BOURNS®

- 1.5 A RMS
- Glass Passivated Wafer
- 400 V to 600 V Off-State Voltage
- Max I_{GT} of 10 mA
- Package Options

PACKAGE	PACKING	PART # SUFFIX		
LP	Bulk	(None)		
LP with fomed leads	Tape and Reel	R		

MDC2AA

LP PACKAGE WITH FORMED LEADS

MDC2AB

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
Repetitive peak off-state voltage (see Note 1) TICP206D TICP206M			400 600	V
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)	T(RMS)	1.5	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			10	Α
Peak on-state surge current half-sine-wave at (or below) 25°C case temperature (see Note 4)			12	Α
Peak gate current	I _{GM}	±0.2	Α	
Average gate power dissipation at (or below) 85°C case temperature (see Note 5)	$P_{G(AV)}$	0.3	W	
Operating case temperature range		T _C	-40 to +110	°C
Storage temperature range		T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 60 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 5. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off- state current	V _D = rated V _{DRM}	I _G = 0				±20	μА
I _{GT}	Gate trigger current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$			8 -8 -8 10	mA
V _{GT}	Gate trigger voltage	$\begin{aligned} &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = +12 \text{ V}\dagger\\ &V_{supply} = -12 \text{ V}\dagger\\ &V_{supply} = -12 \text{ V}\dagger\end{aligned}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu \text{s}$			2.5 -2.5 -2.5 2.5	V

[†] All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

MARCH 1988 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _T	On-state voltage	I _T = ±1 A	I _G = 50 mA	(see Note 6)			±2.2	V
I _H Holding current	V _{supply} = +12 V†	$I_G = 0$	Init' I _{TM} = 100 mA			30	mA	
'н	riolanig carroni	$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$			-30	
I.	Latching current	$V_{\text{supply}} = +12 \text{ V}\dagger$	(see Note 7)				40	mΑ
, r	Latering Garrent	V _{supply} = -12 V†	(000 11010 1)				-40	

[†] All voltages are with respect to Main Terminal 1.

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT

VS **TEMPERATURE** TC05AA 100 $V_{AA} = \pm 12 \text{ V}$ I_{GTM} $\hat{R}_{i} = 10 \Omega$ $t_{w(g)} = 20 \ \mu s$ _{ст} - Gate Trigger Current - mA 10 1 -60 -40 -20 0 20 40 60 100 120 T_c - Case Temperature - °C Figure 1.

GATE TRIGGER VOLTAGE vs

PRODUCT INFORMATION

MARCH 1988 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

NOTES: 6. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

^{7.} The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

TYPICAL CHARACTERISTICS

