Ultralow EMI 28V_{IN}, 6A DC/DC µModule Regulator #### **FEATURES** - Complete Low EMI Switch Mode Power Supply - Wide Input Voltage Range: 4.5V to 28V - 6A DC Typical, 8A Peak Output Current - 0.6V to 5V Output Voltage Range - EN55022 Class B Certified - Output Voltage Tracking and Margining - PLL Frequency Synchronization - ±1.75% Total DC Error - Power Good Output - Current Foldback Protection (Disabled at Start-Up) - Parallel/Current Sharing - Ultrafast Transient Response - Current Mode Control - Up to 93% Efficiency at 5V_{IN}, 3.3V_{OUT} - Programmable Soft-Start - Output Overvoltage Protection - -55°C to 125°C Operating Temperature Range (LTM4606MPV) - Small Surface Mount Footprint, Low Profile Package (15mm × 15mm × 2.8mm) # **APPLICATIONS** - ASICs or FPGA Transceivers - Telecom, Servers and Networking Equipment - Industrial Equipment - RF Equipment **Δ7**, LT, LTC, LTM, Linear Technology, the Linear logo, μModule and PolyPhase are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. ### DESCRIPTION The LTM®4606 is a complete EN55022 Class B certified noise high voltage 6A switching mode DC/DC power supply. Included in the package are the switching controller, power FETs, inductor, and all support components. The on-board input filter and noise cancellation circuits achieve low noise operation, thus effectively reducing the electromagnetic interference (EMI). Operating over an input voltage range of 4.5V to 28V, the LTM4606 supports an output voltage range of 0.6V to 5V, set by a single resistor. This high efficiency design delivers 6A continuous current (8A peak). Only bulk input and output capacitors are needed to finish the design. High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. The device supports output voltage tracking and output voltage margining. Furthermore, the μ Module® regulator can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase® operation for high load currents. The LTM4606 is offered in a space saving and thermally enhanced $15\text{mm} \times 15\text{mm} \times 2.8\text{mm}$ LGA package, which enables utilization of unused space on the bottom of PC boards for high density point of load regulation. The LTM4606 is Pb-free and RoHS compliant. # TYPICAL APPLICATION Ultralow Noise 2.5V/6A Power Supply with 4.5V to 28V Input #### Radiated Emission Scan at 12V_{IN}, 2.5V_{OUT}/6A 4606fb # **ABSOLUTE MAXIMUM RATINGS** #### (Note 1) | DRV _{CC} , V _{OUT} | 0.3V to 6V | |--------------------------------------|--------------------------------| | PLLIN, FCB, TRACK/SS, MPGM, MAR | | | MARG1, PGOOD, RUN0.3V | ' to INTV _{CC} + 0.3V | | V _{FB} , COMP | 0.3V to 2.7V | | V _{IN} , V _D | 0.3V to 28V | | Internal Operating Temperature Range | \ / | | E and I Grades | | | MP Grade | –55°C to 125°C | | Junction Temperature | | | Storage Temperature Range | 45°C to 125°C | # PIN CONFIGURATION # ORDER INFORMATION | LEAD FREE FINISH | TRAY | PART MARKING* | PACKAGE DESCRIPTION | TEMPERATURE RANGE | |------------------|----------------|---------------|------------------------------------|-------------------| | LTM4606EV#PBF | LTM4606EV#PBF | LTM4606V | 133-Lead (15mm × 15mm × 2.8mm) LGA | -40°C to 125°C | | LTM4606IV#PBF | LTM4606IV#PBF | LTM4606V | 133-Lead (15mm × 15mm × 2.8mm) LGA | -40°C to 125°C | | LTM4606MPV#PBF | LTM4606MPV#PBF | LTM4606MPV | 133-Lead (15mm × 15mm × 2.8mm) LGA | -55°C to 125°C | Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ This product is only offered in trays. For more information go to: http://www.linear.com/packaging/ # **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the specified internal operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 2). $V_{IN} = 12V$, unless otherwise noted. Per typical application (front page) configuration, $R_{FB} = 40.2k$. | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |-----------------------|--|--|---|-------|------------|-------|--------| | V _{IN(DC)} | Input DC Voltage | | • | 4.5 | | 28 | V | | V _{OUT(DC)} | Output Voltage, Total Variation with Line and Load | $C_{IN} = 10 \mu F \times 2$, $C_{OUT} = 200 \mu F$; FCB = 0
$V_{IN} = 5V$ to 28V, $I_{OUT} = 0A$ to 6A, (Note 4) | • | 1.474 | 1.5 | 1.526 | V | | Input Specification | ons | | | | | | | | V _{IN(UVLO)} | Undervoltage Lockout Threshold | I _{OUT} = 0A | | | 3.2 | 4 | V | | INRUSH(VIN) | Input Inrush Current at Start-Up | I_{OUT} = 0A, C_{IN} = 10 μ F x2, C_{OUT} = 200 μ F, V_{OUT} = 1.5V V_{IN} = 5V V_{IN} = 12V | | | 0.6
0.7 | | A
A | 4606fb **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the specified internal operating temperature range, otherwise specifications are at $T_A = 25\,^{\circ}\text{C}$ (Note 2). $V_{IN} = 12V$, unless otherwise noted. Per typical application (front page) configuration, $R_{FB} = 40.2k$. | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------------------|---|---|---|-------|----------------|-------|--| | $\overline{I_{Q(VIN)}}$ | Input Supply Bias Current | V_{IN} = 5V, V_{OUT} = 1.5V, Switching Continuous V_{IN} = 12V, V_{OUT} = 1.5V, Switching Continuous Shutdown, RUN = 0, V_{IN} = 12V | | | 27
25
22 | | mA
mA
μA | | I _{S(VIN)} | Input Supply Current | V _{IN} = 12V, V _{OUT} = 1.5V, I _{OUT} = 6A
V _{IN} = 5V, V _{OUT} = 1.5V, I _{OUT} = 6A | | | 0.96
2.18 | | A
A | | INTV _{CC} | V _{IN} = 12V, RUN > 2V | No Load | | 4.7 | 5 | 5.3 | V | | Output Specificatio | ns | | | | | | | | I _{OUT(DC)} | Output Continuous Current Range | V _{IN} = 12V, V _{OUT} = 1.5V (Note 4) | | 0 | | 6 | А | | $\Delta V_{OUT(LINE)}/V_{OUT}$ | Line Regulation Accuracy | V_{OUT} = 1.5V, FCB = 0V, V_{IN} = 4.5V to 28V, I_{OUT} = 0A | • | | 0.05 | 0.3 | % | | $\Delta V_{OUT(LOAD)}/V_{OUT}$ | Load Regulation Accuracy | V_{OUT} = 1.5V, FCB = 0V, I_{OUT} = 0A to 6A
V_{IN} = 12V (Note 4) | • | | | 0.3 | % | | V _{IN(AC)} | Input Ripple Voltage | I _{OUT} = 0A, C _{IN} = 10µF X5R Ceramic x3 and
100µF Electrolytic
V _{IN} = 5V, V _{OUT} = 1.5V
V _{IN} = 12V, V _{OUT} = 1.5V | | | 2
3 | | mV _{P-P}
mV _{P-P} | | V _{OUT(AC)} | Output Ripple Voltage | I_{OUT} = 0A, C_{OUT} = 22μF X5R Ceramic x3 and 100μF X5R Ceramic V_{IN} = 5V, V_{OUT} = 1.5V V_{IN} = 12V, V_{OUT} = 1.5V | | | 8
11 | | mV _{P-P} | | $\overline{f_S}$ | Output Ripple Voltage Frequency | I _{OUT} = 5A, V _{IN} = 12V, V _{OUT} = 1.5V | | | 900 | | kHz | | $\Delta V_{OUT(START)}$ | Turn-On Overshoot,
TRACK/SS = 10nF | $C_{OUT} = 200 \mu F$, $V_{OUT} = 1.5 V$, $I_{OUT} = 0 A$
$V_{IN} = 12 V$
$V_{IN} = 5 V$ | | | 20
20 | | mV
mV | | t _{START} | Turn-On Time, TRACK/SS = Open | C_{OUT} = 200µF; V_{OUT} = 1.5V, I_{OUT} = 1A
Resistive Load
V_{IN} = 5V
V_{IN} = 12V | | | 0.5
0.5 | | ms
ms | | $\Delta V_{OUT(LS)}$ | Peak Deviation for Dynamic Load | Load: 0% to 50% to 0% of Full Load
C _{OUT} = 22µF Ceramic, 470µF x2
V _{IN} = 12V
V _{OUT} = 1.5V | | | 35 | | mV | | t _{SETTLE} | Settling Time for Dynamic Load Step V _{IN} = 12V | Load: 0% to 50% to 0% of Full Load,
V _{IN} = 12V | | | 25 | | μѕ | | I _{OUT(PK)} | Output Current Limit | $C_{OUT} = 200 \mu F$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$
$V_{IN} = 12V$, $V_{OUT} = 1.5V$ | | | 10
10 | | A
A | | Control Section | | | | | | | | | V_{FB} | Voltage at V _{FB} Pin | I _{OUT} = 0A, V _{OUT} = 1.5V | • | 0.591 | 0.6 | 0.609 | V | | V _{RUN} | RUN Pin On/Off Threshold | | | 1 | 1.5 | 1.9 | V | | I _{SS/TRACK} | Soft-Start Charging Current | V _{SS/TRACK} = 0V | | -1 | -1.5 | -2 | μA | | V _{FCB} | Forced Continuous Threshold | | | 0.57 | 0.6 | 0.63 | V | | I _{FCB} | Forced Continuous Pin Current | V _{FCB} = 0V | | | -1 | -2 | μА | | t _{ON(MIN)} | Minimum On Time | (Note 3) | | | 50 | 100 | ns | | t _{OFF(MIN)} | Minimum Off Time | (Note 3) | | | 250 | 400 | ns | | R _{PLLIN} | PLLIN Input Resistor | | | | 50 | | kΩ | **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the specified internal operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 2). $V_{IN} = 12V$, unless otherwise noted. Per typical application (front page) configuration, $R_{FB} = 40.2k$. | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |----------------------|--|--|--------|------|--------|-------| | I _{DRVCC} | Current into DRV _{CC} Pin | V _{OUT} = 1.5V, I _{OUT} = 1A | | 15 | 25 | mA | | R _{FBHI} | Resistor Between V _{OUT} and V _{FB} Pins | | 60.098 | 60.4 | 60.702 | kΩ | | RUN _{MAX} | Volts From RUN to GND Maximum | 5.1V Zener Clamp | | 5 | | V | | Margin Section | · | | | | | | | MPGM | Margin Reference Voltage Sets a
Current | | | 1.18 | | V | | MARG0, MARG1 | Voltage Thresholds | | | 1.4 | | V | | PGOOD | | | | | | | | ΔV_{FBH} | PGOOD Upper Threshold | V _{FB} Rising | 7 | 10 |
13 | % | | ΔV_{FBL} | PGOOD Lower Threshold | V _{FB} Falling | -7 | -10 | -13 | % | | $\Delta V_{FB(HYS)}$ | PGOOD Hysteresis | V _{FB} Returning | | 1.5 | | % | | V_{PGL} | PGOOD Low Voltage | I _{PGOOD} = 5mA | | 0.15 | 0.4 | V | **Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. **Note 2:** The LTM4606E is guaranteed to meet performance specifications over the 0°C to 125°C internal operating temperature range. Specifications over the -40°C to 125°C internal operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4606I is guaranteed to meet specifications over the -40°C to 125°C internal operating temperature range. The LTM4606MP is guaranteed and tested over the -55°C to 125°C internal operating temperature range. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors. Note 3: 100% tested at die level only. Note 4: See output current derating curves for different V_{IN} , V_{OUT} and T_A . # TYPICAL PERFORMANCE CHARACTERISTICS # Efficiency vs Load Current with 5V_{IN} (FCB = 0) # Efficiency vs Load Current with 12V_{IN} (FCB = 0) # Efficiency vs Load Current with #### 1.2V Transient Response 1.2V AT 3.5A/ μ s LOAD STEP C_{OUT} = 2× 22 μ F, 10V CERAMIC 1× 100 μ F, 6.3V CERAMIC #### 1.5V Transient Response 1.5V AT 3.5A/µs LOAD STEP C_{OUT} = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC #### 1.8V Transient Response 1.8V AT 3.5A/ μ s LOAD STEP COUT = 2× 22 μ F, 10V CERAMIC 1× 100 μ F, 6.3V CERAMIC #### 2.5V Transient Response 2.5V AT 3.5A/ μ s LOAD STEP C_{OUT} = 2× 22 μ F, 10V CERAMIC 1× 100 μ F, 6.3V CERAMIC #### 3.3V Transient Response 3.3V AT 3.5A/µs LOAD STEP C_{OUT} = 2× 22µF, 10V CERAMIC 1× 100µF, 6.3V CERAMIC #### -55°C, Start-Up, I_{OUT} = 0A V_{OUT} = 1.5V C_{OUT} = 2× 22μF, 10V CERAMIC 1× 100μF, 6.3V CERAMIC SOFT-START = 3.9nF # TYPICAL PERFORMANCE CHARACTERISTICS 4606fb ### PIN FUNCTIONS V_{IN} (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between V_{IN} pins and PGND pins. **V_{OUT}** (**Bank 3**): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing output decoupling capacitance directly between these pins and PGND pins (see figure below). **PGND (Bank 2):** Power Ground Pins for Both Input and Output Returns. V_D (Pins B7, C7): Top FET Drain Pins. Add more capacitors between V_D and ground to handle the input RMS current and reduce the input ripple further. **DRV**_{CC} (**Pins C10**, **E11**, **E12**): These pins normally connect to INTV_{CC} for powering the internal MOSFET drivers. They can be biased up to 6V from an external supply with about 50mA capability, or an external circuit as shown in Figure 18. This improves efficiency at the higher input voltages by reducing power dissipation in the modules. **INTV_{CC} (Pin A7):** This pin is for additional decoupling of the 5V internal regulator. **PLLIN (Pin A8):** External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50k resistor. Apply a clock with high level above 2V and below $INTV_{CC}$. See the Applications Information section. **FCB (Pin M12):** Forced Continuous Input. Connect this pin to SGND to force continuous synchronization operation at low load, to $INTV_{CC}$ to enable discontinuous mode operation at low load or to a resistive divider from a secondary output when using a secondary winding. **TRACK/SS (Pin A9):** Output Voltage Tracking and Soft-Start Pin. When the module is configured as a master output, then a soft-start capacitor is placed on this pin to ground to control the master ramp rate. A soft-start capacitor can be used for soft-start turn-on as a standalone regulator. Slave operation is performed by putting a resistor divider from the master output to ground, and connecting the center point of the divider to this pin. See the Applications Information section. **MPGM (Pins A12, B11):** Programmable Margining Input. A resistor from these pins to ground sets a current that is equal to 1.18V/R. This current multiplied by $10k\Omega$ will equal a value in millivolts that is a percentage of the 0.6V reference voltage. See the Applications Information section. To parallel LTM4606s, each requires an individual MPGM resistor. Do not tie MPGM pins together. **f_{SET}** (**Pin B12**): Frequency set internally to 800kHz in continuous conducting mode at light load. An external resistor can be placed from this pin to ground to increase frequency. This pin can be decoupled with a 1000pF capacitor. See the Applications Information section for frequency adjustment. V_{FB} (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to V_{OUT} with a 60.4k precision resistor. Different output voltages can be programmed with an additional resistor between the V_{FB} and SGND pins. See the Applications Information section. **MARGO (Pin C12):** LSB Logic Input for the Margining Function. Together with the MARG1 pin, the MARG0 pin will determine if a margin high, margin low, or no margin state is applied. The pin has an internal pulldown resistor of 50k. See the Applications Information section. MARG1 (Pins C11, D12): MSB Logic Input for the Margining Function. Together with the MARG0 pin, the MARG1 pins will determine if a margin high, margin low, or no margin state is applied. The pins have an internal pull-down resistor of 50k. See the Applications Information section. **SGND (Pins D9, H12):** Signal Ground Pins. These pins connect to PGND at output capacitor point. **COMP (Pins A11, D11):** Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.7V corresponding to zero sense voltage (zero current). **PGOOD (Pin G12):** Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within $\pm 10\%$ of the regulation point, after a 25µs power bad mask timer expires. # PIN FUNCTIONS **RUN (Pins A10, B9):** Run Control Pins. A voltage above 1.9V will turn on the module, and below 1V will turn off the module. A programmable UVLO function can be accomplished with a resistor from V_{IN} to this pin that has a 5.1V Zener to ground. Maximum pin voltage is 5V. **NC (Pins J12, K12, L12):** These pads must be left floating (electrical open circuit) and are used for increased solder integrity strength. # **BLOCK DIAGRAM** Figure 1. Simplified Block Diagram # **DECOUPLING REQUIREMENTS** $T_A = 25$ °C. Use Figure 1 configuration. | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------|--|-----------------------|-----|-----|-----|-------| | C _{IN} | External Input Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 2.5V) | I _{OUT} = 6A | 10 | | | μF | | C _{OUT} | External Output Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 2.5V) | I _{OUT} = 6A | 100 | 200 | | μF | ### **OPERATION** #### **Power Module Description** The LTM4606 is a standalone non-isolated switching mode DC/DC power supply. It can deliver up to 6A of DC output current with some external input and output capacitors. This module provides precisely regulated output voltage programmable via one external resistor from $0.6V_{DC}$ to $5.0V_{DC}$ over a 4.5V to 28V input voltage range. The typical application schematic is shown in Figure 20. The LTM4606 has an integrated constant on-time current mode regulator, ultralow $R_{DS(ON)}$ FETs with fast switching speed and integrated Schottky diodes. With current mode control and internal feedback loop compensation, the LTM4606 module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors. Current mode control provides cycle-by-cycle fast current limiting. Besides, foldback current limiting is provided in an overcurrent condition while V_{FB} drops. Internal overvoltage and undervoltage comparators pull the open-drain PGOOD output low if the output feedback voltage exits a $\pm 10\%$ window around the regulation point. Furthermore, in an overvoltage condition, internal top FET M1 is turned off and bottom FET M2 is turned on and held on until the overvoltage condition clears. Input filter and noise cancellation circuits reduce the noise coupling to I/O sides, and ensure the electromagnetic interference (EMI) to meet EN55022 Class B limits. Pulling the RUN pin below 1V forces the controller into its shutdown state, turning off both M1 and M2. At low load currents, discontinuous mode (DCM) operation can be enabled to achieve higher efficiency compared to continuous mode (CCM) by setting the FCB pin higher than 0.6V. When the DRV_{CC} pin is connected to $INTV_{CC}$ an integrated 5V linear regulator powers the internal gate drivers. If a 5V external bias supply is applied on the DRV_{CC} pin, then an efficiency improvement will occur due to the reduced power loss in the internal linear regulator. This is especially true at the higher input voltage range. The MPGM, MARGO and MARG1 pins are used to support voltage margining, where the percentage of margin is programmed by the MPGM pin, and the MARGO and MARG1 selected margining. The PLLIN pin provides frequency synchronization of the device to an external clock. The
TRACK/SS pin is used for power supply tracking and soft-start programming. The typical LTM4606 application circuit is shown in Figure 20. External component selection is primarily determined by the maximum load current and output voltage. Refer to Table 2 for specific external capacitor requirements for a particular application. #### VIN to VOUT Step-Down Ratios Under the default frequency, there are restrictions in the maximum V_{IN} and V_{OUT} step-down ratio that can be achieved for a given input voltage. These constraints are caused by the limitation of the minimum on and off time in the internal switches. Refer to the Frequency Adjustment section to change the switching frequency and get wider input and output ranges. See the Thermal Considerations and Output Current Derating section in this data sheet for the current restrictions. #### **Output Voltage Programming and Margining** The PWM controller has an internal 0.6V reference voltage. As shown in the Block Diagram, a 60.4k internal feedback resistor connects the V_{OUT} and V_{FB} pins together. Adding a resistor R_{FB} from the V_{FB} pin to the SGND pin programs the output voltage: $$V_{OUT} = 0.6V \frac{60.4k + R_{FB}}{R_{FB}}$$ Table 1. R_{FB} Standard 1% Resistor Values vs V_{OUT} | R_{FB} (k Ω) | Open | 60.4 | 40.2 | 30.1 | 25.5 | 19.1 | 13.3 | 8.25 | |------------------------|------|------|------|------|------|------|------|------| | V _{OUT} (V) | 0.6 | 1.2 | 1.5 | 1.8 | 2 | 2.5 | 3.3 | 5 | The MPGM pin programs a current that when multiplied by an internal 10k resistor sets up the 0.6V reference ± offset for margining. A 1.18V reference divided by the RPGM resistor on the MPGM pin programs the current. Calculate $V_{OUT(MARGIN)}$: $$V_{OUT(MARGIN)} = \frac{\%V_{OUT}}{100} \bullet V_{OUT}$$ where $%V_{OUT}$ is the percentage of V_{OUT} you want to margin, and $V_{OUT(MARGIN)}$ is the margin quantity in volts: $$R_{PGM} = \frac{V_{OUT}}{0.6V} \bullet \frac{1.18V}{V_{OUT(MARGIN)}} \bullet 10k$$ where RPGM is the resistor value to place on the MPGM pin to ground. The output margining will be \pm margining of the value. This is controlled by the MARG0 and MARG1 pins. See the truth table below: | MARG1 | MARGO | MODE | |-------|-------|-------------| | LOW | LOW | NO MARGIN | | LOW | HIGH | MARGIN UP | | HIGH | LOW | MARGIN DOWN | | HIGH | HIGH | NO MARGIN | ## **Input Capacitors and Input EMI Noise Attenuation** The LTM4606 is designed to achieve low input conducted EMI noise due to the fast switching of turn-on and turn-off. In the LTM4606, a high frequency inductor is integrated to the input line for noise attenuation. V_D and V_{IN} pins are available for external input capacitors to form a high frequency π filter. As shown in Figure 19, the ceramic capacitor C1 on the V_D pins is used to handle most of the RMS current into the converter, so careful attention is needed for capacitor C1 selection. For a buck converter, the switching duty cycle can be estimated as: $$D = \frac{V_{OUT}}{V_{IN}}$$ Without considering the inductor ripple current, the RMS current of the input capacitor can be estimated as: $$I_{\text{CIN(RMS)}} = \frac{I_{\text{OUT(MAX)}}}{\eta} \bullet \sqrt{D \bullet (1 - D)}$$ In the above equation, η is the estimated efficiency of the power module. Note the capacitor ripple current ratings are often based on temperature and hours of life. This makes it advisable to properly derate the capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements. In a typical 6A output application, one or two very low ESR X5R or X7R, $10\mu\text{F}$ ceramic capacitors are recommended for C1. This decoupling capacitor should be placed directly adjacent to the module V_D pins in the PCB layout to minimize the trace inductance and high frequency AC noise. Each $10\mu\text{F}$ ceramic is typically good for 2 to 3 amps of RMS ripple current. Refer to your ceramics capacitor catalog for the RMS current ratings. To attenuate high frequency noise, extra input capacitors should be connected to the V_{IN} pads and placed before the high frequency inductor to form the π filter. One of these low ESR ceramic capacitors is recommended to be placed close to the connection into the system board. A large bulk $100\mu F$ capacitor is only needed if the input source impedance is compromised by long inductive leads or traces. Figure 2 shows the radiated EMI test results to Figure 2. Radiated Emission Scan with 12V $_{IN}$ to 2.5V $_{OUT}$ at 6A (1×100 μ F X7R Ceramic C $_{OUT}$) meet EN55022 Class B. For different applications, input capacitance may be varied to meet different radiated EMI limits. #### **Output Capacitors** The LTM4606 is designed for low output voltage ripple. The bulk output capacitors defined as C_{OUT} are chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. C_{OUT} can be a low ESR tantalum capacitor, low ESR polymer capacitor or ceramic capacitor. The typical capacitance is $200\mu F$ if all ceramic output capacitors are used. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Table 2 shows a matrix of different output voltages and output capacitors to minimize the voltage droop and overshoot during a $3A/\mu s$ transient. The table optimizes total equivalent ESR and total bulk capacitance to maximize transient performance. Multiphase operation with multiple LTM4606 devices in parallel will lower the effective output ripple current due to the phase interleaving operation. Refer to Figure 3 for the normalized output ripple current versus the duty cycle. Figure 3 provides a ratio of peak-to-peak output ripple current to the inductor ripple current as functions of duty cycle and the number of paralleled phases. Pick the corresponding duty cycle and the number of phases to get the correct output ripple current value. For example, each phase's inductor ripple current DIr at zero duty cycle is ~2.5A for a 12V to 2.5V design. The duty cycle is about 0.21. The 2-phase curve has a ratio of ~0.58 for a duty cycle of 0.21. This 0.58 ratio of output ripple current to the inductor ripple current DIr at 2.5A equals ~1.5A of the output ripple current (ΔI_1). The output voltage ripple has two components that are related to the amount of bulk capacitance and effective series resistance (ESR) of the output bulk capacitance. The equation is: $$\Delta V_{OUT(P-P)} \approx \left(\frac{\Delta I_L}{8 \bullet f \bullet N \bullet C_{OUT}}\right) + ESR \bullet \Delta I_L$$ where f is the frequency and N is the number of paralleled phases. 4606fb Figure 3. Normalized Output Ripple Current vs Duty Cycle, DIr = V_0T/L_1 # Fault Conditions: Current Limit and Overcurrent Foldback LTM4606 has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady-state operation, but also in transient. To further limit current in the event of an overload condition, the LTM4606 provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value. #### **Soft-Start and Tracking** The TRACK/SS pin provides a means to either soft-start the regulator or track it to a different power supply. A capacitor on this pin will program the ramp rate of the output voltage. A $1.5\mu A$ current source will charge up the external soft-start capacitor to 80% of the 0.6V internal voltage reference plus or minus any margin delta. This will control the ramp of the internal reference and the output voltage. The total soft-start time can be calculated as: $$t_{SOFTSTART} \approx 0.8 \cdot (0.6V \pm V_{OUT(MARGIN)}) \cdot \frac{C_{SS}}{1.5 \mu A}$$ When the RUN pin falls below 2.5V, then the SS pin is reset to allow for proper soft-start control when the regulator is enabled again. Current foldback and force continuous mode are disabled during the soft-start process. The soft-start function can also be used to control the output ramp up time, so that another regulator can be easily tracked to it. #### **Output Voltage Tracking** Output voltage tracking can be programmed externally using the TRACK/SS pin. The output can be tracked up and down with another regulator. Figure 4 shows an example of coincident tracking where the master regulator's output is divided down with an external resistor divider that is the same as the slave regulator's feedback divider. Ratiometric modes of tracking can be achieved by selecting different resistor values to change the output tracking ratio. The master output must be greater than the slave output for the tracking to work. Figure 5 shows the coincident output tracking characteristics. Figure 4. Output Voltage Coincident Tracking Figure 5. Coincident Tracking Characteristics #### Run Enable The RUN pin is used to enable the power module. The pin has an internal 5.1V zener to ground. The pin can be driven with a logic input not to exceed 5V. The RUN pin can also be used as an undervoltage lock out (UVLO) function by connecting a resistor divider from the input supply to the RUN pin: $$V_{UVLO} = \frac{R1 + R2}{R2} \bullet 1.5V$$ where R2 is the bottom resistor of the divider, R1 is the top resistor of the divider. #### **Power Good** The PGOOD pin is an open-drain pin that can be used to monitor valid output voltage regulation. This pin monitors a $\pm 10\%$ window around the regulation point and tracks with margining. #### **COMP Pin** This pin is the external compensation pin. The module has already been internally compensated for most output voltages. Table 2 is provided for most application requirements. LTpowerCAD™ is available for other control loop optimization. #### **FCB Pin** The FCB pin
determines whether the bottom MOSFET remains on when current reverses in the inductor. Tying this pin above its 0.6V threshold enables discontinuous operation where the bottom MOSFET turns off when inductor current reverses. FCB pin below the 0.6V threshold forces continuous synchronous operation, allowing current to reverse at light loads and maintain low output ripple. LINEAR #### **PLLIN** The power module has a phase-locked loop comprised of an internal voltage controlled oscillator and a phase detector. This allows the internal top MOSFET turn-on to be locked to the rising edge of the external clock. The frequency range is ±30% around the operating frequency. A pulse detection circuit is used to detect a clock on the PLLIN pin to turn on the phase lock loop. The pulse width of the clock has to be at least 400ns and 2V in amplitude. During the start-up of the regulator, the phase-lock loop function is disabled. #### INTV_{CC} and DRV_{CC} Connection An internal low dropout regulator produces an internal 5V supply that powers the control circuitry and DRV_{CC} for driving the internal power MOSFETs. Therefore, if the system does not have a 5V power rail, the LTM4606 can be directly powered by Vin. The gate driver current through the LDO is about 20mA. The internal LDO power dissipation can be calculated as: $$P_{LDO\ LOSS} = 20 \text{mA} \cdot (V_{IN} - 5V)$$ The LTM4606 also provides an external gate driver voltage pin DRV $_{CC}$. If there is a 5V rail in the system, it is recommended to connect DRV $_{CC}$ pin to the external 5V rail. This is especially true for higher input voltages. Do not apply more than 6V to the DRV $_{CC}$ pin. A 5V output can be used to power the DRV $_{CC}$ pin with an external circuit as shown in Figure 18. #### **Parallel Operation of the Module** The LTM4606 device is an inherently current mode controlled device. Parallel modules will have very good current sharing. This will balance the thermals on the design. The voltage feedback equation changes with the variable N as modules are paralleled: $$V_{OUT} = 0.6V \frac{\frac{60.4k}{N} + R_{FB}}{R_{FB}}$$ N is the number of paralleled modules. #### **Thermal Considerations and Output Current Derating** In different applications, LTM4606 operates in a variety of thermal environments. The maximum output current is limited by the environment thermal condition. Sufficient cooling should be provided to help ensure reliable operation. When the cooling is limited, proper output current derating is necessary, considering ambient temperature, airflow, input/output condition, and the need for increased reliability. The power loss curves in Figures 6 and 7 can be used in coordination with the load current derating curves in Figures 8 to 15 for calculating an approximate θ_{JA} for the module. The graphs delineate between no heat sink, and a BGA heat sink. Each of the load current derating curves will lower the maximum load current as a function of the increased ambient temperature to keep the maximum junction temperature of the power module at 125°C maximum. Each of the derating curves and the power loss curve that corresponds to the correct output voltage can be used to solve for the approximate θ_{JA} of the condition. Each figure has three curves that are taken at three different air flow conditions. Tables 3 and 4 provide the approximate θ_{JA} for Figures 8 to 15. A complete explanation of the thermal characteristics is provided in the thermal application note AN110. #### Safety Considerations The LTM4606 modules do not provide isolation from V_{IN} to V_{OUT} . There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current needs to be provided to protect each unit from catastrophic failure. #### **Radiated EMI Noise** High radiated EMI noise is a disadvantage for switching regulators by nature. Fast switching turn-on and turn-off make large di/dt change in the converters, which act as the radiation sources in most systems. The LTM4606 integrates the feature to minimize the radiated EMI noise for applications with low noise requirements. Optimized gate driver for the MOSFET and noise cancellation network are installed inside the LTM4606 to achieve low radiated EMI noise. Figure 16 shows a typical example for LTM4606 to meet the Class B of EN55022 radiated emission limit. Figure 6. 1.5V Power Loss Figure 8. No Heat Sink Figure 10. No Heat Sink Figure 7. 3.3V Power Loss Figure 9. BGA Heat Sink Figure 11. BGA Heat Sink LINEAD Figure 12. No Heat Sink Figure 14. No Heat Sink Figure 13. BGA Heat Sink Figure 15. BGA Heat Sink Figure 16. Radiated Emission Scan with 12V $_{IN}$ to 2.5V $_{OUT}$ at 6A (1×100 μF X7R Ceramic C $_{OUT})$ | Table 2. Output voltage i | response vs component Matrix | (Keier to Figure 20) | |---------------------------|------------------------------|----------------------| | | | | | TYPICAL MEASURED VALUES | | | | | | | | | | |---------------------------|---------------------------------|---------------------------|---------------------------|--|--|--|--|--|--| | C _{OUT1} VENDORS | PART NUMBER | C _{OUT2} VENDORS | PART NUMBER | | | | | | | | TAIYO YUDEN | JMK316BJ226ML-T501 (22μF, 6.3V) | SANYO POSCAP | 6TPE220MIL (220μF, 6.3V) | | | | | | | | TAIYO YUDEN | JMK325BJ476MM-T (47μF, 6.3V) | SANYO POSCAP | 2R5TPE330M9 (330μF, 2.5V) | | | | | | | | TDK | C3225X5R0J476M (47µF, 6.3V) | SANYO POSCAP | 4TPE330MCL (330μF, 4V) | | | | | | | | 12 | V _{OUT} (V) | C _{IN}
(CERAMIC) | C _{IN}
(BULK) | C _{OUT1}
(CERAMIC) | C _{OUT2}
(BULK) | V _{IN}
(V) | DROOP
(mV) | PEAK TO
PEAK (mV) | RECOVERY
TIME (μs) | LOAD STEP
(A/µs) | R _{FB} (kΩ) | |---|----------------------|------------------------------|---------------------------|--------------------------------|-----------------------------|------------------------|---------------|----------------------|-----------------------|---------------------|----------------------| | 1.2 | 1.2 | 2 × 10µF 35V | 150µF 35V | 1 × 22µF 6.3V | 330µF 4V | 5 | 34 | 68 | 30 | 3 | 60.4 | | 12 | 1.2 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 5 | 22 | 40 | 26 | 3 | 60.4 | | 1.2 | 1.2 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 5 | 20 | 40 | 24 | 3 | 60.4 | | 1.2 | 1.2 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 5 | 32 | 60 | 18 | 3 | 60.4 | | 1.2 | 1.2 | 2 × 10µF 35V | 150µF 35V | 1 × 22µF 6.3V | 330µF 4V | 12 | 34 | 68 | 30 | 3 | 60.4 | | 1.2 | 1.2 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 12 | 22 | 40 | 26 | 3 | 60.4 | | 1.5 | 1.2 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 12 | 20 | 39 | 24 | 3 | 60.4 | | 1.5 | 1.2 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 12 | 29.5 | 55 | 18 | 3 | 60.4 | | 1.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 5 24 47.5 26 3 40.2 1.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 36 68 26 3 40.2 1.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 12 35 70 30 3 40.2 1.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 230µF 25V 12 25 48 30 3 40.2 1.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 20µF 6.3V 12 24 45 26 3 40.2 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 80N NoNE 12 32.6 61.9 26 3 40.2 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 330µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V <td>1.5</td> <td>2 × 10µF 35V</td> <td>150µF 35V</td> <td>1 × 22µF 6.3V</td> <td>330µF 4V</td> <td>5</td> <td>35</td> <td>70</td> <td>30</td> <td>3</td> <td>40.2</td> | 1.5 | 2 × 10µF 35V | 150µF 35V | 1 × 22µF 6.3V | 330µF 4V | 5 | 35 | 70 | 30 | 3 | 40.2 | | 1.5 | 1.5 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 5 | 25 | 48 | 30 | 3 | 40.2 | | 1.5 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 35 70 30 3 40.2 1.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 2.5V 12 25 48 30 3 40.2 1.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 202µF 6.3V 12 24 45 26 3 40.2 1.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 202µF
6.3V 12 24 45 26 3 40.2 1.5 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 30µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 5 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 30µF 4V 5 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 30µF 4V 12 38 80 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80NE 12 27 52 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80NE 12 36.4 70 26 3 30.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 5 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 5 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 5 39.5 78.1 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 7 42 86 40 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 80µF 4V 12 42 86 40 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 8 | 1.5 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 5 | 24 | 47.5 | 26 | 3 | 40.2 | | 1.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 2.5V 12 25 48 30 3 40.2 1.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 220µF 6.3V 12 24 45 26 3 40.2 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 30µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 2.5V 5 29.5 57.5 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 2.5V 5 29.5 57.5 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3 | 1.5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 5 | 36 | 68 | 26 | 3 | 40.2 | | 1.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 12 24 45 26 3 40.2 1.5 2 × 10µF 35V 150µF 35V 1 × 27µF 6.3V NONE 12 32.6 61.9 26 3 40.2 1.8 2 × 10µF 35V 150µF 35V 1 × 27µF 6.3V 330µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 220µF 6.3V 5 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 20µF 6.3V 5 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 30µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 2.5V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V <td>1.5</td> <td>2 × 10µF 35V</td> <td>150µF 35V</td> <td>1 × 22μF 6.3V</td> <td>330µF 4V</td> <td>12</td> <td>35</td> <td>70</td> <td>30</td> <td>3</td> <td>40.2</td> | 1.5 | 2 × 10µF 35V | 150µF 35V | 1 × 22μF 6.3V | 330µF 4V | 12 | 35 | 70 | 30 | 3 | 40.2 | | 1.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 12 32.6 61.9 26 3 40.2 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 5 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 230µF 2.5V 5 29.5 57.5 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 220µF 6.3V 5 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 20µF 6.3V 12 28 55 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 330µF 4V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 7µF 6.3V< | 1.5 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 12 | 25 | 48 | 30 | 3 | 40.2 | | 1.8 | 1.5 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 12 | 24 | 45 | 26 | 3 | 40.2 | | 1.8 | 1.5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 12 | 32.6 | 61.9 | 26 | 3 | 40.2 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 22μF 6.3V | 330µF 4V | 5 | 38 | 76 | 37 | 3 | 30.1 | | 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 43 80 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 38 76 37 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 230µF 2.5V 12 28 55 30 3 30.1 1.8 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 220µF 6.3V 12 27 52 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 20µF 6.3V 12 27 52 26 3 30.1 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 30µF 4V 5 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 5 37.6 74 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 5 | 29.5 | 57.5 | 30 | 3 | 30.1 | | 1.8 | 1.8 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 5 | 28 | 55 | 26 | 3 | 30.1 | | 1.8 | 1.8 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 5 | 43 | 80 | 26 | 3 | 30.1 | | 1.8 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 27 52 26 3 30.1 1.8 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 36.4 70 26 3 30.1 2.5 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 5 38 78 40 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 5 37.6 74 34 3 19.1 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 20μF 6.3V 5 39.5 78.1 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 30μF 4V 12 38 78 40 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 22μF 6.3V | 330µF 4V | 12 | 38 | 76 | 37 | 3 | 30.1 | | 1.8 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 12 36.4 70 26 3 30.1 2.5 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 5 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 5 37.6 74 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 5 39.5 78.1 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 330µF 4V 12 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V <td>1.8</td> <td>2 × 10µF 35V</td> <td>150µF 35V</td> <td>1 × 47μF 6.3V</td> <td>330µF 2.5V</td> <td>12</td> <td>28</td> <td>55</td> <td>30</td> <td>3</td> <td>30.1</td> | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 2.5V | 12 | 28 | 55 | 30 | 3 | 30.1 | | 2.5 2 × 10µF 35V 1 50µF 35V 1 × 22µF 6.3V 330µF 4V 5 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 5 37.6 74 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 20µF 6.3V 5 39.5 78.1 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V 330µF 4V 12 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 20µF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6 | 1.8 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 12 | 27 | 52 | 26 | 3 | 30.1 | | 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 5 37.6 74 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 5 39.5 78.1 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 12 38 78 40 3 19.1 2.5 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3 | 1.8 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 12 | 36.4 | 70 | 26 | 3 | 30.1 | | 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 5 39.5 78.1 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 38 78 40 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 35.8 68.8 28 3 19.1 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 35.8 68.8 28 3 19.1 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF | 2.5 | 2 × 10µF 35V | 150µF 35V | 1 × 22μF 6.3V | 330µF 4V | 5 | 38 | 78 | 40 | 3 | 19.1 | | 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 5 66 119 12 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 38 78 40 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 7 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V | 2.5 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 4V | 5 | 37.6 | 74 | 34 | 3 | 19.1 | | 2.5 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 38 78 40 3 19.1 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 7 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 7 47 89 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 42 86 40 3 13.3 | 2.5 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 5 | 39.5 | 78.1 | 28 | 3 | 19.1 | | 2.5 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 34.5 66.3 34 3 19.1 2.5 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 7 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 ×
47μF 6.3V 330μF 4V 7 47 89 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V | 2.5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 5 | 66 | 119 | 12 | 3 | 19.1 | | 2.5 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 12 35.8 68.8 28 3 19.1 2.5 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10µF 35V 150µF 35V 1 × 22µF 6.3V 330µF 4V 7 42 86 40 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 330µF 4V 7 47 89 32 3 13.3 3.3 2 × 10µF 35V 150µF 35V 2 × 47µF 6.3V 220µF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10µF 35V 150µF 35V 4 × 47µF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V 30µF 4V 12 42 86 40 3 13.3 3.3 2 × 10µF 35V 150µF 35V 1 × 47µF 6.3V | 2.5 | 2 × 10µF 35V | 150µF 35V | 1 × 22µF 6.3V | 330µF 4V | 12 | 38 | 78 | 40 | 3 | 19.1 | | 2.5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 98 18 3 19.1 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 7 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 7 47 89 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 94 28 3 13.3 <t< td=""><td>2.5</td><td>2 × 10µF 35V</td><td>150µF 35V</td><td>1 × 47μF 6.3V</td><td>330µF 4V</td><td>12</td><td>34.5</td><td>66.3</td><td>34</td><td>3</td><td>19.1</td></t<> | 2.5 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 4V | 12 | 34.5 | 66.3 | 34 | 3 | 19.1 | | 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 7 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 7 47 89 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 | 2.5 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 12 | 35.8 | 68.8 | 28 | 3 | 19.1 | | 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 7 47 89 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 <t< td=""><td>2.5</td><td>2 × 10µF 35V</td><td>150µF 35V</td><td>4 × 47μF 6.3V</td><td>NONE</td><td>12</td><td>50</td><td>98</td><td>18</td><td>3</td><td>19.1</td></t<> | 2.5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 12 | 50 | 98 | 18 | 3 | 19.1 | | 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 7 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | 2 × 10µF 35V | 150µF 35V | 1 × 22μF 6.3V | 330µF 4V | 7 | 42 | 86 | 40 | 3 | 13.3 | | 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 7 75 141 14 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 4V | 7 | 47 | 89 | 32 | 3 | 13.3 | | 3.3 2 × 10μF 35V 150μF 35V 1 × 22μF 6.3V 330μF 4V 12 42 86 40 3 13.3 3.3 2 × 10μF 35V 150μF 35V 1 × 47μF 6.3V 330μF 4V 12 47 88 32 3 13.3 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 7 | 50 | 94 | 28 | 3 | 13.3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3.3 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 7 | 75 | 141 | 14 | 3 | 13.3 | | 3.3 2 × 10μF 35V 150μF 35V 2 × 47μF 6.3V 220μF 6.3V 12 50 94 28 3 13.3 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | | | | | | 12 | 42 | 86 | 40 | 3 | | | 3.3 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 69 131 22 3 13.3 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | 2 × 10µF 35V | 150µF 35V | 1 × 47μF 6.3V | 330µF 4V | 12 | 47 | 88 | 32 | 3 | 13.3 | | 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | 2 × 10µF 35V | 150µF 35V | 2 × 47µF 6.3V | 220µF 6.3V | 12 | 50 | 94 | 28 | 3 | 13.3 | | 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 12 110 215 20 3 8.25 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 15 110 215 20 3 8.25 | 3.3 | | 150µF 35V | | | | | 131 | | | 13.3 | | | 5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 12 | 110 | 215 | 20 | 3 | 8.25 | | | 5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 15 | 110 | 215 | 20 | 3 | 8.25 | | 5 2 × 10μF 35V 150μF 35V 4 × 47μF 6.3V NONE 20 110 217 20 3 8.25 | 5 | 2 × 10µF 35V | 150µF 35V | 4 × 47μF 6.3V | NONE | 20 | 110 | 217 | 20 | 3 | 8.25 | Table 3. 1.5V Output | DERATING CURVE | V _{IN} (V) | POWER LOSS CURVE | AIR FLOW (LFM) | HEAT SINK | θ _{JA} (°C/W) | |----------------|---------------------|------------------|----------------|---------------|------------------------| | Figures 8, 10 | 5, 12 | Figure 6 | 0 | None | 13.5 | | Figures 8, 10 | 5, 12 | Figure 6 | 200 | None | 10 | | Figures 8, 10 | 5, 12 | Figure 6 | 400 | None | 9 | | Figures 9, 11 | 5, 12 | Figure 6 | 0 | BGA Heat Sink | 9.5 | | Figures 9, 11 | 5, 12 | Figure 6 | 200 | BGA Heat Sink | 7 | | Figures 9, 11 | 5, 12 | Figure 6 | 400 | BGA Heat Sink | 5 | Table 4. 3.3V Output | DERATING CURVE | V _{IN} (V) | POWER LOSS CURVE | AIR FLOW (LFM) | HEAT SINK | θ _{JA} (°C/W) | |----------------|---------------------|------------------|----------------|---------------|------------------------| | Figures 12, 14 | 12, 24 | Figure 7 | 0 | None | 13.5 | | Figures 12, 14 | 12, 24 | Figure 7 | 200 | None | 11 | | Figures 12, 14 | 12, 24 | Figure 7 | 400 | None | 10 | | Figures 13, 15 | 12, 24 | Figure 7 | 0 | BGA Heat Sink | 10 | | Figures 13, 15 | 12, 24 | Figure 7 | 200 | BGA Heat Sink | 7 | | Figures 13, 15 | 12, 24 | Figure 7 | 400 | BGA Heat Sink | 5 | #### **Heat Sink Manufacturer** | | i e e e e e e e e e e e e e e e e e e e | | |-----------------------|---|---------------------| | Wakefield Engineering | Part No: LTN20069 | Phone: 603-635-2800 | #### Layout Checklist/Example The high integration of LTM4606 makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary. - Use large PCB copper areas for high current path, including V_{IN}, PGND and V_{OUT}. It helps to minimize the PCB conduction loss and thermal stress. - Place high frequency ceramic input and output capacitors next to the V_D, PGND and V_{OUT} pins to minimize high frequency noise. - Place a dedicated power ground layer underneath the unit. - Use round corners for the PCB copper layer to minimize the radiated noise. - To minimize the EMI noise and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers on different locations. - Do not put vias directly on pads, unless they are capped. - Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit. - Place one or more high frequency ceramic capacitors close to the connection into the system board. Figure 17 gives a good example of the recommended layout. For load current below 3A, decouple the input and output grounds. Use vias to connect GND pads to the bottom layer, then connect to the right side of the module as the output GND. Figure 17. Recommended PCB Layout #### Frequency Adjustment The LTM4606 is designed to typically operate at 800kHz across most input conditions. The f_{SET} pin is typically left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized for maintaining constant output ripple noise over most operating ranges. The 800kHz switching frequency and the 400ns minimum off time can limit operation at higher duty cycles like 5V to 3.3V, and produce excessive inductor ripple currents for lower duty cycle applications like 28V to 5V. #### **Example for 5V Output** LTM4606 minimum on-time = 100ns; $t_{ON} = ((4.8 \bullet 10
pF)/I_{fSET})$ LTM4606 minimum off-time = 400ns; $t_{OFF} = t - t_{ON}$, where t = 1/Frequency Duty Cycle = t_{ON}/t or V_{OUT}/V_{IN} Equations for setting frequency: $I_{fSFT} = (V_{IN}/(3 \cdot R_{fSFT}))$, where the internal R_{fSFT} is 41.2k. For 28V input operation, $I_{fSET} = 227\mu A$. $t_{ON} = ((4.8 \cdot 10pF)/$ I_{fSFT}), $t_{ON} = 211$ ns. Frequency = $(V_{OUT}/(V_{IN} \cdot t_{ON})) = (5V/V_{IN} \cdot t_{ON})$ (28 • 211ns)) ~ 850kHz. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. The current ripple is ~5A at 20% duty cycle if the integrated inductor is 1µH. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from f_{SET} to ground to increase the switching frequency. A 4A ripple current is chosen, and the total peak current is equal to 1/2 of the 4A ripple current plus the output current. For 5V output, current is limited to 5A, so the total peak current is less than 7A. This is below the 8A peak specified value. A 150k resistor is placed from f_{SFT} to ground, and the parallel combination of 150k and 41.2k equates to 32.3k. The I_{fSET} calculation with 32.3k and 28V input voltage equals $289\mu A$. This equates to a t_{ON} of 166ns. This will increase the switching frequency from 850kHz to ~1MHz for the 28V to 5V conversion. The minimum on time is above 100ns at 28V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 8V for the 1MHz operation due to the 400ns minimum off time. Equation: $t_{ON} = (V_{OLIT}/V_{IN}) \cdot (1/V_{IN})$ Frequency) equates to a 375ns on time, and a 400ns off time. Figure 18 shows an operating range of 10V to 28V for 1MHz operation with a 150k resistor to ground, and an 8V to 16V operating range for f_{SET} floating. These modifications are made to provide wider input voltage ranges for the 5V output designs while limiting the inductor ripple current, and maintaining the 400ns minimum off-time. #### **Example for 3.3V Output** LTM4606 minimum on-time = 100ns; $t_{ON} = ((3.3 \cdot 10 pF)/I_{fSET})$ LTM4606 minimum off-time = 400ns; $t_{OFF} = t - t_{ON}$, where t = 1/Frequency Duty Cycle (DC) = t_{ON}/t or V_{OUT}/V_{IN} Equations for setting frequency: $I_{fSET} = (V_{IN}/(3 \cdot R_{fSET}))$, for 28V input operation, $I_{fSET} = 227\mu$ A, $t_{ON} = ((3.3 \cdot 10 pF)/I_{fSET})$, $t_{ON} = 145 ns$, where the internal R_{fSET} is 41.2k. Frequency = $(V_{OUT}/(V_{IN} \cdot t_{ON})) = (3.3V/(28 \cdot 145 ns)) \sim 810 kHz$. The minimum on-time and minimum-off time are within specification at 146 ns and 1089 ns. But the 4.5V minimum input for converting 3.3V output will not meet the minimum off-time specification of 400 ns. $t_{ON} = 905 ns$, Frequency = 810 kHz, $t_{OFF} = 329 ns$. #### Solution Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off-time at 4.5V input voltage. The off-time should be about 500ns with 100ns guard band. The duty cycle for (3.3V/4.5V) = ~73%. Frequency = $(1 - DC)/t_{OFF}$ or (1 - 0.73)/500ns = 540kHz. The switching frequency needs to be lowered to 540kHz at 4.5V input. $t_{ON} = DC/$ frequency, or 1.35µs. The f_{SET} pin voltage compliance is 1/3 of V_{IN} , and the I_{fSET} current equates to $36\mu A$ with the internal 41.2k. The I_{fSET} current needs to be 24 μ A for 540kHz operation. A resistor can be placed from V_{OLIT} to f_{SET} to lower the effective l_{fSET} current out of the f_{SET} pin to 24 μ A. The f_{SET} pin is 4.5V/3 =1.5V and V_{OUT} = 3.3V, therefore a 150k resistor will source 12µA into the f_{SFT} node and lower the I_{fSFT} current to 24µA. This enables the 540kHz operation and the 4.5V to 28V input operation for down converting to 3.3V output as shown in Figure 19. The frequency will scale from 540kHz to 950kHz over this input range. This provides for an effective output current of 5A over the input range. Figure 18. 10V to 28V_{IN}, 5V at 5A Design Figure 19. 3.3V at 5A Design Figure 20. Typical 4.5V to 28V_{IN}, 2.5V at 6A Design Figure 21. 2-Phase, Parallel 2.5V at 12A Design LINEAR Figure 22. 2-Phase, 3.3V and 2.5V Outputs at 6A with Tracking and Margining Figure 23. 2-Phase, 1.8V and 1.5V Outputs at 6A with Tracking and Margining # PACKAGE DESCRIPTION ### Pin Assignment Tables (Arranged by Pin Function) | PIN NAME | | | |----------|-----------------|--| | A1 | V _{IN} | | | A2 | VIN | | | A3 | V _{IN} | | | A4 | V _{IN} | | | A5 | V _{IN} | | | A6 | V _{IN} | | | B1 | V _{IN} | | | B2 | VIN | | | B3 | VIN | | | B4 | VIN | | | B5 | V _{IN} | | | B6 | V _{IN} | | | C1 | V _{IN} | | | C2 | V _{IN} | | | C3 | V _{IN} | | | C4 | V _{IN} | | | C5 | V _{IN} | | | C6 | V _{IN} | | | PIN NAME | | | | |--|--|--|--| | D1
D2
D3
D4
D5
D6 | PGND
PGND
PGND
PGND
PGND
PGND | | | | E1
E2
E3
E4
E5
E6
E7
E8 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | F1
F2
F3
F4
F5
F6
F7
F8 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | G1
G2
G3
G4
G5
G6
G7
G8
G9
G10
G11 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | PIN NAME | | | |--|--|--| | J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11 | VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT | | | K1
K2
K3
K4
K5
K6
K7
K8
K9
K10 | VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT | | | L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11 | Vout Vout Vout Vout Vout Vout Vout Vout | | | M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11 | Vout
Vout
Vout
Vout
Vout
Vout
Vout
Vout | | | NAME | |---| | INTV _{CC} PLLIN TRACK/SS RUN COMP MPGM | | V _D - RUN - MPGM f _{SET} | | V _D
-
-
DRV _{CC}
MARG1
MARG0 | | -
SGND
-
COMP
MARG1 | | -
DRV _{CC}
DRV _{CC} | | -
-
V _{FB} | | PG00D | | SGND | | NC | | NC | | NC | | FCB | | | # PACKAGE DESCRIPTION C(0.30) PAD 1 LGA 133 1107 REV Ø DETAIL A PACKAGE IN TRAY LOADING ORIENTATION PACKAGE BOTTOM VIEW LTMXXXXXX µModule 9 TRAY PIN 1 BEVEL COMPONENT PIN "A1" + 1.27 BSC PADS SEE NOTES 13.97 BSC 0.12 - 0.286 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 DETALLS OF PAD #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE 133-Lead (15mm × 15mm × 2.82mm) (Reference LTC DWG # 05-08-1766 Rev \emptyset) 3 LAND DESIGNATION PER JESD MO-222, SPP-010 2.72 - 2.92 DETAIL B 5. PRIMARY DATUM -Z- IS SEATING PLANE 2. ALL DIMENSIONS ARE IN MILLIMETERS 6. THE TOTAL NUMBER OF PADS: 133 ← 0.27 - 0.37 SUBSTRATE ⊕ eee S X Y TOLERANCE 0.10 0.10 0.02 DETAIL B MOLD 0.630 ±0.025 SQ. 133x Z |qqq| 🛡 aaa eee 2.45 - 2.55 aaa Z X X 15 BSC SUGGESTED PCB LAYOUT TOP VIEW PACKAGE TOP VIEW 0.6350 15 BSC 1.9050 — 6.9850 — 4.4450 — Z aaa Z 5.7150 -3.1750 -0.6350 -0.0000 -3.1750 -1.9050 4.4450 5.7150 6.9850 PAD 1 LGA Package # **REVISION HISTORY** | REV | DATE | DESCRIPTION | PAGE NUMBER | |-----|------|--|-------------| | Α | 3/10 | Change to Features. | 1 | | | | Change to Absolute Maximum Ratings. | 2 | | | | Changes to Electrical Characteristics. | 2, 3 | | | | Changes to Related Parts. | 25 | | В | 3/11 | Text updated throughout the data sheet. | 1-28 | | | | Graph replaced on the front page, Figure 2, and Figure 16. | 1, 12, 17 | | | | Added value of 1µH to inductor on Figure 1. | 9 | | | | Updated Related Parts. | 28 | # PACKAGE PHOTOGRAPH # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |----------------------|--|---| | LTM4601/
LTM4601A | 12A DC/DC µModule Regulator with PLL, Output Tracking/Margining and Remote Sensing | Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version Has No Remote Sensing, LGA Package | | LTM4618 | 6A DC/DC μModule Regulator with PLL,
Output Tracking | $4.5V \le V_{IN} \le 26.5V$, $0.8V \le V_{OUT} \le 5V$, Synchronizable, $9mm \times 15mm \times 4.3mm$ LGA Package | | LTM4604A | Low V _{IN} 4A DC/DC µModule Regulator | $2.375V \le V_{IN} \le 5.5V$, $0.8V \le V_{OUT} \le 5V$, $9mm \times 15mm \times 2.3mm$ LGA Package | | LTM4608A | Low V _{IN} 8A DC/DC μModule Regulator | $2.375V \le V_{IN} \le 5.5V$, $0.6V \le V_{OUT} \le 5V$, $9mm \times 15mm \times 2.8mm$ LGA Package | | LTM4612 | Low Noise 5A, 15V _{OUT} DC/DC µModule Regulator | Low Noise, with PLL, Output Tracking and Margining, LTM4606 Pin-Compatible | | LTM4627 | 15A DC/DC µModule Regulator | $4.5V \le V_{IN} \le 20V,~0.6V \le V_{OUT} \le 5V,~\pm 1.5\%$ Total DC Output Accuracy, 15mm \times 15mm \times 4.32mm LGA Package | | EN55022 Class | B Certified DC/DC µModule Regulators | | | LTM8020 | High V _{IN} 0.2A DC/DC Step-Down μModule Regulator | $4V \le V_{\text{IN}} \le 36V$, $1.25V \le V_{\text{OUT}} \le 5V$, 6.25 mm \times 6.25 mm \times 2.3 mm LGA Package | | LTM8021 | High V _{IN} 0.5A DC/DC Step-Down μModule Regulator | $3V \le V_{\text{IN}} \le 36V$, $0.8V \le V_{\text{OUT}} \le 5V$, 6.25 mm \times 11.25 mm \times 2.8 mm LGA
Package | | LTM8022/
LTM8023 | 36V _{IN} , 1A and 2A DC/DC μModule Regulators | Pin Compatible, $4.5\text{V} \le \text{V}_{\text{IN}} \le 36\text{V}$, $9\text{mm} \times 11.25\text{mm} \times 2.8\text{mm}$ LGA Package | | LTM8031/
LTM8032 | 1A, 2A EMC DC/DC μModule Regulators | EN55022 Class B Compliant, $3.6V \le V_{IN} \le 36V$, $0.8V \le V_{OUT} \le 10V$, Pin Compatible, $9mm \times 15mm \times 2.82mm$ LGA Package | | LTM8033 | 3A EMC DC/DC µModule Regulator | 3.6V ≤ V _{IN} ≤ 36V, 0.8V ≤ V _{OUT} ≤ 24V, 11.25mm × 15mm × 4.32mm LGA Package |