

Self-Contained Audio Preamplifier

SSM2019

FEATURES

Excellent Noise Performance: 1.0 nV/√Hz or

1.5 dB Noise Figure

Ultra-low THD: < 0.01% @ G = 100 Over the

Full Audio Band

Wide Bandwidth: 1 MHz @ G = 100 High Slew Rate: 16 V/μs @ G = 10

10 V rms Full-Scale Input,

G = 1, V_S = ±18 V Unity Gain Stable

True Differential Inputs

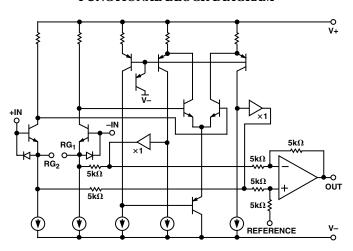
Subaudio 1/f Noise Corner 8-Lead PDIP or 16-Lead SOIC

Only One External Component Required

Very Low Cost

Extended Temperature Range: -40°C to +85°C

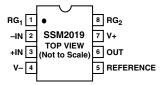
APPLICATIONS
Audio Mix Consoles
Intercom/Paging Systems
2-Way Radio
Sonar
Digital Audio Systems

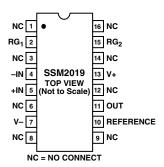

GENERAL DESCRIPTION

The SSM2019 is a latest generation audio preamplifier, combining SSM preamplifier design expertise with advanced processing. The result is excellent audio performance from a monolithic device, requiring only one external gain set resistor or potentiometer. The SSM2019 is further enhanced by its unity gain stability.

Key specifications include ultra-low noise (1.5 dB noise figure) and THD (<0.01% at G = 100), complemented by wide bandwidth and high slew rate.

Applications for this low cost device include microphone preamplifiers and bus summing amplifiers in professional and consumer audio equipment, sonar, and other applications requiring a low noise instrumentation amplifier with high gain capability.


FUNCTIONAL BLOCK DIAGRAM


PIN CONNECTIONS

8-Lead PDIP (N Suffix)

8-Lead Narrow Body SOIC (RN Suffix)*

16-Lead Wide Body SOIC (RW Suffix)

*Consult factory for availability.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

$\textbf{SSM2019} \textbf{—SPECIFICATIONS} \ \, \text{(V}_s = \pm 15 \text{ V and } -40^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical specifications apply at } T_A = 25^{\circ}\text{C}.)$

Parameter	Symbol	Conditions	Min	Typ Max	Unit
DISTORTION PERFORMANCE					
Total Harmonic Distortion Plus Noise	THD + N	$V_{O} = 7 \text{ V rms}$ $R_{L} = 2 \text{ k}\Omega$ $f = 1 \text{ kHz}, G = 1000$ $f = 1 \text{ kHz}, G = 100$ $f = 1 \text{ kHz}, G = 10$ $f = 1 \text{ kHz}, G = 1$ $BW = 80 \text{ kHz}$		0.017 0.0085 0.0035 0.005	% % %
NOISE PERFORMANCE					
Input Referred Voltage Noise Density	e _n	f = 1 kHz, G = 1000 f = 1 kHz, G = 100 f = 1 kHz, G = 10 f = 1 kHz, G = 1 f = 1 kHz, G = 1000		1.0 1.7 7 50 2	$nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz}$
Input Current Noise Density	i _n	1 – 1 kHz, G – 1000		2	pA/VHZ
DYNAMIC RESPONSE Slew Rate	SR	$G = 10$ $R_{L} = 2 k\Omega$ $C_{L} = 100 pF$		16	V/µs
Small Signal Bandwidth	BW _{−3 dB}	G = 1000 G = 100 G = 10 G = 10 G = 1		200 1000 1600 2000	kHz kHz kHz kHz
INPUT Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection	V _{IOS} I _B Ios CMR	$V_{CM} = 0 \text{ V}$ $V_{CM} = 0 \text{ V}$ $V_{CM} = 0 \text{ V}$ $V_{CM} = \pm 12 \text{ V}$ $G = 1000$	110	0.05 0.25 3 10 ±0.001 ±1.0	mV μA μA
Power Supply Rejection	PSR	G = 100 G = 10 G = 1 $V_S = \pm 5 \text{ V to } \pm 18 \text{ V}$ G = 1000 G = 100	90 70 50 110 110	113 94 74 124 118	dB dB dB dB
Input Voltage Range Input Resistance	IVR R _{IN}	G = 10 G = 1 Differential, $G = 1000$ G = 1 Common Mode, $G = 1000$ G = 1	90 70 ±12	101 82 1 30 5.3 7.1	$\begin{array}{c} dB \\ dB \\ V \\ M\Omega \\ M\Omega \\ M\Omega \\ M\Omega \end{array}$
OUTPUT					
Output Voltage Swing Output Offset Voltage Maximum Capacitive Load Drive Short Circuit Current Limit Output Short Circuit Duration	V _O V _{OOS} I _{SC}	$R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ Output-to-Ground Short	±13.5	±13.9 4 30 5000 ±50 Continuous	V mV pF mA sec
GAIN Gain Accuracy	$R_{G} = \frac{10 \ k\Omega}{G - 1}$	$T_A = 25^{\circ}C$ $R_G = 10 \Omega, G = 1000$ $R_G = 101 \Omega, G = 100$ $R_G = 1.1 k\Omega, G = 10$ $R_G = \infty, G = 1$	0.5 0.5 0.5 0.1	0.1 0.2 0.2 0.2	dB dB dB dB
Maximum Gain	G	1.G - w, G - 1	0.1	70	dB
REFERENCE INPUT Input Resistance Voltage Range Gain to Output				10 ±12 1	kΩ V V/V
POWER SUPPLY Supply Voltage Range Supply Current	V_S I_{SY}	$V_{CM} = 0 \text{ V}, R_{L} = \infty$ $V_{CM} = 0 \text{ V}, V_{S} = \pm 18 \text{ V}, R_{L} = \infty$	±5	±18 ±4.6 ±7.5 ±4.7 ±8.5	V mA mA

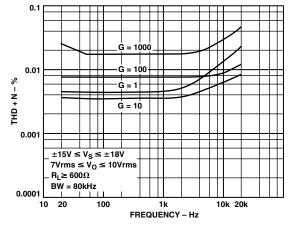
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

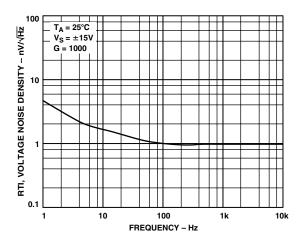
NOTES

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
SSM2019BN	−40°C to +85°C	8-Lead PDIP	N-8
SSM2019BRW	–40°C to +85°C	16-Lead SOIC	RW-16
SSM2019BRWRL	–40°C to +85°C	16-Lead SOIC, Reel	RW-16
SSM2019BRN*	-40°C to +85°C	8-Lead SOIC	RN-8
SSM2019BRNRL*	−40°C to +85°C	8-Lead SOIC, Reel	RN-8


^{*}Consult factory for availability.

CAUTION


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the SSM2019 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics

TPC 1. Typical THD + Noise vs. Gain

TPC 2. Voltage Noise Density vs. Frequency

REV. 0 -3-

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $^{^2}$ θ_{JA} is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for PDIP; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

SSM2019

BUS SUMMING AMPLIFIER

In addition to its use as a microphone preamplifier, the SSM2019 can be used as a very low noise summing amplifier. Such a circuit is particularly useful when many medium impedance outputs are summed together to produce a high effective noise gain.

The principle of the summing amplifier is to ground the SSM2019 inputs. Under these conditions, Pins 1 and 8 are ac virtual grounds sitting about 0.55 V below ground. To remove the 0.55 V offset, the circuit of Figure 5 is recommended.

A2 forms a "servo" amplifier feeding the SSM2019 inputs. This places Pins 1 and 8 at a true dc virtual ground. R4 in conjunction with C2 removes the voltage noise of A2, and in fact just about any operational amplifier will work well here since it is removed from the signal path. If the dc offset at Pins 1 and 8 is not too

critical, then the servo loop can be replaced by the diode biasing scheme of Figure 5. If ac coupling is used throughout, then Pins 2 and 3 may be directly grounded.

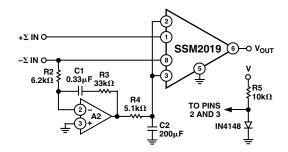
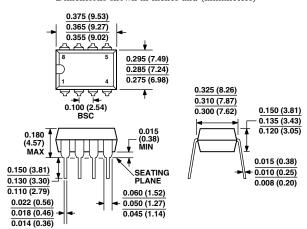
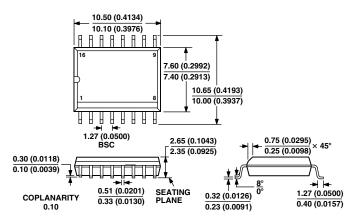



Figure 5. Bus Summing Amplifier

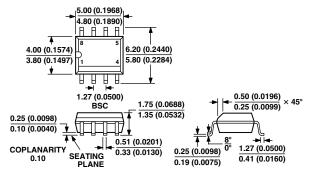
OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP] (N-8)


Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body (RW-16)


Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Standard Small Outline Package [SOIC]* Narrow Body (RN-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

-8- REV. 0

^{*}Consult factory for availability