load, $V_{IN} = \pm 10 \text{ V}$,										
		$R_S = 0 \Omega$		0.00004	0.008		0.00004	0.008		0.001	0.008	%
Input Voltage Range	IVR	(Note 1)	±20			±20			±20			V
Common-Mode Rejection	CMR	$V_{CM} = \pm 10 \text{ V}$	85	100		80	95		80	95		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 6 \text{ V to } \pm 18 \text{ V}$		0.6	10		0.6	10		0.7	10	μV/V
Output Swing	Vo	$R_L = 2 k\Omega$	±12	± 13.7		±12	± 13.7		±12	± 13.7		V
Short-Circuit Current Limit	I_{SC}	Output Shorted										
		to Ground	+45/-1	5		+45/-15	5		+45/-15			mA
Small-Signal Bandwidth (-3 dB)	BW	$R_L = 2 k\Omega$		3			3			3		MHz
Slew Rate	SR	$R_L = 2 k\Omega$	6	9.5		6	9.5		6	9.5		V/µs
Capacitive Load Drive												
Capability	C_{L}	No Oscillation		300			300			300		pF
Supply Current	I_{SY}	No Load		2.5	3.5		2.5	3.5		2.5	3.5	mA

NOTES

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15~V, -55^{\circ}C \le T_A \le +125^{\circ}C$ for B Grade)

				АМР03В		
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Offset Voltage	V _{OS}	$V_{CM} = 0 \text{ V}$	-1500	+150	+1500	μV
Gain Error		No Load, $V_{IN} = \pm 10 \text{ V}$, $R_S = 0 \Omega$		0.0014	0.02	%
Input Voltage Range	IVR		±20			V
Common-Mode Rejection	CMR	$V_{CM} = \pm 10 \text{ V}$	75	95		dB
Power Supply Rejection						
Ratio	PSRR	$V_{S} = \pm 6 \text{ V to } \pm 18 \text{ V}$		0.7	20	μV/V
Output Swing	Vo	$R_L = 2 k\Omega$	±12	± 13.7		V
Slew Rate	SR	$R_L = 2 k\Omega$		9.5		V/µs
Supply Current	I_{SY}	No Load		3.0	4.0	mA

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for F and G Grades)

			AMP03F		AMP03G				
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Offset Voltage	Vos	$V_{CM} = 0 \text{ V}$	-1000	+100	+1000	-2000	+200	+2000	μV
Gain Error		No Load, $V_{IN} = \pm 10 \text{ V}$, $R_S = 0 \Omega$		0.0008	0.015		0.002	0.02	%
Input Voltage Range	IVR		±20			±20			V
Common-Mode Rejection	CMR	$V_{CM} = \pm 10 \text{ V}$	80	95		75	90		dB
Power Supply Rejection									
Ratio	PSRR	$V_S = \pm 6 \text{ V to } \pm 18 \text{ V}$		0.7	15		1.0	15	μV/V
Output Swing	Vo	$R_{L} = 2 k\Omega$	±12	± 13.7		±12	± 13.7		V
Slew Rate	SR	$R_{L} = 2 k\Omega$		9.5			9.5		V/µs
Supply Current	I_{SY}	No Load		2.6	4.0		2.6	4.0	mA

Specifications subject to change without notice.

-2- REV. F

 $^{^{1}\}mbox{Input}$ voltage range guaranteed by CMR test.

WAFER TEST LIMITS (@ $V_S = \pm 15$ V, $T_A = 25$ °C, unless otherwise noted.)*

Parameter	Symbol	Conditions	AMP03GBC Limit	Unit
Offset Voltage	Vos	$V_S = \pm 18 \text{ V}$	0.5	mV max
Gain Error		No Load, $V_{IN} = \pm 10 \text{ V}$, $R_S = 0 \Omega$	0.008	% max
Input Voltage Range	IVR		±10	V min
Common-Mode Rejection	CMR	$V_{CM} = \pm 10 \text{ V}$	80	dB min
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 6 \text{ V to } \pm 18 \text{ V}$	8	μV/V max
Output Swing	V_{O}	$R_L = 2 k\Omega$	±12	V max
Short-Circuit Current Limit	I_{SC}	Output Shorted to Ground	+45/-15	mA min
Supply Current	I_{SY}	No Load	3.5	mA max

^{*}Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

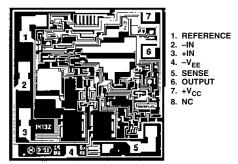
ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Input Voltage ² Supply Voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range
D T D

P, J Package	65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
Junction Temperature	150°C
Operating Temperature Range	

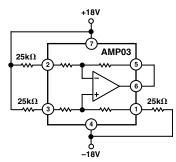
AMP03B		 –55°C to +125°C
AMP03F,	AMP03G	 -40°C to +85°C

Package Type	θ_{JA}^{3}	$\theta_{ m JC}$	Unit
Header (J)	150	18	°C/W
8-Lead PDIP (P)	103	43	°C/W
8-Lead SOIC (S)	155	40	°C/W

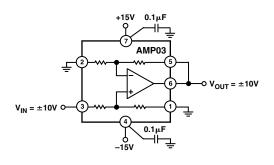

NOTES

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option ²
AMP03GP	-40°C to +85°C	8-Lead PDIP	P-8
AMP03BJ	–40°C to +85°C	Header	H-08B
AMP03FJ	−40°C to +85°C	Header	H-08B
AMP03BJ/883C	−55°C to +125°C	Header	H-08B
AMP03GS	–40°C to +85°C	8-Lead SOIC	S-8
AMP03GS-REEL	−40°C to +85°C	8-Lead SOIC	S-8
5962-9563901MGA	−55°C to +125°C	Header	H-08B
AMP03GBC		Die	


NOTES

DICE CHARACTERISTICS



DIE SIZE 0.076 inch \times 0.076 inch, 5,776 sq. mm (1.93 mm \times 1.93 mm, 3.73 sq. mm)

BURN-IN CIRCUIT

SLEW RATE TEST CIRCUIT

CAUTION -

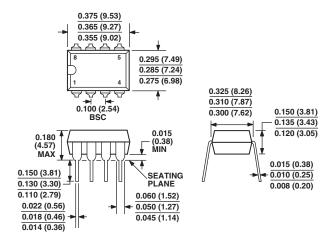
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AMP03 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^2} For \ supply \ voltages less than <math display="inline">\pm 18 \ V,$ the absolute maximum input voltage is equal to the supply voltage.

 $^{^3\}theta_{JA}$ is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for header and PDIP packages and for device soldered to printed circuit board for SOIC package.

¹Burn-in is available on commercial and industrial temperature range parts in PDIP and header packages.

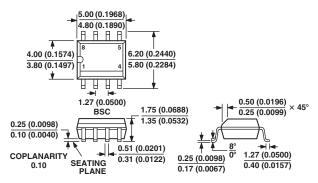

²Consult factory for /883 data sheet.

OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP] [P Suffix]

(N-8)

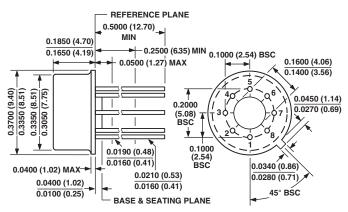
Dimensions shown in inches and (millimeters)



COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Small Outline Package [SOIC] [S Suffix]

(R-8)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Metal Can [TO-99] [J Suffix] (H-08B)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-002AK

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN