

HI-4853, 4854, 4855

February 2013

High-Speed 3.0V to 5.5V,Slew-Rate Controlled RS-485/422 Transceivers with Extended Common-Mode Range

GENERAL DESCRIPTION

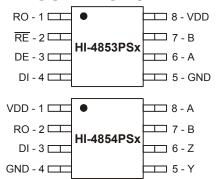
The HI-485x devices are high-speed slew-rated controlled TIA-485/ TIA-422-B and ISO 8482:1993 compliant transceivers with extended receiver common-mode range for avionic and industrial control applications. The devices can operate over an extended supply (3.0V to 5.5V) and temperature (-55°C to 125°C) range. The receiver input common-mode range of [-15, 20]V and ±24V for the half and full duplex configurations respectively, is valid over the full supply and temperature specification. The HI-4853 has a halfduplex configuration, and the HI-4854 and HI-4855 are full-duplex. Slew rates are optimized for data rates below 25Mbps. The drivers slew-rate control and pre-emphasis reduces high-frequency components in the output signal transitions and also compensates for impedance mismatch. These features provide optimum EMI and jitter performance, essential in EMI sensitive environments and high-integrity data link applications such as in aerospace and industrial controls.

The devices deliver at least \pm 1.50V (VDD=3.0V), and \pm 2.45V (VDD= 4.5V) output levels at an extended temperature range of -55°C to +125°C into a differential load of 54 Ω and 50pF.

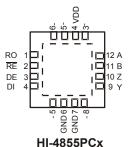
The receiver offers true Fail-Safe operation, providing a guaranteed logic high on RO when the bus is open-circuit, short-circuit, or idle (terminated but not driven). The receiver's worst case minimum input resistance is at least $90K\Omega$, supporting up to 224 nodes.

APPLICATIONS

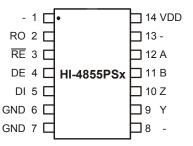
- Extended Temperature Range RS-485/422 Networks
- Process Control and Factory Automation
- EMI Emission Sensitive Avionics
- Industrial Field Bus Networks
- Networks requiring extended common-mode range
- Miniature Munitions Stores Interface (MMSI / EBR-1553)


Device Selection Table								
Part Number	Half/Full Duplex	Package						
HI-4853	Half	≤ 20.0	8-pin SOIC					
HI-4854	Full	≤ 20.0	8-pin SOIC					
HI-4855	Full	≤ 20.0	14-pin SOIC 16-pin QFN					

^{*} For RS-485 Transceivers optimized for data rates up to 5Mbps please refer to the HI-4850 data sheet.


FEATURES

- Slew Rate Control and Pre-Emphasis for superior EMI
- Extended Power Supply Operating Range 3.0V to 5.5V
- Extended Receiver Common-Mode Range:
 - -15.0V to 20.0V Half-Duplex
 - ±24V Full-Duplex
- ESD Protection
 - ±16KV HBM (Bus Pins)
 - ±8KV HBM (Logic Pins)
- 20 Mbps Data Rate up to 100 ft. CAT-5 UTP
- 12 Mbps Data Rate up to 1000 ft. CAT-5 UTP
- Current Limiting Protection
- Extended Temperature Range -55°C to 125°C
- Industry Standard 75176 Pin-out


PIN CONFIGURATIONS (Top Views)

8-Pin Plastic SOIC package (Narrow Body)

16- pin 4mm x 4mm Chip-scale package

14-Pin Plastic SOIC package (Narrow Body)

(DS4853 Rev. C)

PIN DESCRIPTIONS

I III DEGG	IN DECORN HONO					
SIGNAL	FUNCTION	DESCRIPTION				
RO	OUTPUT	Receiver Output. If $V_{ID} \ge -50 \text{mV}$, then RO is high. If $V_{ID} < -150 \text{mV}$ then RO is low. If the bus is shorted, open or terminated but not driven by another terminal, RO will be high.				
RE	INPUT	Receiver Enable. \overline{RE} = Low enables the receiver. \overline{RE} High forces the receiver output (RO) into a high impedance state. Internal 450K Ω pull-down resistor				
DE	INPUT	Driver Enable. DE = high enables the driver. DE = low will force the driver output into a high impedance state and the device will function as a line receiver if $\overline{\text{RE}}$ is also low. Internal 450K Ω pull-up resistor				
DI	INPUT	Driver Input. Forces the logic state of the Driver's output, if Driver is enabled. Internal $450 \text{K}\Omega$ pull-up resistor				
GND	POWER	Chip ground, 0V Supply				
A, Y	ANALOG I/O	Non-inverting Receiver Input / Driver Output.				
B, Z	ANALOG I/O	Inverting Receiver Input / Driver Output.				
VDD	POWER	Positive Supply: 3.0V ≤ VDD ≤ 5.5V				

TX FUNCTION TABLE

	TRANSMITTING								
INPUTS			LINE	OUTPUTS					
RE	DE	DI	CONDITION	В	Α				
Х	1	1	Transmit logic high	0	1				
Х	1	0	Transmit logic low	1	0				
0	0	Χ	Disable	Hi-Z	Hi-Z				
1	0	Χ	Shutdown	Hi-Z	Hi-Z				

RX FUNCTION TABLE

	RECEIVING								
INP	PUTS BUS PINS		OUTPUT	OPERATION					
RE	DE	$V_{ID} = V_A - V_B$	RO						
0	0	-150mV < V _{ID} < -50mV	Х	Undefined Input					
0	Χ	-50mV ≤ V _{ID}	1	Receiver logic high					
0	Х	V _{ID} ≤ -150mV	0	Receiver logic low					
0	0	Open or Shorted	1	Default					
0	0	Idle and terminated	1	Default					
1	1	X	Hi-Z	Disabled					
1	0	Х	Hi-Z	Shutdown					

Typical Operating Circuit

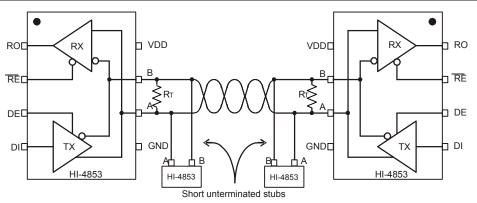
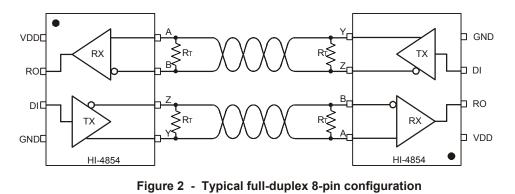



Figure 1 - Typical half-duplex configuration

HOLT INTEGRATED CIRCUITS

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND = 0V)

Supply Voltage, VDD:Control Input Currents:	7 V	Operating Temperature Range	e:(Industrial)40°C to +85°C (Hi-Temp)55°C to +125°C
Control Input Voltages:			(Til Temp)
Digital Input Voltages (DI, DE, RE):			
Bus Voltage (AY, BZ):	±25V	Internal Power Dissipation:	900mW
Digital Output Voltage (RO):	0.5V to V + 0.5V		65°C to +150°C
Short-Circuit Duration, Driver (V: ±15V)	∞	Storage Temperature Range: .	05 C t0 +150 C
ESD (Human Body Model):			
AY, BZ,VDD,GND pins:	±16KV	Solder Temperature:	(Reflow)260°C
DI, DE, RE, RO pins:	±8KV	Coluct Follippi atalo.	(

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFIED OPERATING CONDITIONS

DADAMETERO	0,41501	CONDITIONS		LIMITS	3	UNIT
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	ONT
Supply Voltage	V _{DD}		3.0	3.3 / 5.0	5.5	V
Temperature	Т		-55		125	°C
TX Common-Mode Bus Loading	V _{OCM}	See Figure 4	-7		12	V
RX Input Common-Mode Voltage	V _{ICM}	Half-Duplex	-16		20	V
Differential Load Resistance	R _L		54	60	8	Ω
Differential Load Capacitance	C _L			100		pF
Digital Input High Voltage	V _{IH}	DE, DI, RE	70			%V _{DD}
Digital Input Low Voltage	V _{IL}	DE, DI, RE			30	%V _{DD}
Digital Input Current high	I _{IH}	DE, DI, $V_{IH} = V_{DD}$			1	μA
Digital Input Pull-Down Current	I _{PD}	\overline{RE} , $V_{IH} = V_{DD}$	6		18	μA
Digital Input Current low	I _{IL}	RE, V _{IH} = 0	-1			μA
Digital Input Pull-Up Current	I _{PU}	DE, DI, V _{IH} = 0V	-18		-6	μA

DRIVER DC ELECTRICAL CHARACTERISTICS

VDD = 3.0V to 3.6V or 4.5V to 5.5V; T = -55°C to 125°C; MIN and MAX values are at range boundaries

DADAMETED	SYMBOL	COMPITIONS	FIGURE	VDD	= 3.3V ±	10%	VDD:	= 5.0V :	± 10%	UNIT
PARAMETER	STWIBOL	CONDITIONS	FIGURE	MIN	TYP	MAX	MIN	TYP	MAX	JUNIT
Differential Output Voltage with no load	V _{OD1}	R _L = ∞	3	V _{DD} -0.1		V _{DD}	V _{DD} -0.1		V _{DD}	V
Differential Output Voltage into load with no common-mode voltage	V _{OD2}	$R_L = 54\Omega$, $C_L = 50pF$	3	1.5		3.0	2.45		4.0	V
Differential Output Voltage into load with applied common-mode voltage	V _{OD3}	-7V ≤ V _{OCM} ≤ 12V T _A = 25°C	4	1.5		3.0	2.45		4.0	V
Differential Output Over/Under Shoot						5.5			3.2	%V _{OD}
Change in Differential Output Voltage between logic states	ΔV_{OD}	$R_L = 54\Omega, C_L = 50pF$	3	-125		125	-125		125	mV
Output Common-Mode Voltage	V _{OCM}	$R_L = 54\Omega, C_L = 50pF$	4	1.40	1.60	2.0	2.15	2.45	3.0	V
Change in output Common-Mode Voltage between logic states	ΔV_{OCM}	$R_L = 54\Omega$, $C_L = 50pF$	4	-125		125	-150		150	mV
Bus Pin Leakage Current (High-Z Power On)	I _{OHZ1}	DE=0, -15V≤ VOCM ≤ 15V DE=0, -12V≤ VOCM ≤ 15V		-200		200	-200		200	μΑ
Bus Pin Leakage Current (Power Off)	I _{OHZ2}	V _{OCM} = ±15V		-200		200	-200		200	μA
Peak Short Circuit Current	I _{SCPK}	DE = V _{DD} , Bus Pin = ±15		-230		230	-250		250	mA
Steady State Short Circuit Current	I _{SC}	DE = V _{DD} , Bus Pin = ±15		0		50	0		50	μΑ
Differential Output Capacitance	C _{OD}	DE = 0				16			16	pF
Static Supply Current	I _{DD}	DE=V _{DD} , RE=0, R _L =∞			8	10		10	12	mA
Supply Current (Shutdown)	I _{DDQ}	DE=0, RE=V _{DD} , R _L =∞			90	110		125	400	μΑ

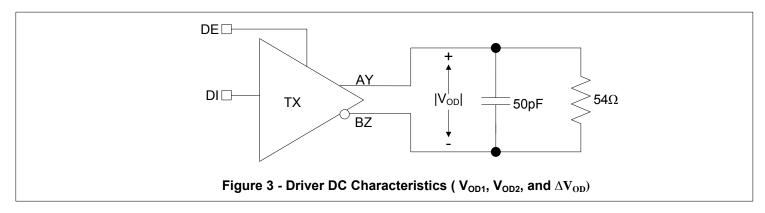
DRIVER SWITCHING CHARACTERISTICS

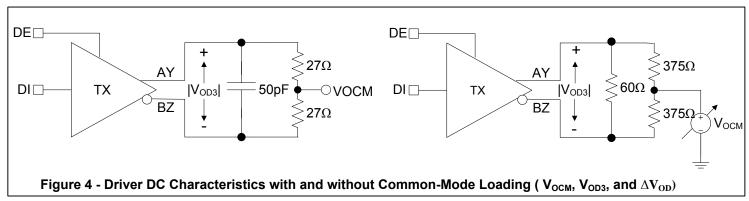
 \mbox{VDD} = 3.0V - 3.6V or 4.5V - 5.5V as noted , $\mbox{ Operating temperature range.}$

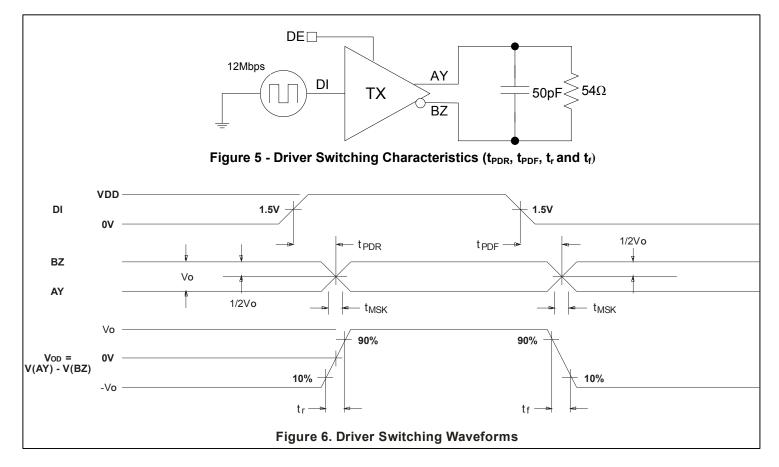
		001171710110		VDD = 3.3V ± 10%		: 10%	VDD	= 5.0V ±	± 10%	
PARAMETER	SYMBOL	CONDITIONS	FIGURE	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Propagation Delay Low - to - High	t _{PDR}	RL = 54Ω . CL=50pF	5 & 6	17	26	33	16	24	30	ns
Propagation Delay High - to - Low	t _{PDF}	RL = 54Ω, CL=50pF	5 & 6	17	26	33	16	24	30	ns
Differential Rise Time	tr	RL = 54Ω, CL=50pF	5 & 6	9	12	15	8	11	16	ns
Differential Fall Time	t _f	RL = 54Ω , CL= $50pF$	5 & 6	9	12	15	8	11	16	ns
Output Pulse Skew	tmsk	RL = 54Ω, CL=50pF	5 & 6		2	8		2	8	ns
Driver Enable to Output High	tzн	$RL = 500\Omega$, $CL=50pF$	7		95	120		90	117	ns
Driver Enable to output Low	tzL	RL = 500Ω, CL=50pF	7		95	120		90	117	ns
Driver Disable from Output High	t _{HZ}	$RL = 500\Omega$, $CL = 50pF$	7		20	33		18	30	ns
Driver Disable from Output Low	tLZ	RL = 500Ω, CL=50pF	7		20	33		18	30	ns
Shutdown to Active Output Delay	ton	RL = 500Ω, CL=50pF	7			10			10	μs
Shutdown Delay	toff					10		·	10	μs

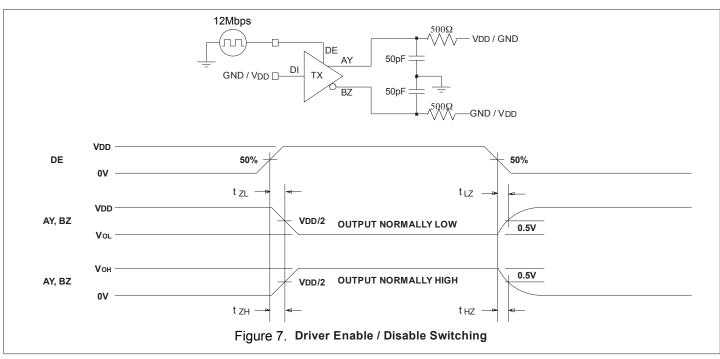
RECEIVER DC ELECTRICAL CHARACTERISTICS

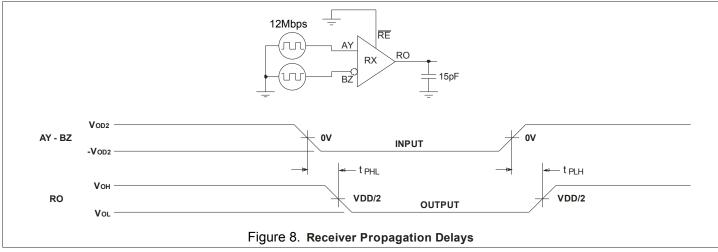
VDD = 3.0V - 3.6V or 4.5V - 5.5V as noted, Operating temperature range.

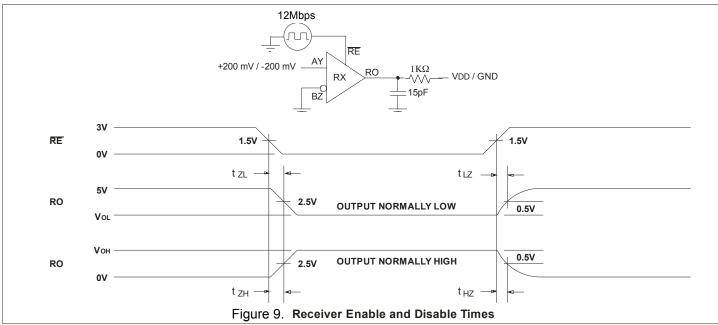

PARAMETER	SYMBOL	CONDITIONS	FIGURE	VDD:	= 3.3V ±	10%	VDD	= 5.0V ±	<u>է 10%</u>	UNIT
PARAWETER	STIVIBUL	CONDITIONS	FIGURE	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Differential Input Threshold Voltage	Vтн	-15 ≤ V _{ICM} ≤ +20		-200	-100	-50	-200	-100	-50	mV mV
Input Hysteresis	VHYS	VICM = 0V		17	28	33	17	28	33	mV
Input Resistance	Rin	-15 ≤ V _{ICM} ≤ +20		80	92		80	92		ΚΩ ΚΩ
RO Output High Level	Vон	$V_{ICM} = +200mV$ $I_{OUT} = -3.0mA$		90%			90%			VDD
RO Output Low Level	VoL	$V_{ICM} = -200 \text{mV}$ $I_{OUT} = +3.0 \text{mA}$				10%			10%	VDD
RO Output Hi-Z Leakage Current	lozн	0V ≤ VRO ≤ VDD		-1		1	-1		1	μΑ

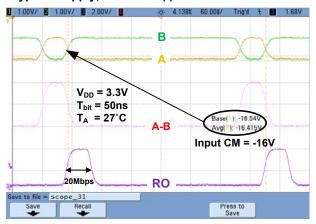

RECEIVER SWITCHING CHARACTERISTICS

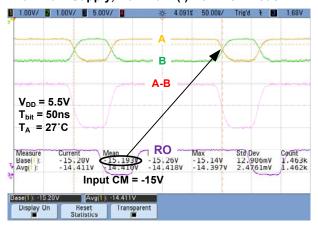

VDD = 3.0V - 3.6V or 4.5V - 5.5V as noted, Operating temperature range.


				VDD:	= 3.3V ±	10%	VDD	= 5.0V ±	± 10%	
PARAMETER	SYMBOL	CONDITIONS	FIGURE	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Propagation Delay Low - to - High	t _{RPDR}	VID = +1.5V, CL=15pF	8	20	26	32	20	26	32	ns
Propagation Delay High - to - Low	t _{RPDF}	VID = -1.5V, CL=15pF	8	20	26	32	20	26	32	ns
RO Output Rise Time	t _{Rr}	VID = +1.5V, CL=15pF	8	1.1	1.9	3.3	1.1	1.9	3.3	ns
RO Output Fall Time	t _{Rf}	VID = -1.5V, CL=15pF	8	1.1	1.9	3.3	1.1	1.9	3.3	ns
Output Pulse Skew	t _{RMSK}	VID = +1.5V, CL=15pF	8		0.8	1.6		0.8	1.6	ns
Receiver Enable to RO Output High	trzн	RL = 1K Ω , CL=15pF	9		12	16		12	16	ns
Receiver Enable to output Low	trzl	RL = 1KΩ, CL=15pF	9		12	16		12	16	ns
Receiver Disable from Output High	t _{RHZ}	RL = 1K Ω , CL=15pF	9		6	10		6	10	ns
Receiver Disable from Output Low	t _{RLZ}	RL = 1KΩ, CL=15pF	9		6	10		6	10	ns
Shutdown to RO Active Output Delay	t _{RON}	RL = 1K Ω , CL=15pF	9			5			5	μs
Shutdown Delay to RO HiZ	troff	RL = 1K Ω , CL=15pF	9		60	100		60	100	ns

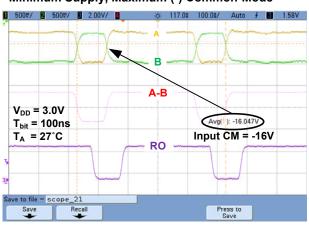

TEST CIRCUITS

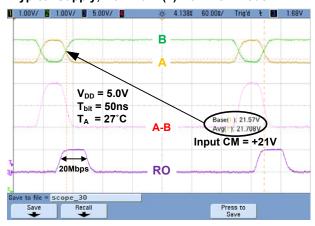


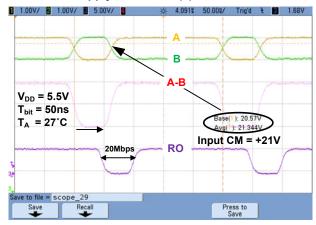


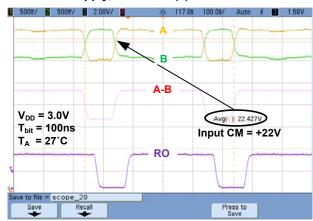


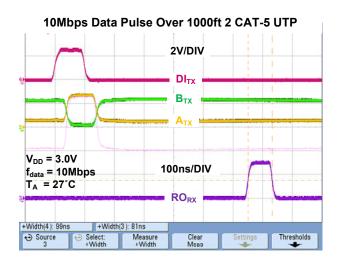
EXTENED COMMON-MODE PERFORMANCE CHARACTERISITICS

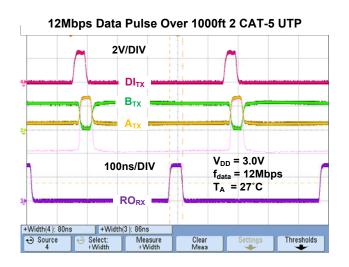

RX Extended Common-Mode Range: Typical Supply, Maximum (-) Common-Mode

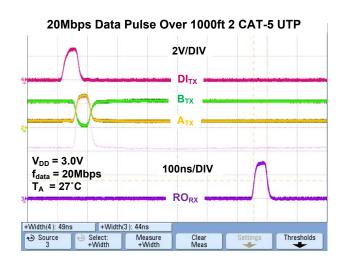

RX Extended Common-Mode Range: Maximum Supply, Maximum (-) Common-Mode

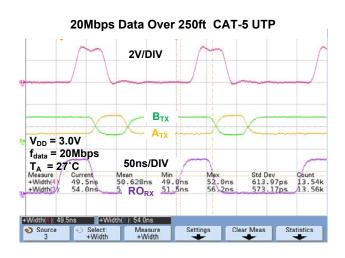

RX Extended Common-Mode Range: Minimum Supply, Maximum (-) Common-Mode

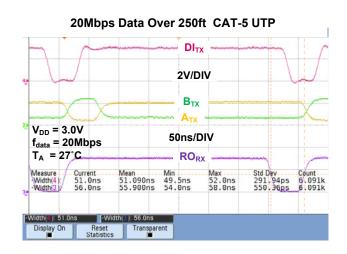

RX Extended Common-Mode Range: Typical Supply, Maximum (+) Common-Mode

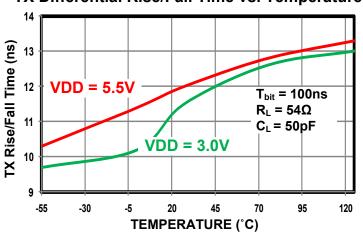

RX Extended Common-Mode Range: Maximum Supply, Maximum (+) Common-Mode

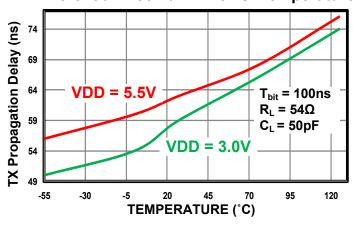



RX Extended Common-Mode Range: Minimum Supply, Maximum (+) Common-Mode

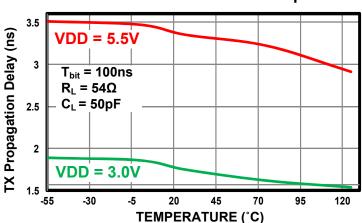


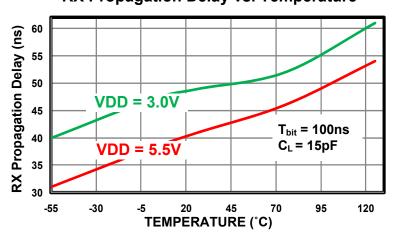

High-Speed Performance Characteristics Over Distance

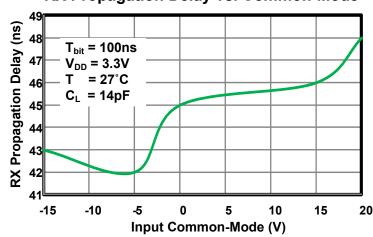




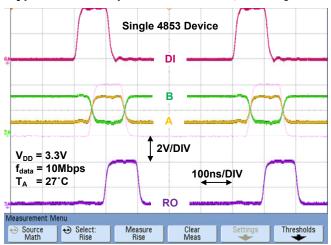
PERFORMANCE CHARACTERISTICS OVER SUPPLY AND TEMPERATURE


TX Differential Rise/Fall Time vs. Temperature

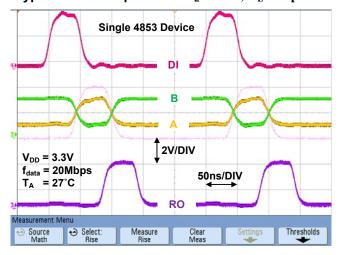

TX Differential Rise/Fall Time vs. Temperature


TX Differential Zero To Peak Amplitude

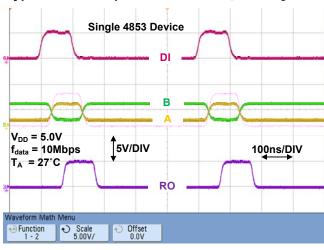
RX Propagation Delay vs. Temperature

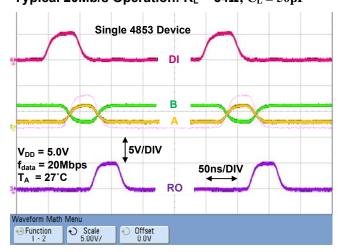


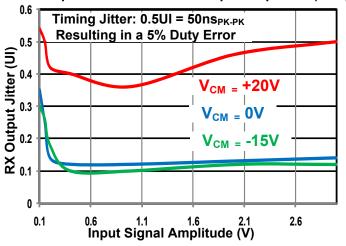
RX Propagation Delay vs. Common-Mode

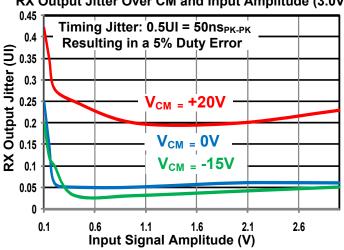


TYPICAL TRANSCEIVER PERFORMANCE CHARACTERISITICS


Typical 10Mb/s Operation: $R_L = 54\Omega$; $C_L = 50pF$


Typical 20Mb/s Operation: $R_L = 54\Omega$; $C_L = 50pF$


Typical 10Mb/s Operation: R_L = 54 Ω ; C_L = 50pF


Typical 20Mb/s Operation: $R_L = 54\Omega$; $C_L = 50pF$

RX Output Jitter Over CM and Input Amplitude (3.0V)

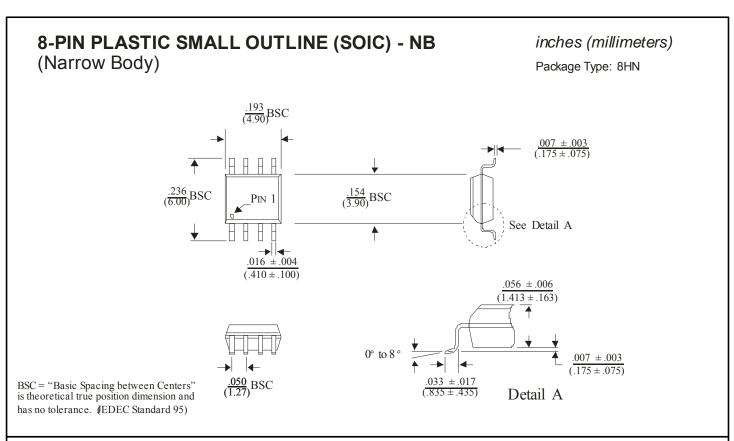
ORDERING INFORMATION

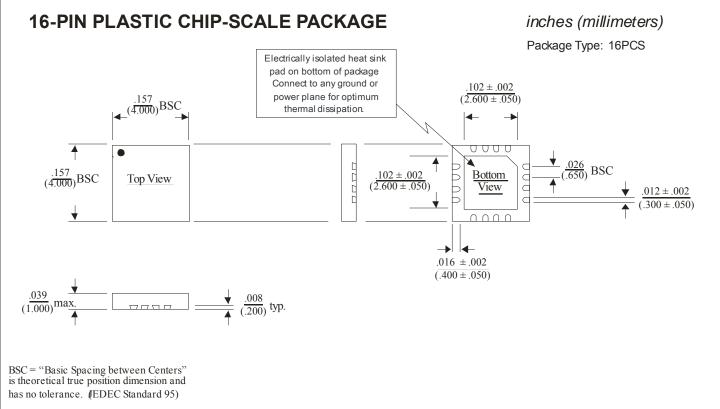
HI-<u>485x xx x</u> <u>x</u>

PART NUMBER	LEAD FINISH
Blank	Tin / Lead (Sn / Pb) Solder
F	100% Matte Tin (Pb-free, RoHS compliant)

PART NUMBER	1 = =		BURN IN
I	-40°C TO +85°C	I	NO
Т	-55°C TO +125°C	Т	NO
М	-55°C TO +125°C	М	YES

PART NUMBER	PACKAGE DESCRIPTION		
PC	16 PIN PLASTIC 4 x 4 mm CHIP SCALE (16PCS) (HI-4855 only. No M-flow)		
PS	8 PIN PLASTIC NARROW BODY SOIC (8HN) (HI-4853, HI-4854)		
PS	14 PIN PLASTIC NARROW BODY SOIC (14HN) (HI-4855 only)		
CR	8 PIN CERDIP (8D) not available Pb-free (HI-4853, HI-4854)		


PART NUMBER	FUNCTION
4853	HALF DUPLEX TRANSCEIVER
4854	FULL DUPLEX TRANCEIVER ALWAYS ENABLED
4855	FULL DUPLEX TRANSCEIVER WITH ENABLE PINS


REVISION HISTORY

Revision	Date	Description of Change
DS4853, Rev New	03/30/2012	Initial Release
Rev. A	05/21/2012	Fix typos on package ordering information
Rev. B	08/2/2012	Updated Rx Function Table rows 2 and 3 on p. 2 for DE = X. Updated package drawings for SOIC-8 (8HN), QFN-16 (16PCS) and SOIC-14 (14HN) packages.
Rev. C	02/25/2013	Correct typo on nRE pull-up resistor (should be pull-down). Update Digital Input pull-up/pull-down current. Update typo in Figure 4 resistors. Update solder temperature (reflow) in Max. Ratings

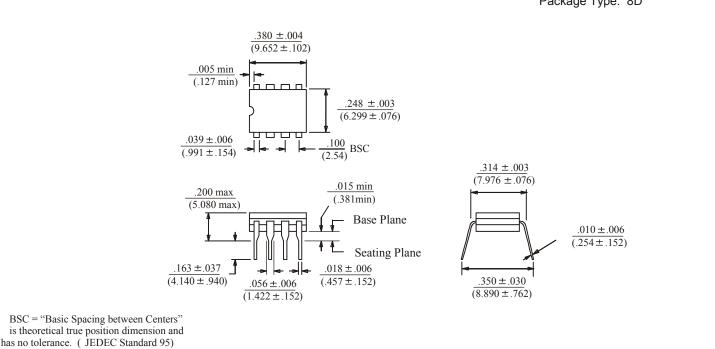
HI-4853 PACKAGE DIMENSIONS

HI-4853 PACKAGE DIMENSIONS

 $(.175 \pm .075)$

Detail A

14-PIN PLASTIC SMALL OUTLINE (SOIC) - NB inches (millimeters) (Narrow Body) Package Type: 14HN $.007 \pm .003$ $(.175 \pm .075)$ $\frac{.341}{(8.65)}$ BSC \rightarrow .<u>236</u> (5.99)BSC $\frac{.154}{(3.90)}$ BSC Top View See Detail A $.016 \pm .004$ $(.410 \pm .100)$ $\frac{.069}{(1.750)}$ max. .050 BSC $(\overline{1.27})$


8-PIN CERDIP

BSC = "Basic Spacing between Centers"

is theoretical true position dimension and has no tolerance. (EDEC Standard 95)

inches (millimeters)

Package Type: 8D

