

Precision Micropower, Low Dropout Voltage References

REF19x Series

FEATURES

Initial accuracy: ±2 mV max

Temperature coefficient: 5 ppm/°C max

Low supply current: 45 µA max

Sleep mode: 15 µA max Low dropout voltage Load regulation: 4 ppm/mA Line regulation: 4 ppm/V High output current: 30 mA **Short-circuit protection**

APPLICATIONS

Portable instruments A/D and D/A converters **Smart sensors Solar-powered applications Loop-current-powered instruments**

GENERAL DESCRIPTION

The REF19x series precision band gap voltage references use a patented temperature drift curvature correction circuit and laser trimming of highly stable, thin-film resistors to achieve a very low temperature coefficient and high initial accuracy.

The REF19x series is made up of micropower, low dropout voltage (LDV) devices, providing stable output voltage from supplies as low as 100 mV above the output voltage and consuming less than 45 µA of supply current. In sleep mode, which is enabled by applying a low TTL or CMOS level to the SLEEP pin, the output is turned off and supply current is further reduced to less than 15 µA.

The REF19x series references are specified over the extended industrial temperature range (-40°C to +85°C) with typical performance specifications over -40°C to +125°C for applications, such as automotive.

All electrical grades are available in an 8-lead SOIC package; the PDIP and TSSOP packages are available only in the lowest electrical grade. Products are also available in die form.

TEST PINS

Test Pin 1 and Test Pin 5 are reserved for in-package Zener zap. To achieve the highest level of accuracy at the output, the Zener zapping technique is used to trim the output voltage. Since each unit may require a different amount of adjustment, the resistance value at the test pins varies widely from pin to pin and from part to part. The user should leave Pin 1 and Pin 5 unconnected.

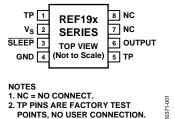


Figure 1.8-Lead SOIC and TSSOP Pin Configuration (S Suffix and RU Suffix)

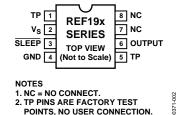


Figure 2. 8-Lead PDIP Pin Configuration

Table 1. Nominal Output Voltage

-	Tuble 1. Holling Output Voltage						
F	Part Number	Nominal Output Voltage (V)					
F	REF191	2.048					
F	REF192	2.50					
F	REF193	3.00					
F	REF194	4.50					
F	REF195	5.00					
F	REF196	3.30					
F	REF198	4.096					

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—REF191 @ T_A = 25°C

@ $V_S = 3.3$ V, $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
INITIAL ACCURACY ¹						
E Grade	Vo	I _{OUT} = 0 mA	2.046	2.048	2.050	V
F Grade			2.043		2.053	V
G Grade			2.038		2.058	V
LINE REGULATION ²						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.0 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		2	4	ppm/V
F and G Grades				4	8	ppm/V
LOAD REGULATION ²						
E Grade	$\Delta V_{O}/\Delta V_{LOAD}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 30 \text{ mA}$		4	10	ppm/mA
F and G Grades				6	15	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.15 \text{ V}, I_{LOAD} = 2 \text{ mA}$			0.95	V
		$V_S = 3.3 \text{ V}, I_{LOAD} = 10 \text{ mA}$			1.25	V
		$V_S = 3.6 \text{ V}, I_{LOAD} = 30 \text{ mA}$			1.55	V
LONG-TERM STABILITY ³	DVo	1,000 hours @ 125°C		1.2		mV
NOISE VOLTAGE	еn	0.1 Hz to 10 Hz		20		μV p-p

¹ Initial accuracy includes temperature hysteresis effect.
² Line and load regulation specifications include the effect of self-heating.
³ Long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.

ELECTRICAL CHARACTERISTICS—REF191 @ − 40°C ≤ +85°C

@ $V_S = 3.3$ V, -40°C $\leq T_A \leq +85$ °C, unless otherwise noted.

Table 3.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1, 2}						
E Grade	TCV _o /°C	I _{оит} = 0 mA		2	5	ppm/°C
F Grade				5	10	ppm/°C
G Grade ³				10	25	ppm/°C
LINE REGULATION ⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{IN}}$	$3.0 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		5	10	ppm/V
F and G Grades				10	20	ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 25 \text{ C}$		5	15	ppm/mA
F and G Grades				10	20	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.15 \text{ V}, I_{LOAD} = 2 \text{ mA}$			0.95	V
		$V_S = 3.3 \text{ V, } I_{LOAD} = 10 \text{ mA}$			1.25	V
		$V_S = 3.6 \text{ V}, I_{LOAD} = 25 \text{ mA}$			1.55	V
SLEEP PIN						
Logic High Input Voltage	V _H		2.4			V
Logic High Input Current	I _H				-8	μΑ
Logic Low Input Voltage	V _L				0.8	V
Logic Low Input Current	I _L				-8	μΑ
SUPPLY CURRENT		No load			45	μΑ
Sleep Mode		No load			15	μΑ

 $^{^1}$ For proper operation, a 1 μ F capacitor is required between the output pin and the GND pin of the device. 2 TCV $_0$ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/ $^\circ$ C.

 $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$ ³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

ELECTRICAL CHARACTERISTICS—REF191 @ -40°C ≤ T_A ≤+125°C

@ $V_S = 3.3 \text{ V}$, $-40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$, unless otherwise noted.

Table 4.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1, 2}						
E Grade	TCV _o /°C	I _{OUT} = 0 mA		2		ppm/°C
F Grade				5		ppm/°C
G Grade ³				10		ppm/°C
LINE REGULATION⁴						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.0 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		10		ppm/V
F and G Grades				20		ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 20 \text{ mA}$		10		ppm/mA
F and G Grades				20		ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.3 \text{ V}, I_{LOAD} = 10 \text{ mA}$			1.25	V
		$V_S = 3.6 \text{ V}, I_{LOAD} = 20 \text{ mA}$			1.55	V

 $^{^{1}\,\}text{For proper operation, a 1}\,\mu\text{F}$ capacitor is required between the output pin and the GND pin of the device.

ELECTRICAL CHARACTERISTICS—REF192 @ T_A = 25°C

@ $V_S = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Table 5.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
INITIAL ACCURACY ¹						
E Grade	Vo	I _{оит} = 0 mA	2.498	2.500	2.502	V
F Grade			2.495		2.505	V
G Grade			2.490		2.510	V
LINE REGULATION ²						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.0 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		2	4	ppm/V
F and G Grades				4	8	ppm/V
LOAD REGULATION ²						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 30 \text{ mA}$		4	10	ppm/mA
F and G Grades				6	15	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.5 \text{ V, } I_{LOAD} = 10 \text{ mA}$			1.00	V
		$V_S = 3.9 \text{ V, } I_{LOAD} = 30 \text{ mA}$			1.40	V
LONG-TERM STABILITY ³	DVo	1,000 hours @ 125°C		1.2		mV
NOISE VOLTAGE	e _N	0.1 Hz to 10 Hz		25		μV p-p

¹ Initial accuracy includes temperature hysteresis effect.

 $^{^2}$ TCV $_0$ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/ $^\circ$ C. $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$

³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

² Line and load regulation specifications include the effect of self-heating.

³ Long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.

ELECTRICAL CHARACTERISTICS—REF192 @ -40° C $\leq T_A \leq +85^{\circ}$ C

@ $V_S = 3.3 \text{ V}$, $-40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$, unless otherwise noted.

Table 6.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1, 2}						
E Grade	TCV _o /°C	I _{OUT} = 0 mA		2	5	ppm/°C
F Grade				5	10	ppm/°C
G Grade ³				10	25	ppm/°C
LINE REGULATION ⁴						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.0 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		5	10	ppm/V
F and G Grades				10	20	ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 25 \text{ mA}$		5	15	ppm/mA
F and G Grades				10	20	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.5 \text{ V}, I_{LOAD} = 10 \text{ mA}$			1.00	V
		$V_S = 4.0 \text{ V}, I_{LOAD} = 25 \text{ mA}$			1.50	V
SLEEP PIN						
Logic High Input Voltage	V _H		2.4			V
Logic High Input Current	lн				-8	μΑ
Logic Low Input Voltage	V _L				0.8	V
Logic Low Input Current	I _L				-8	μΑ
SUPPLY CURRENT		No load			45	μΑ
Sleep Mode		No load			15	μΑ

 $^{^{1}}$ For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.

ELECTRICAL CHARACTERISTICS—REF192 @ $-40^{\circ} \le T_A \le +125^{\circ}C$

@ $V_S = 3.3 \text{ V}$, $-40^{\circ} \le T_A \le +125^{\circ}\text{C}$, unless otherwise noted.

Table 7.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1, 2}						
E Grade	TCV _o /°C	$I_{OUT} = 0 \text{ mA}$		2		ppm/°C
F Grade				5		ppm/°C
G Grade ³				10		ppm/°C
LINE REGULATION ⁴						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.0 \text{ V} \le \text{V}_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		10		ppm/V
F and G Grades				20		ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 20 \text{ mA}$		10		ppm/mA
F and G Grades				20		ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 3.5 \text{ V}, I_{LOAD} = 10 \text{ mA}$			1.00	V
		$V_S = 4.0 \text{ V}, I_{LOAD} = 20 \text{ mA}$			1.50	V

 $^{^{\}rm 1}$ For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.

 $^{^2}$ TCV $_0$ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/ $^\circ$ C.

 $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$

³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

 $^{^2}$ TCV $_0$ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C. $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$

³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

ELECTRICAL CHARACTERISTICS—REF195 @ T_A = 25°C

@ $V_S = 5.10$ V, $T_A = 25$ °C, unless otherwise noted.

Table 14.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
INITIAL ACCURACY ¹						
E Grade	Vo	I _{оит} = 0 mA	4.99	5.0	5.00	V
			8		2	
F Grade			4.99		5.00	V
			5		5	
G Grade			4.99		5.01	V
			0		0	
LINE REGULATION ²						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$5.10 \text{ V} \le \text{V}_{\text{S}} \le 15 \text{ V}, \text{I}_{\text{OUT}} = 0 \text{ mA}$		2	4	ppm/V
F and G Grades				4	8	ppm/V
LOAD REGULATION ²						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 6.30 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 30 \text{ mA}$		2	4	ppm/mA
F and G Grades				4	8	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 5.50 \text{ V}, I_{LOAD} = 10 \text{ mA}$			0.50	V
		$V_S = 6.30 \text{ V}, I_{LOAD} = 30 \text{ mA}$			1.30	V
LONG-TERM STABILITY ³	DVo	1,000 hours @ 125°C		1.2		mV
NOISE VOLTAGE	e _N	0.1 Hz to 10 Hz		50		μV p-p

¹ Initial accuracy includes temperature hysteresis effect.

ELECTRICAL CHARACTERISTICS—REF195 @ -40°C ≤ T_A ≤ +85°C

@ $V_S = 5.15$ V, $T_A = -40$ °C $\leq T_A \leq +85$ °C, unless otherwise noted.

Table 15.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1,2}						
E Grade	TCV _o /°C	$I_{OUT} = 0 \text{ mA}$		2	5	ppm/°C
F Grade				5	10	ppm/°C
G Grade ³				10	25	ppm/°C
LINE REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{IN}}$	$5.15 \text{ V} \le \text{V}_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		5	10	ppm/V
F and G Grades				10	20	ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 6.30 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 25 \text{ mA}$		5	10	ppm/mA
F and G Grades				10	20	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 5.50 \text{ V}, I_{LOAD} = 10 \text{ mA}$			0.50	V
		$V_S = 6.30 \text{ V}, I_{LOAD} = 25 \text{ mA}$			1.30	V
SLEEP PIN						
Logic High Input Voltage	V _H		2.4			V
Logic High Input Current	IH				-8	μΑ
Logic Low Input Voltage	V _L				8.0	V
Logic Low Input Current	I _L				-8	μΑ
SUPPLY CURRENT		No load			45	μΑ
Sleep Mode		No load			15	μΑ

 $^{^1}$ For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.

² Line and load regulation specifications include the effect of self-heating.

³ Long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.

 $^{^2}$ TCV $_0$ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/ $^{\circ}$ C.

 $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$

³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

ELECTRICAL CHARACTERISTICS—REF195 @ -40° C $\leq T_A \leq +125^{\circ}$ C

@ $V_S = 5.20$ V, -40°C $\leq T_A \leq +125$ °C, unless otherwise noted.

Table 16.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT ^{1, 2}						
E Grade	TCV _o /°C	$I_{OUT} = 0 \text{ mA}$		2		ppm/°C
F Grade				5		ppm/°C
G Grade ³				10		ppm/°C
LINE REGULATION⁴						
E Grade	$\Delta V_{O}/\Delta V_{IN}$	$5.20 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		5		ppm/V
F and G Grades				10		ppm/V
LOAD REGULATION⁴						
E Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 6.45 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 20 \text{ mA}$		5		ppm/mA
F and G Grades				10		ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	V _S = 5.60 V, I _{LOAD} = 10 mA			0.60	V
		$V_S = 6.45 \text{ V}, I_{LOAD} = 20 \text{ mA}$			1.45	V

 $^{^{\}rm 1}$ For proper operation, a 1 μF capacitor is required between the output pin and the GND pin of the device.

ELECTRICAL CHARACTERISTICS—REF196 @ T_A = 25°C

@ $V_S = 3.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Table 17.

Parameter	Mnemonic	Condition	Min	Тур	Max	Unit
INITIAL ACCURACY ¹						
G Grade	Vo	$I_{OUT} = 0 \text{ mA}$	3.29 0	3.3	3.310	V
LINE REGULATION ²						
G Grade	$\Delta V_{O}/\Delta V_{IN}$	$3.50 \text{ V} \le V_S \le 15 \text{ V}, I_{OUT} = 0 \text{ mA}$		4	8	ppm/V
LOAD REGULATION ²						
G Grade	$\Delta V_{\text{O}}/\Delta V_{\text{LOAD}}$	$V_S = 5.0 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 30 \text{ mA}$		6	15	ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 4.1 \text{ V}, I_{LOAD} = 10 \text{ mA}$			0.80	V
		$V_S = 4.3 \text{ V}, I_{LOAD} = 30 \text{ mA}$			1.00	V
LONG-TERM STABILITY ³	DVo	1,000 hours @ 125°C		1.2		mV
NOISE VOLTAGE	e _N	0.1 Hz to 10 Hz		33		μV p-p

 $^{^{\}mbox{\tiny 1}}$ Initial accuracy includes temperature hysteresis effect.

² TCV₀ is defined as the ratio of output change with temperature variation to the specified temperature range expressed in ppm/°C. $TCV_0 = (V_{MAX} - V_{MIN})/V_0(T_{MAX} - T_{MIN})$

³ Guaranteed by characterization.

⁴ Line and load regulation specifications include the effect of self-heating.

² Line and load regulation specifications include the effect of self-heating.

³ Long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.

ABSOLUTE MAXIMUM RATINGS

Table 24.

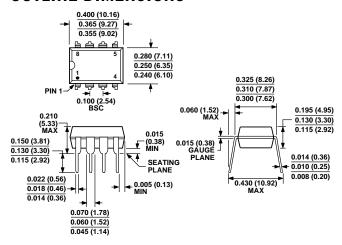
Parameter ¹	Rating
Supply Voltage	−0.3 V, +18 V
Output to GND	$-0.3 \text{ V, V}_{\text{S}} + 0.3 \text{ V}$
Output to GND Short-Circuit Duration	Indefinite
Storage Temperature Range	
PDIP, SOIC Package	−65°C to +150°C
Operating Temperature Range	
REF19x	−40°C to +85°C
Junction Temperature Range	
PDIP, SOIC Package	−65°C to +150°C
Lead Temperature Range (Soldering 60 sec)	300°C

¹ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 25. Package Type

Package Type	θ_{JA}^{1}	θιс	Unit
8-Lead PDIP	103	43	°C/W
8-Lead SOIC	158	43	°C/W
8-Lead TSSOP (RU)	240	43	°C/W


 $^{^{1}}$ θ_{JA} is specified for worst-case conditions; that is, θ_{JA} is specified for the device in socket for PDIP and is specified for the device soldered in the circuit board for the SOIC package.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001-BA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 32. 8-Lead Plastic Dual In-Line Package [PDIP] (N-8) P-Suffix

Dimensions shown in inches and (millimeters)

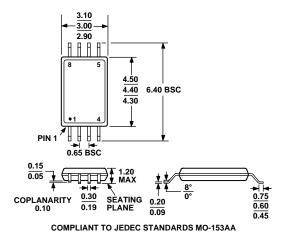
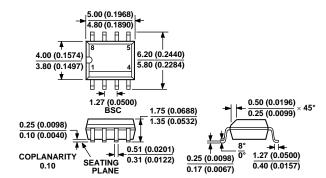



Figure 33. 8-Lead Thin Shrink Small Outline Package [TSSOP] (RU-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 34. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8)

S-Suffix
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model GUIDE	Tomporatura Dange	Daglana Daggrintian	Dadkage Option	Minimum Quantities/Pool
REF191ES	Temperature Range -40°C to +85°C	Package Description 8-Lead SOIC	Package Option	Minimum Quantities/Reel
	-40°C to +85°C		S-Suffix (R-8)	2.500
REF191ES-REEL		8-Lead SOIC	S-Suffix (R-8)	2,500
REF191ESZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2.500
REF191ESZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF191GP	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF191GPZ ¹	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF191GS	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF191GS-REEL	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF191GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF191GSZ-REEL ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192ES	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192ES-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF192ES-REEL7	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192ESZ ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192ESZ-REEL ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF192ESZ-REEL7 ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192FS	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192FS-REEL	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF192FS-REEL7	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192FSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192FSZ-REEL7 ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192GP	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF192GPZ ¹	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF192GRU	-40°C to +85°C	8-Lead TSSOP	RU-8	
REF192GRU-REEL7	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000
REF192GRUZ ¹	-40°C to +85°C	8-Lead TSSOP	RU-8	
REF192GRUZ-REEL7 ¹	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000
REF192GS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF192GS-REEL7	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF192GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF192GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF192GSZ-REEL7 ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF193GS	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF193GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF193GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF193GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF194ES	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194ES-REEL	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF194ESZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194ESZ-REEL ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF194FS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194FSZ ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194GP	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF194GPZ ¹	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	
REF194GS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF194GS-REEL7	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000
REF194GSZ ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	
REF194GSZ-REEL ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500
REF194GSZ-REEL7 ¹	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000

Model	Temperature Range	Package Description	Package Option	Minimum Quantities/Reel	
REF195ES	−40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195ES-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195ESZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195ESZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF195FS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195FS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF195FSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195FSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF195GP	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)		
REF195GPZ ¹	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)		
REF195GRU	-40°C to +85°C	8-Lead TSSOP	RU-8		
REF195GRU-REEL7	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000	
REF195GRUZ ¹	-40°C to +85°C	8-Lead TSSOP	RU-8		
REF195GRUZ-REEL71	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000	
REF195GS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF195GS-REEL7	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000	
REF195GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF195GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF195GSZ-REEL71	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000	
REF196GRU-REEL7	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000	
REF196GRUZ-REEL71	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000	
REF196GS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	,	
REF196GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF196GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF196GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF196GSZ-REEL71	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000	
REF198ES	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	,	
REF198ES-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198ESZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)		
REF198ESZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198ESZ-REEL7 ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,000	
REF198FS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	1,755	
REF198FS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198FSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	_,=,===	
REF198FSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198GP	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)	_,=,===	
REF198GPZ ¹	-40°C to +85°C	8-Lead PDIP	P-Suffix (N-8)		
REF198GRU	-40°C to +85°C	8-Lead TSSOP	RU-8		
REF198GRU-REEL7	-40°C to +85°C	8-Lead TSSOP	RU-8	1,000	
REF198GRUZ ¹	-40°C to +85°C	8-Lead TSSOP	RU-8	1,,555	
REF198GRUZ-REEL7 ¹	-40°C to +85°C	8-Lead TSSOP	RU-8	2,500	
REF198GS	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,300	
REF198GS-REEL	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198GSZ ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	
REF198GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC	S-Suffix (R-8)	2,500	

 $^{^{1}}$ Z = Pb-free part.