

Dual/Quad Rail-to-Rail Operational Amplifiers

OP295/OP495

FEATURES

Rail-to-Rail Output Swing Single-Supply Operation: 3 V to 36 V Low Offset Voltage: 300 mV Gain Bandwidth Product: 75 kHz High Open-Loop Gain: 1,000 V/mV

Unity-Gain Stable

Low Supply Current/Per Amplifier: 150 µA max

APPLICATIONS
Battery-Operated Instrumentation
Servo Amplifiers
Actuator Drives
Sensor Conditioners
Power Supply Control

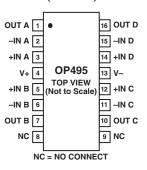
GENERAL DESCRIPTION

Rail-to-rail output swing combined with dc accuracy are the key features of the OP495 quad and OP295 dual CBCMOS operational amplifiers. By using a bipolar front end, lower noise and higher accuracy than that of CMOS designs has been achieved. Both input and output ranges include the negative supply, providing the user zero-in/zero-out capability. For users of 3.3 V systems such as lithium batteries, the OP295/OP495 is specified for 3 V operation.

Maximum offset voltage is specified at $300 \,\mu\text{V}$ for 5 V operation, and the open-loop gain is a minimum of $1000 \, \text{V/mV}$. This yields performance that can be used to implement high accuracy systems, even in single-supply designs.

The ability to swing rail-to-rail and supply 15 mA to the load makes the OP295/OP495 an ideal driver for power transistors and "H" bridges. This allows designs to achieve higher efficiencies and to transfer more power to the load than previously possible without the use of discrete components. For applications such as transformers that require driving inductive loads,

PIN CONNECTIONS


8-Lead Narrow-Body SOIC
(S Suffix)

OUT A 1 OP295 8 V+
-IN A 2 7 OUT B
+IN A 3 V- 4 IN B

14-Lead PDIP (P Suffix)

14-Lead PDIP (P Suffix)

increases in efficiency are also possible. Stability while driving capacitive loads is another benefit of this design over CMOS rail-to-rail amplifiers. This is useful for driving coax cable or large FET transistors. The OP295/OP495 is stable with loads in excess of 300 pF.

The OP295 and OP495 are specified over the extended industrial (-40°C to +125°C) temperature range. OP295s are available in 8-lead plastic DIP plus SOIC-8 surface-mount packages. OP495s are available in 14-lead plastic and SOIC-16 surface-mount packages.

OP295/OP495-SPECIFICATIONS

$\pmb{ELECTRICAL\ CHARACTERISTICS}\ (@\ V_S=5.0\ V,\ V_{CM}=2.5\ V,\ T_A=25^\circ C,\ unless\ otherwise\ noted.)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			30	300	μV
	_	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			800	μV
Input Bias Current	I_B	4000 × T × 110500		8	20	nA
Input Offset Current	Ios	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		±1	30 ±3	nA nA
input Offset Current	108	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		± 1	±5	nA
Input Voltage Range	V_{CM}	10 0 1 1 1 1 1 2 5 0	0		4.0	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \le \text{V}_{\text{CM}} \le 4.0 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	90	110		dB
Large Signal Voltage Gain	A_{VO}	$R_L = 10 \text{ k}\Omega, 0.005 \le V_{OUT} \le 4.0 \text{ V}$	1,000	10,000		V/mV
0.00 . 11.1	AX7 (AFD	$R_{L} = 10 \text{ k}\Omega, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	500		_	V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1	5	μV/°C
OUTPUT CHARACTERISTICS	**	B 10010 OMB	4.00	5 0		***
Output Voltage Swing High	V_{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$ $R_I = 10 \text{ k}\Omega \text{ to GND}$	4.98 4.90	5.0 4.94		V V
		$I_{OUT} = 1 \text{ mA}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	4.90	4.94		V
Output Voltage Swing Low	V _{OL}	$R_{L} = 100 \text{ k}\Omega \text{ to GND}$		0.7	2	mV
3	OL	$R_L = 10 \text{ k}\Omega \text{ to GND}$		0.7	2	mV
		$I_{OUT} = 1 \text{ mA}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		90		mV
Output Current	I_{OUT}		±11	±18		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$\pm 1.5 \text{ V} \leq \text{V}_{\text{S}} \leq \pm 15 \text{ V}$	90	110		dB
		$\pm 1.5 \text{ V} \le \text{V}_{\text{S}} \le \pm 15 \text{ V},$	0.5			1D
Supply Current Per Amplifier	I_{SY}	$ \begin{array}{c c} -40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \\ \text{V}_{\text{OUT}} = 2.5 \text{ V}, \text{ R}_{\text{L}} = \infty, -40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \end{array} $	85		150	dB µA
DYNAMIC PERFORMANCE	181	V ₀₀₁ = 2.5 V, N _L = ∞, -40 C ≤ 1 _A ≤ +125 C			130	μει
Skew Rate	SR	$R_{\rm L} = 10 \text{ k}\Omega$		0.03		V/µs
Gain Bandwidth Product	GBP	1\(\(\) = 10 \(\) \(\		75		kHz
Phase Margin	$\theta_{\rm O}$			86		Degrees
NOISE PERFORMANCE	-					
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		1.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		51		nV/\sqrt{Hz}
Current Noise Density	i _n	f = 1 kHz		<0.1		pA/√ Hz
Specifications subject to change without notice						

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = 3.0 \text{ V}$, $V_{CM} = 1.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Voltage Gain	$V_{OS} \\ I_{B} \\ I_{OS} \\ V_{CM} \\ CMRR \\ A_{VO}$	0 V \leq V _{CM} \leq 2.0 V, -40° C \leq T _A \leq +125 $^{\circ}$ C R _L = 10 k Ω	0 90	100 8 ±1 110 750	500 20 ±3 2.0	μV nA nA V dB V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1		μV/°C
OUTPUT CHARACTERISTICS Output Voltage Swing High Output Voltage Swing Low	V _{OH} V _{OL}	$R_{L} = 10 \text{ k}\Omega \text{ to GND}$ $R_{L} = 10 \text{ k}\Omega \text{ to GND}$	2.9	0.7	2	V mV
POWER SUPPLY Power Supply Rejection Ratio	PSRR		90 85	110		dB dB
Supply Current Per Amplifier	I_{SY}	$ \begin{vmatrix} -40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C} \\ \text{V}_{\text{OUT}} = 1.5 \text{ V}, \text{R}_{\text{L}} = \infty, -40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C} \end{vmatrix} $	85		150	μА
DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin	SR GBP θ _O	$R_{\rm L}$ = 10 k Ω		0.03 75 85		V/µs kHz Degrees
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density	e _n p-p e _n i _n	0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz		1.6 53 <0.1		$\mu V p-p \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz}$

Specifications subject to change without notice.

-2- REV. D

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15.0$ V, $T_A = 25^{\circ}$ C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}			300	500	μV
Input Bias Current	I_{R}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ $\text{V}_{\text{CM}} = 0 \text{ V}$		7	800 20	μV nA
input bias Current	18	$V_{CM} = 0 \text{ V}$ $V_{CM} = 0 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$,	30	nA
Input Offset Current	I_{OS}	$V_{CM} = 0 \text{ V}$		± 1	±3	nA
Input Voltage Range	37	$V_{CM} = 0 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	-15		±5 13.5	nA V
Common-Mode Rejection Ratio	V _{CM} CMRR	$-15.0 \text{ V} \le \text{V}_{\text{CM}} \le +13.5 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	90	110	15.5	dB
Large Signal Voltage Gain	A_{VO}	$R_{\rm L} = 10 \text{ k}\Omega$	1,000	4,000		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage Swing High	V _{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$ $R_I = 10 \text{ k}\Omega \text{ to GND}$	14.95 14.80			V V
Output Voltage Swing Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to GND}$ $R_L = 100 \text{ k}\Omega \text{ to GND}$	14.00		-14.95	V
1 0 0	OL	$R_{\rm L} = 10 \text{ k}\Omega \text{ to GND}$			-14.85	V
Output Current	I_{OUT}		±15	±25		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 1.5 \text{ V to } \pm 15 \text{ V}$	90	110		dB
Summire Commont	T	$V_S = \pm 1.5 \text{ V to } \pm 15 \text{ V}, -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$ $V_O = 0 \text{ V}, R_I = \infty, V_S = \pm 18 \text{ V},$	85			dB
Supply Current	I_{SY}	$V_0 = 0 \text{ V}, R_L = \infty, V_S = \pm 18 \text{ V},$ $-40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$			175	μA
Supply Voltage Range	V _S		3 (±1.5)		36 (±18)	V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_{\rm L}$ = 10 k Ω		0.03		V/µs
Gain Bandwidth Product	GBP			85		kHz
Phase Margin	θο			83		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz f = 1 kHz		1.25 45		$\mu V p-p$ nV/\sqrt{Hz}
Voltage Noise Density Current Noise Density	e _n i _n	f = 1 kHz		45 <0.1		pA/\sqrt{Hz}
Current Noise Delisity	¹ n	1 = 1 K11L		~0.1		Pri/ VIII

Specifications subject to change without notice.

REV. D –3–

OP295/0P495

ABSOLUTE MAXIMUM RATINGS^{1, 2}

Supply Voltage
Input $Voltage^2$
Differential Input Voltage ³
Output Short-Circuit Duration Indefinite
Storage Temperature Range
P, S Package
Operating Temperature Range
OP295G, OP495G40°C to +125°C
Junction Temperature Range
P, S Package
Lead Temperature Range (Soldering, 60 sec) 300°C

NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

² Absolute maximum ratings apply to packaged parts, unless otherwise noted.

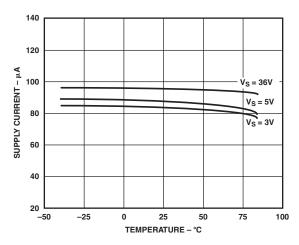
 $^{^3}$ For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.

Package Type	θ_{JA}^*	$\theta_{ m JC}$	Unit
8-Lead Plastic DIP (P)	103	43	°C/W
8-Lead SOIC (S)	158	43	°C/W
14-Lead Plastic DIP (P)	83	39	°C/W
16-Lead SOIC (S)	98	30	°C/W

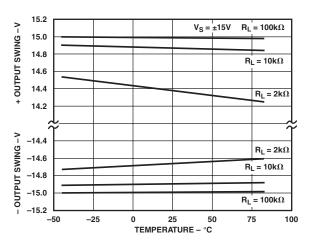
^{*} θ_{JA} is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for CERDIP, PDIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP295GP	−40°C to +125°C	8-Lead Plastic DIP	P-8 (N-8)
OP295GS	-40°C to $+125$ °C	8-Lead SOIC	S-8 (R-8)
OP295GS-REEL	-40°C to $+125$ °C	8-Lead SOIC	S-8 (R-8)
OP295GS-REEL7	-40°C to $+125$ °C	8-Lead SOIC	S-8 (R-8)
OP495GP	-40°C to $+125$ °C	14-Lead Plastic DIP	P-14 (N-14)
OP495GS	-40°C to $+125$ °C	16-Lead SOIC	S-16 (RW-16)
OP495GS-REEL	-40° C to $+125^{\circ}$ C	16-Lead SOIC	S-16 (RW-16)
OP495GSZ*	–40°C to +125°C	16-Lead SOIC	S-16 (RW-16)
OP495GSZ-REEL7*	−40°C to +125°C	16-Lead SOIC	S-16 (RW-16)


^{*}Z = Pb-free part.

CAUTION .


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP295/OP495 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics

TPC 1. Supply Current Per Amplifier vs. Temperature

TPC 2. Output Voltage Swing vs. Temperature