

Micropower Single-Supply Rail-to-Rail Input/Output Op Amps

OP191/0P291/0P491

FEATURES

Single-Supply Operation: 2.7 V to 12 V

Wide Input Voltage Range Rail-to-Rail Output Swing

Low Supply Current: 300 μA/Amp

Wide Bandwidth: 3 MHz Slew Rate: 0.5 V/μs

Low Offset Voltage: 700 μ V

No Phase Reversal

APPLICATIONS

Industrial Process Control
Battery-Powered Instrumentation
Power Supply Control and Protection
Telecommunications
Remote Sensors
Low Voltage Strain Gage Amplifiers
DAC Output Amplifiers

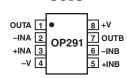
GENERAL DESCRIPTION

The OP191, OP291, and OP491 are single, dual, and quad micropower, single-supply, 3 MHz bandwidth amplifiers featuring rail-to-rail inputs and outputs. All are guaranteed to operate from a +3 V single supply as well as ± 5 V dual supplies.

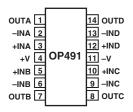
Fabricated on Analog Devices' CBCMOS process, the OP191 family has a unique input stage that allows the input voltage to safely extend 10 V beyond either supply without any phase inversion or latch-up. The output voltage swings to within millivolts of the supplies and continues to sink or source current all the way to the supplies.

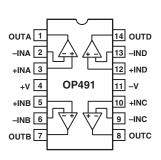
Applications for these amplifiers include portable telecommunications equipment, power supply control and protection, and interface for transducers with wide output ranges. Sensors requiring a rail-to-rail input amplifier include Hall effect, piezo electric, and resistive transducers.

The ability to swing rail-to-rail at both the input and output enables designers to build multistage filters in single-supply systems and to maintain high signal-to-noise ratios.


The OP191/OP291/OP491 are specified over the extended industrial –40°C to +125°C temperature range. The OP191 single and OP291 dual amplifiers are available in 8-lead plastic SOIC surface-mount packages. The OP491 quad is available in 14-lead PDIP, narrow 14-lead SOIC, and 14-lead TSSOP packages.

PIN CONFIGURATIONS


8-Lead Narrow-Body SOIC


8-Lead Narrow-Body SOIC

14-Lead Narrow-Body SOIC

14-Lead PDIP

14-Lead TSSOP

		_
OUTA 1	•	14 OUTD
–INA 2		13 -IND
+INA 3		12 +IND
+V 4	OP491	11 –V
+INB 5		10 +INC
–INB 6		9 -INC
OUTB 7		8 OUTC

OP191/OP291/OP491-SPECIFICATIONS

ELECTRICAL SPECIFICATIONS (@ $V_S = 3.0 \text{ V}, V_{CM} = 0.1 \text{ V}, V_0 = 1.4 \text{ V}, T_A = 25^{\circ}\text{C}, unless otherwise noted.)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS Offset Voltage OP191G	V _{os}			80	500	μV
OP291G/OP491G	Vos	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		80	1 700 1.25	mV μV mV
Input Bias Current	I_{B}	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		30	65 95	nA nA
Input Offset Current	I _{OS}	$-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$		0.1	11 22	nA nA
Input Voltage Range Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 2.9 \text{ V}$ -40°C \le T_A \le +125°C	0 70 65	90 87	3	V dB dB
Large Signal Voltage Gain	A _{VO}	$R_L = 10 \text{ k}\Omega, V_O = 0.3 \text{ V to } 2.7 \text{ V}$ -40°C ≤ $T_A \le +125$ °C	25	70 50		V/mV V/mV
Offset Voltage Drift Bias Current Drift Offset Current Drift	$\begin{array}{c} \Delta V_{OS}/\Delta T \\ \Delta I_B/\Delta T \\ \Delta I_{OS}/\Delta T \end{array}$			1.1 100 20		μV/°C pA/°C pA/°C
OUTPUT CHARACTERISTICS Output Voltage High	V_{OH}	R_L = 100 kΩ to GND -40°C to +125°C	2.95 2.90	2.99 2.98		V V
Output Voltage Low	V _{OL}	$R_{L} = 2 \text{ k}\Omega \text{ to GND}$ $-40^{\circ}\text{C to } +125^{\circ}\text{C}$ $R_{L} = 100 \text{ k}\Omega \text{ to V+}$ $-40^{\circ}\text{C to } +125^{\circ}\text{C}$ $R_{L} = 2 \text{ k}\Omega \text{ to V+}$ $-40^{\circ}\text{C to } +125^{\circ}\text{C}$	2.8 2.70	2.9 2.80 4.5	10 35 75 130	V V mV mV mV
Short-Circuit Limit	I_{SC}	Sink/Source -40°C to +125°C	±8.75 ±6.0	±13.50 ±10.5	150	mA mA
Open-Loop Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_V = 1$		200		Ω
POWER SUPPLY Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 12 \text{ V}$ -40°C \le T_A \le +125°C	80 75	110 110		dB dB
Supply Current/Amplifier	I_{SY}	$V_0 = 0 \text{ V}$ -40°C \le T_A \le +125°C	13	200 330	350 480	μA μA
DYNAMIC PERFORMANCE Slew Rate Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin Channel Separation	$ \begin{array}{c} +SR \\ -SR \\ BW_P \\ t_S \\ GBP \\ \theta_O \\ CS \end{array} $	$R_{L} = 10 \text{ k}\Omega$ $R_{L} = 10 \text{ k}\Omega$ $1\% \text{ Distortion}$ $To 0.01\%$ $f = 1 \text{ kHz}, R_{L} = 10 \text{ k}\Omega$		0.4 0.4 1.2 22 3 45 145		V/µs V/µs kHz µs MHz Degrees dB
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density	e _n p-p e _n i _n	0.1 Hz to 10 Hz f = 1 kHz		2 35 0.8		$\begin{array}{c} \mu V \ p\text{-}p \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz} \end{array}$

Specifications subject to change without notice.

-2- REV. C

OP191/OP291/OP491

$\textbf{ELECTRICAL SPECIFICATIONS} \ (@\ V_S = 5.0\ V,\ V_{CM} = 0.1\ V,\ V_0 = 1.4\ V,\ T_A = 25^{\circ}\text{C},\ unless\ otherwise\ noted.)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage OP191	V_{OS}			80	500	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			1.0	mV
OP291/OP491	V_{OS}			80	700	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			1.25	mV
Input Bias Current	${ m I_B}$			30	65	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			95	nA
Input Offset Current	I_{OS}			0.1	11	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	2		22	nA
Input Voltage Range	OLUBB	XX	0	0.2	5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 4.9 \text{ V}$	70	93		dB
T 0: 177.1. 0.:	A	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	65 25	90		dB
Large Signal Voltage Gain	$A_{ m VO}$	$R_L = 10 \text{ k}\Omega, V_O = 0.3 \text{ V to } 4.7 \text{ V}$	25	70 50		V/mV
Office Voltage Drift	AT7 /AT	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				V/mV
Offset Voltage Drift Bias Current Drift	$\Delta V_{OS}/\Delta T \ \Delta I_B/\Delta T$	-40 °C \leq T _A \leq +125°C		1.1 100		μV/°C pA/°C
Offset Current Drift				20		pA/°C
Oliset Current Drift	$\Delta I_{OS}/\Delta T$			20		pA/ C
OUTPUT CHARACTERISTICS						
Output Voltage High	V_{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$	4.95	4.99		V
		−40°C to +125°C	4.90	4.98		V
		$R_L = 2 k\Omega$ to GND	4.8	4.85		V
		−40°C to +125°C	4.65	4.75		V
Output Voltage Low	V_{OL}	$R_L = 100 \text{ k}\Omega \text{ to V+}$		4.5	10	mV
		−40°C to +125°C			35	mV
		$R_L = 2 k\Omega$ to V+		40	75	mV
	_	-40°C to +125°C			155	mV
Short-Circuit Limit	I_{SC}	Sink/Source	±8.75	±13.5		mA
	7	-40°C to +125°C	± 6.0	±10.5		mA
Open-Loop Impedance	Z_{OUT}	$f = 1 \text{ MHz}, A_V = 1$		200		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 12 \text{ V}$	80	110		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	75	110		dB
Supply Current/Amplifier	I_{SY}	$V_O = 0 V$		220	400	μA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		350	500	μA
DYNAMIC PERFORMANCE						
Slew Rate	+SR	$R_L = 10 \text{ k}\Omega$		0.4		V/µs
Slew Rate	-SR	$R_{\rm L} = 10 \text{ k}\Omega$		0.4		V/µs
Full-Power Bandwidth	BW_P	1% Distortion		1.2		kHz
Settling Time	t _S	To 0.01%		22		μs
Gain Bandwidth Product	GBP			3		MHz
Phase Margin	θ_{O}			45		Degrees
Channel Separation	CS	$f = 1 \text{ kHz}, R_L = 10 \text{ k}\Omega$		145		dB
NOISE PERFORMANCE						
Voltage Noise	enn	0.1 Hz to 10 Hz		2		uV n n
Voltage Noise Density	e _n p-p	f = 1 kHz		35		$\mu V p-p$ nV/\sqrt{Hz}
Current Noise Density	e _n	1 — 1 K11Z		0.8		pA/\sqrt{Hz}
- Current 14015c Delisity	1 _n			0.0		Pri/ VIIIZ

NOTE

REV. C _3_

⁺⁵ V specifications are guaranteed by +3 V and ± 5 V testing.

Specifications subject to change without notice.

OP191/0P291/0P491

ELECTRICAL SPECIFICATIONS (@ $V_0 = \pm 5.0$ V, -4.9 V $\leq V_{CM} \leq +4.9$ V, $T_A = 25^{\circ}$ C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS Offset Voltage OP191	Vos	-40 °C \leq T _A \leq +125°C		80	500 1	μV mV
OP291/OP4	491 V _{OS}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		80	700 1.25	μV mV
Input Bias Current	I_{B}			30	65	nA
Input Offset Current	I _{os}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.1	95 11 22	nA nA nA
Input Voltage Range Common-Mode Rejection	CMR	$V_{CM} = \pm 5 \text{ V}$ -40°C \le T _A \le +125°C	-5 75 67	100 97	+5	V dB dB
Large Signal Voltage Gain	A_{VO}	$R_L = 10 \text{ k}\Omega, V_O = \pm 4.7 \text{ V}, \\ -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	25	70 50		V/mV
Offset Voltage Drift Bias Current Drift Offset Current Drift	$\begin{array}{c} \Delta V_{OS}/\Delta T \\ \Delta I_B/\Delta T \\ \Delta I_{OS}/\Delta T \end{array}$	10 0 2 1 1 2 1 1 2 5 0		1.1 100 20		μV/°C pA/°C pA/°C
OUTPUT CHARACTERISTICS Output Voltage Swing	Vo	$R_{L} = 100 \text{ k}\Omega \text{ to GND}$ $-40^{\circ}\text{C to } +125^{\circ}\text{C}$ $R_{L} = 2 \text{ k}\Omega \text{ to GND}$ $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	±4.93 ±4.90 ±4.80 ±4.65	±4.99 ±4.98 ±4.95 ±4.75		V V V
Short-Circuit Limit	I_{SC}	Sink/Source -40°C to +125°C	±8.75 ±6	±16.00 ±13		mA mA
Open-Loop Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_V = 1$		200		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V}$ -40°C \le T_A \le +125°C	80 70	110 100	400	dB dB
Supply Current/Amplifier	I_{SY}	$V_{O} = 0 \text{ V}$ -40°C \le T_{A} \le +125°C		260 390	420 550	μΑ μΑ
DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin Channel Separation	$\begin{array}{c} \pm SR \\ BW_P \\ t_S \\ GBP \\ \theta_O \\ CS \end{array}$	$R_L = 10 \text{ k}\Omega$ 1% Distortion To 0.01% $f = 1 \text{ kHz}$		0.5 1.2 22 3 45 145		V/µs kHz µs MHz Degrees dB
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density	e _n p-p e _n i _n	0.1 Hz to 10 Hz f = 1 kHz		2 35 0.8		$\mu V p-p \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz}$

Specifications subject to change without notice.

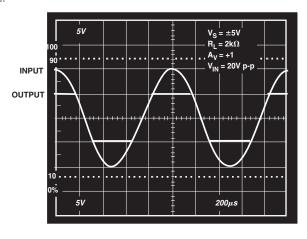


Figure 1. Input and Output with Inputs Overdriven by 5 V

OP191/0P291/0P491

N, R, RU Packages-65°C to +150°C

Lead Temperature Range (Soldering, 60 sec) 300°C

Package Type	θ_{JA}^{3}	$\theta_{ m JC}$	Unit
8-Lead SOIC (R)	158	43	°C/W
14-Lead PDIP (N)	76	33	°C/W
14-Lead SOIC (R)	120	36	°C/W
14-Lead TSSOP (RU)	180	35	°C/W

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 ${}^3\theta_{JA}$ is specified for the worst-case conditions; i.e., θ_{JA} is specified for device in socket for PDIP packages; θ_{JA} is specified for device soldered in circuit board for TSSOP and SOIC packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP191GS	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP191GS-REEL	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP191GS-REEL7	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GS	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GS-REEL	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GS-REEL7	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GSZ*	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GSZ-REEL*	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP291GSZ-REEL7*	−40°C to +125°C	8-Lead SOIC	R-8 [S-Suffix]
OP491GP	−40°C to +125°C	14-Lead PDIP	N-14 [P-Suffix]
OP491GS	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GS-REEL	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GS-REEL7	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GSZ*	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GSZ-REEL*	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GSZ-REEL7*	−40°C to +125°C	14-Lead SOIC	R-14 [S-Suffix]
OP491GRU-REEL	−40°C to +125°C	14-Lead TSSOP	RU-14
OP491GBC			DIE form

^{*}Z = Pb-free part.

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP191/OP291/OP491 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. C –5–