Instruction Manual for Model 2835 Bench Type 3-3/4 Digit MULTIMETER # **TABLE OF CONTENTS** | Page | | Page | |--|---|----------| | TEST INSTRUMENT SAFETY Inside Front Cover | Adapter Measurements | 11
12 | | INTRODUCTION | Data Hold | 12 | | SPECIFICATIONS | Relative Measurement | 12 | | CONTROL AND INDICATORS | MAINTENANCE | | | OPERATING INSTRUCTIONS 8 | Line Voltage Selection | 13 | | Power Sources | Fuse Replacement | | | Function Selection | Battery Installation | | | Range Selection | Test Leads | | | Use of Analog Bargraph | Instrument Repair and Calibration Service | | | Voltage Measurements 9 Resistance Measurements 9 | Servicing Information | | | Continuity Measurements | ACCESSORIES | . 16 | | Diode Testing | 1,002,000 | | | Capacitance Measurements | WARRANTY SERVICE INSTRUCTIONS | . 17 | | Frequency Measurements | LIMITED ONE-YEAR WARRANTY | . 18 | # INTRODUCTION The **B+K Precision** Model 2835 bench-type 3-3/4 digit multimeter is highly versatile instrument which offers portability as well as precision. In addition to the usual digital multimeter functions of AC & DC voltage, AC and DC current, and resistance measurements, the Model 2835 also measures capacitance, frequency, and features a diode test and continuity test function, and an adapter range. The instrument is easy to use, as all basic functions are selected by a single rotary Function switch and autoranging. Push button switches are used to operate special features. The 3-3/4 digit backlighted LCD display features automatic minus sign, low battery indicator, unit of measure annunciators and provides overrange indication. Annunciators are also displayed to indicate when one of the special features has been activated. These features include data HOLD, MIN/MAX, RELative, DELAY Hold, and manual RANGE selection. In addition a 42-segment analog bar graph is provided in the display. The unit is housed in a rugged, attractive plastic case, with an integral carrying handle and storage compartment. The storage compartment stores the test leads and a carrying strap when not in use. A sturdy tilt stand positions the unit for easy access to controls and to viewing the LCD display. The tilt stand can be folded under the instrument to allow stacking with your other instruments. Although the instrument is a bench unit with the features expected in a bench unit, the instrument can also be operated from six AA batteries, providing full portability. Safety features include safety jacks, safety test leads and extensive over-load protection, including high energy fuse protection on both mA and 10A ranges when measuring current. **B+K Precision** offers a full line of optional accessories for the Model 2835 which can further expand the capabilities and usefulness of the instrument. # **SPECIFICATIONS** Accuracy is specified for a temperature range of +18°C to +28°C (70% max RH) #### **GENERAL SPECIFICATIONS** # Display: 3-3/4-digit LCD. Displays to 4000 counts, (9999 counts frequency mode), with analog bar graph and function/units annunciators. #### Measurement Rate: 2 times per second, nominal. 1 Time per second, Capacitance and Frequency mode. # Analog Bar Graph: 42 segments; Measurement rate, 20 times per second. # Backlight: LED illumination. #### Polarity: Automatic, Negative (-) polarity indication. # Over Range Indication: MSD (Most Significant Digit) blinks # Ranging: Automatic and Manual ranging #### **Operating Temperature:** 0°C to 50°C at <70% RH. # **Storage Temperature:** -30°C to 70°C at <80% RH. #### **Temperature Coefficient:** 0.15 x (specified accuracy) / °C (< 18°C or > 28°C). #### Power Requirements: 90-264 VAC, 50/60 Hz, 10 W or 6 AA batteries. # Maximum Voltage to earth: 1000 VDC or AC peak from any terminal. #### Battery Life: 1800 typical with alkaline battery. 80 hours with continuous backlight. #### Size: 2.87" x 8.58" x 7.68" (73 x 218 x 195 mm) # Weight: 3 lb (1.3 kg) without power cord # Accessories Supplied: Carrying Strap AC Power Cord Test Leads Instruction Manual # DC Voltage (Manual and Auto Ranging) | Range | Resolution | Accuracy | Input
Impedance | |--------|------------|---|--------------------| | 400 mV | 100 μV | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | >10 MΩ | | 4 V | 1 mV | $\pm (0.5\% \text{ rdg} + 2 \text{ dgts})$ | 10 ΜΩ | | 40 V | 10 mV | $\pm (0.5\% \text{ rdg} + 2 \text{ dgts})$ | 10 MΩ | | 400 V | 100 mV | $\pm (0.5\% \text{ rdg} + 2 \text{ dgts})$ | 10 MΩ | | 1000 V | 1 V | $\pm (0.5\% \text{ rdg} + 2 \text{ dgts})$ | 10 MΩ | ### Overload Protection: 1100 VDC or peak AC ### NMRR: >40 dB (50/60 Hz) #### CMRR: >100 dB (50/60 Hz) # AC Voltage (Manual and Auto Ranging, Average Sensing, RMS indicating) | Range | Resolution | Accuracy (50/60 Hz) | 40 Hz to 1 kHz | |--------|------------|--|--| | 400 mV | 100 μV | $\pm (1\% \text{ rdg} + 5 \text{ dgts}) \text{ typical}$ | Unspecified | | 4 V | 1 mV | $\pm (1\% \text{ rdg} + 5 \text{ dgts})$ | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | | 40 V | 10 mV | $\pm (1\% \text{ rdg} + 5 \text{ dgts})$ | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | | 400 V | 100 mV | $\pm (1\% \text{ rdg} + 5 \text{ dgts})$ | ±(1.5% rdg + 5 dgts) | | 750 V | 1 V | $\pm (1\% \text{ rdg} + 5 \text{ dgts})$ | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | # Input Impedance: Same as DCV function with less than 100 pF #### Overload Protection: 1100 VDC or peak AC #### DC Current (Manual Ranging) | Range | Resolution | Accuracy | Burden Voltage | |--------|------------|---|----------------| | 4 mA | 1 uA | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 800 mV | | 40 mA | 10 uA | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 800 mV | | 400 mA | 100 uA | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 800 mV | | 10 A* | 10 mA | $\pm (1.5\% \text{ rdg} + 4 \text{ dgts})$ | 1000 mV | * 10 A continuous, 20 A for 30 seconds #### Overload Protection: 1 A/600 V fuse on mA inputs (fast blow ceramic fuse). 15 A/600 V fuse on 10 A input (fast blow ceramic fuse). # AC Current (Manual Ranging; Average sensing, RMS indicating) | Range | Resolution | Accuracy
(40 Hz to 1 kHz) | Burden Voltage | |--------|------------|--|----------------| | 4 mA | 1 uA | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | 800 mV | | 40 mA | 10 uA | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | 800 mV | | 400 mA | 100 uA | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | 800 mV | | 10 A* | 10 mA | $\pm (1.5\% \text{ rdg} + 5 \text{ dgts})$ | 1000 mV | ^{* 10} A continuous, 20 A for 30 seconds # Overload Protection: 1 A/600 V fuse on mA inputs (fast blow ceramic fuse). 15 A/600 V fuse on 10 A input (fast blow ceramic fuse). #### **SPECIFICATIONS** # Resistance (Manual and Auto Ranging) | Range | Resolution | Accuracy | Open Circuit
Voltage | |--------|------------|---|-------------------------| | 400 Ω | 0.1 Ω | $\pm (0.75\% \text{ rdg} + 4 \text{ dgts})$ | 0.4 VDC | | 4 kΩ | 1 Ω | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 0.4 VDC | | 40 kΩ | 10 Ω | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 0.4 VDC | | 400 kΩ | 100 Ω | $\pm (0.75\% \text{ rdg} + 2 \text{ dgts})$ | 0.4 VDC | | 4 ΜΩ | 1 kΩ | $\pm (1\% \text{ rdg} + 3 \text{ dgts})$ | 0.4 VDC | | 40 MΩ | 1 kΩ | $\pm (2.5\% \text{ rdg} + 5 \text{ dgts})$ | 0.4 VDC | #### Overload Protection: 600 VDC or peak AC #### NOTE Some instability may be noted on 40 M Ω range when operating from AC power. Improved stability may be obtained by using battery operation. #### **Continuity Test** | Range | Audible
Threshold | Response
Time | Open Circuit
Voltage | |-------------|----------------------|------------------|-------------------------| | 400Ω | Approx. 50Ω | Approx. 50 ms | 0.4 VDC | #### Overload Protection: 600 V DC or RMS AC #### **Diode Test** | Range | Resolution | Test
Current | Open Circuit
Voltage | |-------|------------|-----------------|-------------------------| | 4 V | 1 mV | . 0.6 mA | 3.0 VDC typical | # Overload Protection: 600 V DC or RMS AC # Capacitance (Manual and Auto Ranging) | Range | Resolution | Accuracy (with film capacitor or better) | |--------|------------|---| | 4 nF | 0.001 nF | $\pm (1\% \text{ rdg} + 40 \text{ dgts})$ in Relative Mode | | 40 nF | 0.01 nF | ±(1% rdg + 4 dgts) in Relative Mode | | 400 nF | 0.1 nF | $\pm (1\% \text{ rdg} + 4 \text{ dgts})$ | | 4 μF | 0.001 μF | $\pm (1\% \text{ rdg} + 4 \text{ dgts})$ | | 40 μF | 0.01 μF | $\pm (1\% \text{ rdg} + 4 \text{ dgts}) \text{ at } < 20 \mu\text{F}$ | | | | $\pm (5\% \text{ rdg} + 8 \text{ dgts}) \text{ at } > 20 \mu\text{F}$ | # Frequency (Auto Ranging) | Range | Resolution | Ассигасу | Trigger
Level | |---------|------------|--|------------------| | 100 Hz | 0.01 Hz | $\pm (0.1\% \text{ rdg} + 4 \text{ dgts})$ | 40 μV rms | | 1 kHz | 0.1 Hz | $\pm (0.1\% \text{ rdg} + 4 \text{ dgts})$ | 40 μV rms | | 10 kHz | 1 Hz | $\pm (0.1\% \text{ rdg} + 4 \text{ dgts})$ | 40 μV rms | | 100 kHz | 10 Hz | $\pm (0.1\% \text{ rdg} + 4 \text{ dgts})$ | 400 μV rms | | 1 MHz | 100 Hz | $\pm (0.1\% \text{ rdg} + 4 \text{ dgts})$ | 400 µV rms | # **Overload Protection:** 600 VDC or peak AC #### ADAPT RANGE: # Display: 10 counts per 1mV DC # Accuracy: $\pm (0.75\% + 4 \text{ dgts})$ #### **Input Protection:** 600 VDC or rms AC # **CONTROLS AND INDICATORS** - Display. 3-3/4 digit LCD display with automatic decimal point, minus sign and 42 segment bar graph. Indicates to 4000 counts, 9999 counts in frequency mode. Annunciators for all functions, units of measurement and for low battery. Overrange indicated by blinking of MSD (Most Significant Digit). - 2. BACK LIGHT Switch (yellow). Turns display backlight on or off. - HOLD Switch. Toggles the data hold feature on or off except in the MIN/MAX mode. In the MIN/MAX mode, hold also turns the recording function off. - 4. MIN/MAX Switch. Activates minimum and maximum record feature. - 5. Function Switch (blue). On those dual-function positions of the rotary Function/range switch marked with green or blue, this pushbutton selects the blue function. Toggles between AC and DC for current measurements, toggles between ohm and continuity checking, or toggles between frequency and ADP measurements. - Function/Range Switch. Rotary switch, selects function for autoranging modes; selects function and range for current measurement modes. In dual-function positions marked in green and blue, the green function is initially selected. - VΩHz → (— Input Jack. Input connector for AC and DC Volts, resistance, frequency, continuity, capacitance or diode test. - 8. A Jack. Input for 10 A DC or AC current range. For measurements greater than 3 A high current test leads are recommended. - 9. mA Jack. Input for DC or AC current up to 400 mA. - COMmon Jack. Input for common or reference test lead for all measurements. # CAUTION Connect to earth ground or reference point not more than 1000 volts (DC + ac peak) from earth ground. - 11. RANGE Switch. Manual ranging selector switch. Advances selection to next higher range until highest range is reached, then advances to lowest range. Hold 1 second to revert to Autoranging. - 12. DELAY H Switch. Delays turn on of hold feature for 10 seconds. - 14. Tilt Stand. - 15. Power Input. Input connector for power cord. - Power On/Off Switch. Press "I" to turn on ac power. Press "O" to turn off ac power. - Line Voltage Selector. Selects 90-132 VAC or 198-264 VAC input power. - 18. Storage Compartment. Stores test leads and carrying strap. Also provides access to fuses and batteries. #### **CONTROLS AND INDICATORS** Figure 1. Front Panel Controls and Indicators Figure 2. Rear Panel Controls and Connectors # **OPERATING INSTRUCTIONS** # WARNING Use of test equipment may expose the operator to electric shock hazards.; Observe all instructions contained in the TEST INSTRUMENT SAFETY section of this manual before using this instrument. # CAUTION The TEST INSTRUMENT SAFETY section of this manual lists maximum voltage and current input limits which must be observed. Failure to adhere to these limits may result in damage to the INSTRUMENT. # **POWER SOURCES** The Model 2835 can be used as a bench instrument, powered from an ac power source of 90-264 volts. Additionally, the instrument can be operated in field applications, powered from six internally contained "AA" batteries (not supplied). # **AC Power Operation** CAUTION Line Voltage Selector must be set to proper operating voltage before connecting power cord to ac power source. - 1. Set Voltage Selector Switch to match input power source. - 2. Connect power cord to power input receptacle. - Set rear panel on-off switch to on (1) and leave on. Use the front panel Function/Range switch for subsequent power on-off applications. - 4. Press yellow BACK LIGHT switch to turn on LCD backlight. # **Battery Operation** Install batteries (refer to "battery installation" instructions in the MAIN-TENANCE section of this manual. When AC power is applied, the batteries are not used. When no AC power is applied, batteries continue to operate the meter. To prolong battery life minimize the use of backlighting for the LCD display. # **FUNCTION SELECTION** The rotary Function/Range switch selects the function such as $V \sim \text{or} V \longrightarrow \text{and}$ for current it also selects the range. Some positions are dual-function and are marked with one function in green and another function in blue. When the rotary switch is first turned from OFF to the dual-function position, the function marked green is initially selected. The function marked in blue is selected by pressing the blue Function switch. For example, when the rotary Function/Range switch is set to 400 mA, the AC current (-) function is automatically selected. To change to DC current (\longrightarrow) press the blue Function switch. Watch the function annunciators of the LCD display to confirm the desired selection. #### **RANGE SELECTION** - Autorange mode is automatically selected when unit is turned on and whenever the rotary Function/Range switch is set to a new position (except current ranges). - To change ranges manually, momentarily depress RANGE switch. The AUTO annunciator will turn off indicating the meter is in the manual mode. Press again to advance to next higher range. When the highest range is reached, the next push advances to the lowest range. - To return to autoranging mode depress and hold RANGE switch for one second or longer. - 4. If quantity to be measured is unknown start with highest range, or use autoranging mode. - When an overrange is indicated (MSD blinking and beep signal) switch to the next highest range. - The Hz function is autoranging only, and manual ranging cannot be selected. # CAUTION Do not switch between ranges while connected to high voltage. # **USE OF ANALOG BARGRAPH** The analog bargraph feature is activated for measurements of voltage, current, resistance, frequency, and capacitance. Its update speed of 20 measurements/sec is 10 times that of the digital display. This makes it suitable for measuring coarse adjustments of these parameters, or indicating the direction of change of a varying quantity. #### **VOLTAGE MEASUREMENTS** - 1. To measure DC voltage set Function/Range switch to V ===. - 2. To measure AC voltage set Function/Range switch to V ~. - Connect the red test lead to VΩHz → jack and the black test lead to COM jack. - 4. Connect test leads to points of measurement. - 5. For DC measurements a (-) sign is displayed for negative polarity; (+) positive polarity is implied and is not displayed. #### RESISTANCE MEASUREMENTS - 1. To measure resistance set Function/Range switch to Ω press the blue Function switch. - Connect the red test lead to VΩHz → i jack and the black test lead to COM jack. - 3. Connect test leads to points of measurement. - 4. For highest accuracy when measuring low resistances, press RANGE to set unit to the $400~\Omega$ range, short test leads together and press REL Δ switch. This zeroes the meter to compensate for the resistance of the test leads. - 5. For measurements above $20M\Omega$, the reading may be somewhat unstable. Stability may be improved by using battery operation rather than AC operation. #### **OPERATING INSTRUCTIONS** # **CONTINUITY MEASUREMENTS** - 1. To measure continuity set Function/Range switch to Ω - Connect the red test lead to VΩHz → jack and the black test lead to COM jack. - 3. Connect test leads to points of measurement. Buzzer sounds when resistance is less than approximately 50 Ω . #### **DIODE TESTING** - 1. Set Function/Range switch to -. - Connect the red test lead to VΩHz → jack and the black test lead to COM jack. Red lead is (+) polarity. - 3. To check forward voltage (V_f) , connect the red lead to anode and black lead to the cathode. Diodes and semiconductor junctions with normal V_f of less than approximately 3.0 V can be checked. - 4. Display indicates the forward voltage. Normal diode voltages are approximately 0.4 V for germanium diodes, 0.7 V for silicon diodes, and 1.6 V for light emitting diodes (LED). A shorted diode reads near 0 V. An open diode reads the same as with open test leads. - 5. Reverse test lead connections to diode. Reading should be the same as with open test leads. Lower reading indicates a leaky diode. #### **CAPACITANCE MEASUREMENTS** - 1. Set Function/Range switch to → (capacitance). - Connect the COM and the VΩHz → ← leads to the capacitor. Observe polarity when measuring polarized capacitors. - Read the capacitance directly from the display. A shorted capacitor will indicate an overrange. An open capacitor will indicate near zero on all ranges. - 4. For maximum accuracy, step to the desired range in manual ranging, then press REL Δ switch to zero out test lead capacitance before measurements. Always use the REL Δ mode for readings on the 4nF range. #### **USEFUL CONVERSIONS** | pF | nF | μ F | |-----------|-----------|------------| | 1,000 | 1.0 | 0.001 | | 10,000 | 10.0 | 0.01 | | 100,000 | 100.0 | 0.1 | | 1,000,000 | 1,000.0 | 1.0 | | | 10,000.0 | 10.0 | | | 100,000.0 | 100.0 | $pF = picofarads (10^{-12})$ $nF = nanofarads (10^{-9})$ $\mu F = \text{microfarads} (10^{-6})$ ## FREQUENCY MEASUREMENTS #### NOTE When measuring frequencies below 1 kHz or above 20 kHz, the last one or two digits on the display may be unstable. - 1. Set the Function/Range switch to Hz for frequency measurements. - 2. Press blue Function Switch to select Hz. - Connect the red test lead to VΩHz → jack and the black test lead to COM jack. - Connect the test leads to the point of measurement and read the frequency from the display. #### **CURRENT MEASUREMENTS** # WARNING For current measurements, the meter must be connected in series with the load. If incorrectly connected (in parallel with the load), the meter presents a very low impedance (almost a short), which may blow the fuse or damage the meter or equipment under test. For current measurements greater than 3 A, high current test leads should be used. High current measurements with standard test leads could cause the leads to heat up. This not only affects the accuracy of the measurement but could result in injury to the operator. - To measure current, set the Function/Range switch to the desired A = or mA = range. - Press blue Function Switch to select AC or DC; watch annunciators in the LCD display to confirm the desired function. - For current measurements under 400 mA, connect the red test lead to the mA jack and the black test lead to the COM jack. - 4. For current measurements above 400 mA, connect the red test lead to the A jack and the black test lead to the COM jack. For current measurements greater than 3 A, high current test leads are recommended. - Remove power from the circuit under test and open the normal circuit path where the measurement is to be taken. Connect the meter in series with the circuit. - Apply power and read the value from the display. ### **ADAPTER MEASURMENTS** The Model 2835 permits the use of external adapters for other measurements. Adapters are commercially available using transducers that convert variable quantities such as temperature, flow, pressure, or rpm to a dc voltage. The adapter function of Model 2835 provides 10 counts on the digital display for each 1 mV of dc input voltage. For example, an external adapter that provides 1 mVdc per degree of temperature would produce 25 mV at 25°C. Since the meter provides 10 counts per mV, the LCD display would read 250. B+K Precision offers two optional temperature adapters, Model TP-28 with semiconductor sensor and Model TP-30 with type K thermocouple sensor. The TP-28 provides 10 mV per degree (25°C temperature reads 2500 counts) and TP-30 provides 1 mV per degree (25°C temperature reads 250 counts). #### **OPERATING INSTRUCTIONS** #### MIN/MAX MODE - MIN/MAX mode will store and display the minimum or maximum values measured by the meter. - Select the desired function (MIN/MAX is not operational in Hz function). - Connect the meter to the point to be measured before selecting the MIN/MAX mode. Otherwise the minimum stored value will be zero. - 4. To observe the minimum value recorded, momentarily depress the MIN/MAX switch. The "MIN" and "H" annunciators will be displayed along with the minimum recorded reading. The meter will record and hold any new minimum that occurs during the measurement. - 5. To observe the maximum value recorded, momentarily depress the MIN/MAX switch again. The "MAX" annunciator will be displayed along with the maximum recorded reading. The meter will record and hold any new maximum that occurs during the measurement. - To exit the MIN/MAX mode, press the MIN/MAX switch again. Neither the MIN or MAX annunciators will be displayed. #### **DATA HOLD** Data hold can be used when making voltage, current, or frequency measurements. When **HOLD** is pressed the display will freeze and an "H" will be displayed. The test leads can then be disconnected and the reading will remain on the display. Pressing **HOLD** again will exit the HOLD mode. #### **DELAY HOLD** Pressing the **DELAY H** switch will cause the **HOLD** function to be turned on after a delay of 10 seconds. Exit the delay hold mode by pressing the **HOLD** switch. #### **RELATIVE MEASUEMENT** When the REL Δ switch is pressed the present reading becomes the zero reading and all subsequent readings are displayed relative to this value. This function is cleared by pressing the REL Δ switch and holding it for 2 seconds. #### **TEST LEAD AND CARRYING STRAP STORAGE** The test leads and carrying strap can be stored in the storage compartment located on top of the meter as shown in figure 3. Figure 3. Storage Compartment # MAINTENANCE # WARNING The following instructions are for use by qualified service personnel only. To avoid electrical shock, do not perform servicing other than contained in the operating instructions unless you are qualified to so. Remove test leads from instrument and point of measurement before performing any servicing. #### LINE VOLTAGE SELECTION The line voltage selector switch is located on the rear panel of the instrument (refer to figure 2) and may be operated by a small flat-blade screwdriver or similar tool. Set the line voltage switch to the correct position before connecting the AC power cord. For 100 or 120 VAC, 50 or 60 Hz power, set the switch to the lower position. For 220 or 240 VAC, 50 or 60 Hz power, set the switch to the upper position. #### **FUSE REPLACEMENT** Two fuses are located on a printed circuit board accessible through the storage compartment as shown in figure 4. Fuse F1 is used in the mA test circuit. If measurements cannot be made in mA ranges check for a blown overload protection fuse F1. Fuse F2 is used in the 10 A test circuit. If measurements cannot be made in the A range check for a blown overload protection fuse F2. Replace only with original type fuse. Fuse F1 is a 1A, 600 V fast blow ceramic fuse (B+K Precision part number 194-046-001). Fuse F2 is a 15A, 600 V fast blow ceramic fuse (**B+K Precision** part number 194-047-001). Replace fuses as follows: - 1. Open storage compartment. - 2. Remove test leads and carrying strap if present. Figure 4. Fuse Location #### MAINTENANCE - Use a coin or a screw driver to open the fuse compartment access cover toward the front of the meter and remove cover. - 4. Remove defective fuse from fuse clip and replace with a new fuse. - 5. Install fuse compartment access cover. - 6. Close storage compartment lid. #### **BATTERY INSTALLATION** The six AA batteries are contained in a battery holder located in a compartment inside the storage compartment. New batteries are required when the symbol in the lower left corner of the display is on. Replace batteries as follows: - 1. Open the storage compartment. - 2. Remove test leads and carrying strap if present. - Use a coin or a screw driver to open the battery compartment access cover toward the rear of the meter and remove cover. - Pull battery holder out of the compartment then disconnect battery clip from battery holder. - Remove discharged batteries from battery holder and replace with new AA batteries. Be sure to observe battery polarity as marked on holder. Replace all six batteries at the same time. - Reconnect battery clip to battery holder then slide battery holder with batteries into battery compartment. - 7. Install battery compartment access cover. - 8. Close storage compartment lid. #### **TEST LEADS** Use only shrouded safety type test leads, like those supplied. Periodically examine the test leads to ensure that the conductors are not intermittent or broken. Also make sure that good contact pressure exists at the test lead receptacles, and keep this area free from dirt and corrosion. For safety from electrical shock, periodically check for evidence of damage to the insulation. Never use test leads with exposed bare wires, cracked insulation, or burned spots on the insulation. Use only high-current leads for measurements above 3A. Figure 5. Battery Compartment # INSTRUMENT REPAIR AND CALIBRATION SERVICE Because of the specialized skill and test equipment needed for instrument repair and calibration, many customers prefer to rely upon B+K Precision authorized service agencies for this purpose. To use this service, even if your multimeter is no longer under warranty, follow the instructions given in the WARRANTY SERVICE INSTRUCTIONS portion of this manual. These is a nominal charge for instruments out of warranty. # **SERVICING INFORMATION** Requests for servicing information should be directed to Factory Service Operations at the address listed in the WARRANTY SERVICE INSTRUCTIONS. Be sure to specify Model 2835. # **ACCESSORIES** | CCESSORIES SUPPLIED | OPTIONAL ACCESSORIES | | |---------------------|--|-------------| | Carrying Strap | Clamp On AC Current Probe | Model CP-1 | | AC Power Cord | High-Current Test Leads | Model FP-10 | | Test Leads | Demodulator Probe | Model PR-23 | | Instruction Manual | High Voltage Probe (40 kVDC) | Model PR-28 | | | High Voltage Probe (6 kVDC) | Model HV-6 | | | Replacement Test Leads | Model FP-30 | | | Temperature Adapter, K Type Thermocouple | Model TP-30 | | | Temperature Adapter, Semiconductor Type | Model TP-28 | # WARRANTY SERVICE INSTRUCTIONS (For U.S.A. and its Overseas Territories) - 1. Refer to the MAINTENANCE section of your B+K Precision instruction manual for adjustments that may be applicable. - 2. If the above-mentioned does not correct the problem you are experiencing with your unit, pack it securely (preferable in the original carton or double-packed.). - 3. Enclose a letter describing the problem and include your name and address. - 4. Enclose proof of purchase date, that is, a dated copy of the sales receipt. - 5. Deliver to, or ship PREPAID (UPS preferred in the U.S.A.) to the nearest B+K Precision authorized service agency (see list enclosed with unit). If your list of authorized B+K Precision service agencies has been misplaced, contact your distributor for the name of your nearest service agency, or write to: B+K Precision, Factory Service Operations Maxtec International Corporation 6470 West Cortland Street Chicago, Illinois 60635 Tel (312)889-1448 Also use this address for technical inquires and replacement parts orders.