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FEATURES 
Very low noise density of 5 nV/√Hz at 1 kHz maximum 
Excellent input offset voltage of 75 μV maximum 
Low offset voltage drift of 1 μV/°C maximum 
Very high gain of 1500 V/mV minimum 
Outstanding CMR of 106 dB minimum 
Slew rate of 2.4 V/μs typical 
Gain bandwidth product of 5 MHz typical 
Industry-standard 8-lead dual pinout 

FUNCTIONAL BLOCK DIAGRAMS 
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GENERAL DESCRIPTION 
The OP270 is a high performance, monolithic, dual operational 
amplifier with exceptionally low voltage noise density (5 nV/√Hz 
maximum at 1 kHz). It offers comparable performance to the 
industry-standard OP27 from Analog Devices, Inc. 

The OP270 features an input offset voltage of less than 75 μV 
and an offset drift of less than 1 μV/°C, guaranteed over the full 
military temperature range. Open-loop gain of the OP270 is more 
than 1,500,000 into a 10 kΩ load, ensuring excellent gain accuracy 
and linearity, even in high gain applications. The input bias 
current is less than 20 nA, which reduces errors due to signal 
source resistance. With a common-mode rejection (CMR) of 
greater than 106 dB and a power supply rejection ratio (PSRR) 
of less than 3.2 μV/V, the OP270 significantly reduces errors 
due to ground noise and power supply fluctuations. The power 
consumption of the dual OP270 is one-third less than two OP27 

devices, a significant advantage for power conscious applications. 
The OP270 is unity-gain stable with a gain bandwidth product 
of 5 MHz and a slew rate of 2.4 V/μs. 

The OP270 offers excellent amplifier matching, which is 
important for applications such as multiple gain blocks, low 
noise instrumentation amplifiers, dual buffers, and low noise 
active filters. 

The OP270 conforms to the industry-standard 8-lead DIP 
pinout. It is pin compatible with the MC1458, SE5532/A, 
RM4558, and HA5102 dual op amps, and can be used to 
upgrade systems using those devices. 

For higher speed applications, the ADA4004-2 or the AD8676 are 
recommended. For a quad op amp, see the OP470 data sheet. 
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SPECIFICATIONS 
VS = ±15 V, TA = 25°C, unless otherwise noted. 

Table 1.  

Parameter Symbol Test Conditions 
OP270E OP270F OP270G 

Unit Min Typ Max Min  Typ Max Min  Typ Max 
Input Offset Voltage VOS   10 75  20 150  50 250 μV 
Input Offset Current IOS VCM = 0 V  1 10  3 15  5 20 nA 
Input Bias Current IB VCM = 0 V  5 20  10 40  15 60 nA 
Input Noise Voltage1 en p-p 0.1 Hz to 10 Hz  80 200  80 200  80  nV p-p 
Input Noise Voltage Density2 en fO = 10 Hz  3.6 6.5  3.6 6.5  3.6  nV/√Hz 

 en fO = 100 Hz  3.2 5.5  3.2 5.5  3.2  nV/√Hz 
 en fO = 1 kHz  3.2 5.0  3.2 5.0  3.2  nV/√Hz 
Input Noise Current Density in fO = 10 Hz  1.1   1.1   1.1  pA/√Hz 

 in fO = 100 Hz  0.7   0.7   0.7  pA/√Hz 
 in fO = 1 kHz  0.6   0.6   0.6  pA/√Hz 
Large-Signal Voltage Gain AVO VO = ±10 V,  

RL = 10 kΩ 
1500 2300  1000 1700  750 1500  V/mV 

  VO = ±10 V,  
RL = 2 kΩ 

750 1200  500 900  350 700  V/mV 

Input Voltage Range3 IVR  ±12 ±12.5  ±12 ±12.5  ±12 ±12.5  V 
Output Voltage Swing VO RL ≥ 2 kΩ ±12 ±13.5  ±12 ±13.5  ±12 ±13.5  V 
Common-Mode Rejection CMR VCM = ±11 V 106 125  100 120  90 110  dB 
Power Supply Rejection 

Ratio 
PSRR VS = ±4.5 V  

to ±18 V 
 0.56 3.2  1.0 5.6  1.5 5.6 μV/V 

Slew Rate SR  1.7 2.4  1.7 2.4  1.7 2.4  V/μs 
Supply Current  

(All Amplifiers) 
ISY No load  4 6.5  4 6.5  4 6.5 mA 

Gain Bandwidth Product GBP   5   5   5  MHz 
Channel Separation1 CS VO = ±20 V p-p,  

fO = 10 Hz 
125 175  125 175   175  dB 

Input Capacitance CIN   3   3   3  pF 
Input Resistance             

Differential Mode RIN   0.4   0.4   0.4  MΩ 
Common Mode RINCM   20   20   20  GΩ 

Settling Time tS AV = +1, 10 V,  
step to 0.01% 

 5   5   5  μs 

 
1 Guaranteed but not 100% tested. 
2 Sample tested. 
3 Guaranteed by CMR test. 
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ELECTRICAL SPECIFICATIONS 
VS = ±15 V, −40°C ≤ TA ≤ 85°C, unless otherwise noted. 

Table 2.  

Parameter Symbol Test Conditions 
OP270E OP270F OP270G 

Unit  Min Typ Max Min Typ Max Min Typ Max 
Input Offset Voltage  VOS    25 150  45 275  100 400 μV  
Average Input Offset 

Voltage Drift 
TCVOS   0.2 1  0.4 2  0.7 3 μV/°C 

Input Offset Current IOS VCM = 0 V  1.5 30  5 40  15 50 nA 
Input Bias Voltage IB VCM = 0 V  6 60  15 70  19 80 nA 
Large-Signal Voltage Gain AVO VO = ±10 V,  

RL = 10 kΩ 
1000 1800  600 1400  400 1250  V/mV 

 AVO VO = ±10 V,  
RL = 2 kΩ 

500 900  300 700  225 670  V/mV 

Input Voltage Range1 IVR  ±12 ±12.5  ±12 ±12.5  ±12 ±12.5  V 
Output Voltage Swing VO RL ≥ 2 kΩ ±12 ±13.5  ±12 ±13.5  ±12 ±13.5  V 
Common-Mode Rejection CMR VCM = ±11 V 100 120  94 115  90 100  dB 
Power Supply Rejection 

Ratio 
PSRR VS = ±4.5 V to ±18 V  0.7 5.6  1.8 10  2.0 1.5 μV/V 

Supply Current 
(All Amplifiers) 

ISY No load  4.4 7.2  4.4 7.2  4.4 7.2 mA 

 
1 Guaranteed by CMR test. 
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ABSOLUTE MAXIMUM RATINGS 
Table 3. 
Parameter Rating 
Supply Voltage 18 V 
Differential Input Voltage1 1.0 V 
Differential Input Current1 ±25 mA 
Input Voltage Supply voltage 
Output Short-Circuit Duration Continuous 
Storage Temperature Range −65°C to +150°C 
Lead Temperature Range (Soldering, 60 sec) 300°C 
Junction Temperature (TJ) −65°C to +150°C 
Operating Temperature Range −40°C to +85°C 
 

1 The OP270 inputs are protected by back-to-back diodes. To achieve low noise 
performance, current-limiting resistors are not used. If the differential voltage 
exceeds +10 V, the input current should be limited to ±25 mA. 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

For military processed devices, refer to the Standard Micro-
circuit Drawing (SMD) available at the Defense Logistics 
Agency website.  

Table 4. Analog Devices Equivalent to SMD 
SMD Part Number Analog Devices Equivalent 
5962-8872101PA OP270AZMDA 
 

ESD CAUTION 
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TYPICAL PERFORMANCE CHARACTERISTICS 
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Figure 3. Voltage Noise Density vs. Frequency 
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Figure 4. Voltage Noise Density vs. Supply Voltage 
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Figure 6. Current Noise Density vs. Frequency 
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Figure 8. Warm-Up Offset Voltage Drift 
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Figure 9. Input Bias Current vs. Temperature 
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Figure 10. Input Offset Current vs. Temperature 
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Figure 14. Total Supply Current vs. Temperature 
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Figure 17. Closed-Loop Gain vs. Frequency 
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TEST CIRCUITS 
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Figure 30. Channel Separation Test Circuit 
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APPLICATIONS INFORMATION 
VOLTAGE AND CURRENT NOISE Figure 33 also shows the relationship between total noise and 

source resistance, but at 10 Hz. Total noise increases more 
quickly than shown in Figure 32 because current noise is 
inversely proportional to the square root of frequency. In  
Figure 33, the current noise of the OP270 dominates the total 
noise when RS is greater than 5 kΩ. 

The OP270 is a very low noise dual op amp, exhibiting a typical 
voltage noise density of only 3.2 nV/√Hz at 1 kHz. Because the 
voltage noise is inversely proportional to the square root of the 
collector current, the exceptionally low noise characteristic of 
the OP270 is achieved in part by operating the input transistors 
at high collector currents. Current noise, however, is directly 
proportional to the square root of the collector current. As a 
result, the outstanding voltage noise density performance of the 
OP270 is gained at the expense of current noise performance, 
which is normal for low noise amplifiers. 

Figure 32 and Figure 33 show that to reduce total noise, source 
resistance must be kept to a minimum. In applications with a 
high source resistance, the OP200, with lower current noise 
than the OP270, can provide lower total noise. 

00
35

2-
03

4

100

10

1
100 1k 10k 100k

TO
TA

L 
N

O
IS

E 
(n

V/
√H

z)

SOURCE RESISTANCE (Ω)

RESISTOR
NOISE ONLY

OP200

OP270

 

To obtain the best noise performance in a circuit, it is vital to 
understand the relationships among voltage noise (en), current 
noise (in), and resistor noise (et). 

TOTAL NOISE AND SOURCE RESISTANCE 
The total noise of an op amp can be calculated by 

222 )()()( tsnnn eRieE ++=  

where: 
En is the total input-referred noise. 
en is the op amp voltage noise. 
in is the op amp current noise. 
et is the source resistance thermal noise. 
RS is the source resistance. Figure 33. Total Noise vs. Source Resistance  

(Including Resistor Noise) at 10 Hz 
The total noise is referred to the input and at the output is 
amplified by the circuit gain. Figure 34 shows peak-to-peak noise vs. source resistance over 

the 0.1 Hz to 10 Hz range. At low values of RS, the voltage noise 
of the OP270 is the major contributor to peak-to-peak noise, 
with current noise becoming the major contributor as RS 
increases. The crossover point between the OP270 and the 
OP200 for peak-to-peak noise is at a source resistance of 17 kΩ. 

Figure 32 shows the relationship between total noise at 1 kHz 
and source resistance. When RS is less than 1 kΩ, the total noise 
is dominated by the voltage noise of the OP270. As RS rises 
above 1 kΩ, total noise increases and is dominated by resistor 
noise rather than by the voltage or current noise of the OP270. 
When RS exceeds 20 kΩ, the current noise of the OP270 
becomes the major contributor to total noise. 
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Figure 34. Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs. Source Resistance  
(Including Resistor Noise) 

Figure 32. Total Noise vs. Source Resistance  
(Including Resistor Noise) at 1 kHz 
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For reference, typical source resistances of some signal sources are listed in Table 5. 

Table 5. Typical Source Resistances 
Device Source Impedance Comments 
Strain Gage <500 Ω Typically used in low frequency applications. 
Magnetic Tapehead, Microphone <1500 Ω Low IB is very important to reduce self-magnetization problems when 

direct coupling is used. OP270 IB can be disregarded. 
Magnetic Phonograph Cartridge <1500 Ω Low IB is important to reduce self-magnetization problems in direct-coupled 

applications. OP270 does not introduce any self-magnetization problems. 
Linear Variable Differential Transformer <1500 Ω Used in rugged servo-feedback applications. The bandwidth of interest is 

400 Hz to 5 kHz. 
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Figure 35. Peak-to-Peak Voltage Noise Test Circuit (0.1 Hz to 10 Hz) 
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NOISE MEASUREMENTS 
Peak-to-Peak Voltage Noise 

The circuit of Figure 35 is a test setup for measuring peak-to-
peak voltage noise. To measure the 200 nV peak-to-peak noise 
specification of the OP270 in the 0.1 Hz to 10 Hz range, the 
following precautions must be observed: 

• The device has to be warmed up for at least five minutes. 
As shown in the warm-up drift curve (see Figure 8), the 
offset voltage typically changes 2 μV due to increasing chip 
temperature after power-up. In the 10 sec measurement 
interval, these temperature-induced effects can exceed tens 
of nanovolts. 

• For similar reasons, the device has to be well shielded from 
air currents. Shielding also minimizes thermocouple effects. 

• Sudden motion in the vicinity of the device can also feed 
through to increase the observed noise. 

• The test time to measure noise of 0.1 Hz to 10 Hz should 
not exceed 10 sec. As shown in the noise-tester frequency 
response curve of Figure 36, the 0.1 Hz corner is defined by 
only one pole. The test time of 10 sec acts as an additional 
pole to eliminate noise contribution from the frequency 
band below 0.1 Hz. 

• A noise voltage density test is recommended when measuring 
noise on several units. A 10 Hz noise voltage density mea-
surement correlates well with a 0.1 Hz to 10 Hz peak-to-peak 
noise reading because both results are determined by the 
white noise and the location of the 1/f corner frequency. 

• Power should be supplied to the test circuit by well bypassed 
low noise supplies, such as batteries. Such supplies will min-
imize output noise introduced via the amplifier supply pins. 
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Figure 36. 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise  

Test Circuit Frequency Response 

Noise Measurement—Noise Voltage Density 

The circuit of Figure 37 shows a quick and reliable method for 
measuring the noise voltage density of dual op amps. The first 
amplifier is in unity gain, with the final amplifier in a noninverting 
gain of 101. Because the noise voltages of the amplifiers are 
uncorrelated, they add in rms to yield 

( ) ( )( )22101 nBnAOUT eee +=  

The OP270 is a monolithic device with two identical amplifiers. 
Therefore, the noise voltage densities of the amplifiers match, 
giving 

( ) ( )nnOUT eee 21012101 2 ==  
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Figure 37. Noise Voltage Density Test Circuit 

Noise Measurement—Current Noise Density 

The test circuit shown in Figure 38 can be used to measure current 
noise density. The formula relating the voltage output to the current 
noise density is 

( )
S

nOUT

n R

HznV
G

e

i

2
2

/40−⎟
⎠
⎞

⎜
⎝
⎛

=  

where: 
G is a gain of 10,000. 
RS = 100 kΩ source resistance. 
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Figure 38. Current Noise Density Test Circuit 
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CAPACITIVE LOAD DRIVING AND POWER SUPPLY 
CONSIDERATIONS 
The OP270 is unity-gain stable and capable of driving large 
capacitive loads without oscillating. Nonetheless, good supply 
bypassing is highly recommended. Proper supply bypassing 
reduces problems caused by supply line noise and improves the 
capacitive load driving capability of the OP270. 

In the standard feedback amplifier, the output resistance of the 
op amp combines with the load capacitance to form a low-pass 
filter that adds phase shift in the feedback network and reduces 
stability. A simple circuit to eliminate this effect is shown in 
Figure 39. The components C1 and R3 decouple the amplifier 
from the load capacitance and provide additional stability. The 
values of C1 and R3 shown in Figure 39 are for a load capacitance 
of up to 1000 pF when used with the OP270. 
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Figure 39. Driving Large Capacitive Loads 

UNITY-GAIN BUFFER APPLICATIONS 
When Rf ≤ 100 Ω and the input is driven with a fast, large signal 
pulse (>1 V), the output waveform looks like the one in Figure 40. 

During the fast feedthrough-like portion of the output, the input 
protection diodes effectively short the output to the input, and  
a current, limited only by the output short-circuit protection, is 
drawn by the signal generator. With Rf ≥ 500 Ω, the output is 
capable of handling the current requirements (IL ≤ 20 mA at 10 V); 
the amplifier stays in its active mode and a smooth transition occurs. 

When Rf > 3 kΩ, a pole created by Rf and the input capacitance 
(3 pF) of the amplifier creates additional phase shift and reduces 
phase margin. A small capacitor (20 pF to 50 pF) in parallel with 
Rf helps eliminate this problem. 

00
32

5-
04

1

OP270 2.4V/µs

Rf

 
Figure 40. Pulsed Operation 
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LOW PHASE ERROR AMPLIFIER 
The simple amplifier depicted in Figure 41 utilizes a monolithic 
dual operational amplifier and a few resistors to substantially 
reduce phase error compared with conventional amplifier 
designs. At a given gain, the frequency range for a specified 
phase accuracy is more than a decade greater than that of a 
standard single op amp amplifier.  

The low phase error amplifier performs second-order fre- 
quency compensation through the response of Op Amp A2 in 
the feedback loop of A1. Both op amps must be extremely well 
matched in frequency response. At low frequencies, the A1 
feedback loop forces V2/(K1 + 1) = VIN. The A2 feedback loop 
forces VO/(K1 + 1) = V2/(K1 + 1), yielding an overall transfer 
function of VO/VIN = K1 + 1. The dc gain is determined by the 
resistor divider at the output, VO, and is not directly affected by 
the resistor divider around A2. Note that, like a conventional 
single op amp amplifier, the dc gain is set by resistor ratios only. 
Minimum gain for the low phase error amplifier is 10. 
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Figure 41. Low Phase Error Amplifier 

Figure 42 compares the phase error performance of the low 
phase error amplifier with a conventional single op amp 
amplifier and a cascaded two-stage amplifier. The low phase 
error amplifier shows a much lower phase error, particularly for 
frequencies where ω/βωT < 0.1. For example, a phase error of 
−0.1° occurs at 0.002 ω/βωT for the single op amp amplifier, but 
at 0.11 ω/βωT for the low phase error amplifier. 
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Figure 42. Phase Error Comparison 

FIVE-BAND, LOW NOISE, STEREO GRAPHIC 
EQUALIZER 
The graphic equalizer circuit shown in Figure 43 provides 15 dB 
of boost or cut over a five-band range. Signal-to-noise ratio over 
a 20 kHz bandwidth is better than 100 dB and referred to a 3 V 
rms input. Larger inductors can be replaced by active inductors, 
but consequently reduces the signal-to-noise ratio. 
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Figure 43. Five-Band, Low Noise Graphic Equalizer 
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DIGITAL PANNING CONTROL 
Figure 44 uses a DAC8221 (a dual 12-bit CMOS DAC) to pan a 
signal between two channels. One channel is formed by the 
current output of DAC A driving one-half of an OP270 in a 
current-to-voltage converter configuration. The other channel 
is formed by the complementary output current of DAC A, 
which normally flows to ground through the AGND pin. This 
complementary current is converted to a voltage by the other 
half of the OP270, which also holds AGND at virtual ground. 

Gain error due to mismatching between the internal DAC 
ladder resistors and the current-to-voltage feedback resistors is 
eliminated by using feedback resistors internal to the DAC8221. 
Only DAC A passes a signal; DAC B provides the second 
feedback resistor. With VREFB unconnected, the current-to-
voltage converter, using RFBB, is accurate and not influenced by 
digital data reaching DAC B. Distortion of the digital panning 
control is less than 0.002% over the 20 Hz to 20 kHz audio 
range. Figure 45 shows the complementary outputs for a 1 kHz 
input signal and a digital ramp applied to the DAC data input. 

DUAL PROGRAMMABLE GAIN AMPLIFIER Figure 44. Digital Panning Control 

The dual OP270 and the DAC8221 (a dual 12-bit CMOS DAC) 
can be combined to form a space-saving, dual programmable 
amplifier. The digital code present at the DAC, which is easily 
set by a microprocessor, determines the ratio between the internal 
feedback resistor and the resistance that the DAC ladder presents 
to the op amp feedback loop. Gain of each amplifier is 
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where n is the decimal equivalent of the 12-bit digital code 
present at the DAC.  

If the digital code present at the DAC consists of all 0s, the 
feedback loop opens, causing the op amp output to saturate. A 
20 MΩ resistor placed in parallel with the DAC feedback loop 
eliminates this problem with only a very small reduction in gain 
accuracy. 

Figure 45. Digital Panning Control Output 
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Figure 46. Dual Programmable Gain Amplifier 
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Figure 47. Simplified Schematic 

(One of Two Amplifiers Is Shown) 
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OUTLINE DIMENSIONS 

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
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Figure 48. 8-Lead Ceramic Dual In-Line Package [CERDIP] 

Z-Suffix 
(Q-8) 

Dimensions shown in inches and (millimeters) 

 

COMPLIANT TO JEDEC STANDARDS MS-001
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Figure 49. 8-Lead Plastic Dual In-Line Package [PDIP] 

Narrow Body 
P-Suffix 

(N-8) 
Dimensions shown in inches and (millimeters) 
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CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
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Figure 50. 16-Lead Standard Small Outline Package [SOIC_W] 

Wide Body 
S-Suffix 
(RW-16) 

Dimensions shown in millimeters and (inches) 

ORDERING GUIDE 

Model 
TA = +25°C  
VOS Max (μV) 

θJC  
(°C/W) 

θJA
1  

(°C/W) Temperature Range Package Description 
Package  
Option 

OP270EZ 75 12 134 −40°C to +85°C 8-Lead CERDIP Q-8 (Z-Suffix) 
OP270FZ 150 12 134 −40°C to +85°C 8-Lead CERDIP Q-8 (Z-Suffix) 
OP270GP 250 37 96 −40°C to +85°C 8-Lead PDIP N-8 (P-Suffix) 
OP270GPZ2

    −40°C to +85°C 8-Lead PDIP N-8 (P-Suffix) 
OP270GS 250 27 92 −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) 
OP270GS-REEL    −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) 
OP270GSZ2

    −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) 
OP270GSZ-REEL2

    −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) 
 
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to 

printed circuit board for SOIC package. 
2 Z = RoHS Compliant Part. 
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