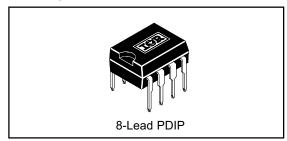
IR2121 & (PbF)

CURRENT LIMITING LOW SIDE DRIVER

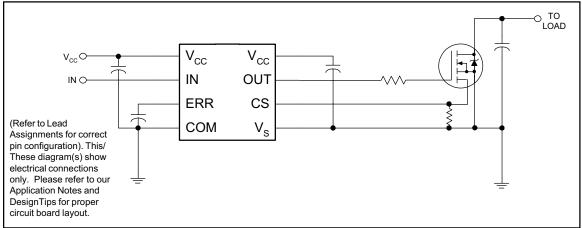
Features

- Gate drive supply range from 12 to 18V
- Undervoltage lockout
- Current detection and limiting loop to limit driven power transistor current
- Error lead indicates fault conditions and programs shutdown time
- Output in phase with input
- 2.5V, 5V and 15V input logic compatible
- Also available LEAD-FREE


Description

The IR2121 is a high speed power MOSFET and IGBT driver with over-current limiting protection circuitry. Latch immune CMOS technology enables ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down to 2.5V logic. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The protection circuitry detects over-current in the driven power transistor and limits the gate drive voltage. Cycle-by-cycle shutdown is programmed by an external capacitor which

Product Summary


Voffset	5V max.
lo+/-	1A / 2A
Vout	12 - 18V
V _{CSth}	230 mV
t _{on/off} (typ.)	150 & 150 ns

Package

directly controls the time interval between detection of the over-current limiting condition and latched shutdown. The output can be used to drive an N-channel power MOSFET or IGBT in the low side configuration.

Typical Connection

www.irf.com 1

IR2121 & (PbF)

International IOR Rectifier

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Parameter		Va		
Symbol	Definition	Min.	Max.	Units
V _{CC}	Fixed Supply Voltage	-0.3	25	
Vs	Gate Drive Return Voltage	V _{CC} - 25	V _{CC} + 0.3	
Vo	Output Voltage	V _S - 0.3	V _{CC} + 0.3	V
V _{IN}	Logic Input Voltage	-0.3]	
V _{ERR}	Error Signal Voltage	-0.3	V _{CC} + 0.3	
Vcs	Current Sense Voltage	V _S - 0.3	V _{CC} + 0.3	
PD	Package Power Dissipation @ T _A ≤ +25°C	_	1.0	W
Rth _{JA}	Thermal Resistance, Junction to Ambient	_	125	°C/W
TJ	Junction Temperature	_	150	
T _S	Storage Temperature	-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Parameter		Va		
Symbol	Definition	Min.	Max.	Units
V _{CC}	Fixed Supply Voltage	V _S + 12	V _S + 18	
VS	Gate Drive Return Voltage	-5	5	
Vo	Output Voltage	VS	V _{CC}	V
V_{IN}	Logic Input Voltage	0	V _{CC}	\ \ \
V _{ERR}	Error Signal Voltage	0	V _{CC}	
V _{CS}	Current Sense Signal Voltage	VS	V _{CC}	
T _A	Ambient Temperature	-40	125	°C

2 www.irf.com

Dynamic Electrical Characteristics V_{BIAS} (V_{CC}) = 15V, C_L = 3300 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 2 through 5.

	Parameter	Parameter Value					
Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	7	-	150	200		V _{IN} = 0 & 5V
t _{off}	Turn-Off Propagation Delay	8	_	200	250	ns	
t _{sd}	ERR Shutdown Propagation Delay	9	_	1.7	2.2	μs	
t _r	Turn-On Rise Time	10	_	43	60	ns	
t _f	Turn-Off Fall Time	11	_	26	35	113	
t _{cs}	CS Shutdown Propagation Delay	12	_	0.7	1.2	μs	
t _{err}	CS to ERR Pull-Up Propagation Delay	13	_	9.0	12	μο	C _{ERR} = 270 pF

Static Electrical Characteristics

 V_{BIAS} (V_{CC}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Parameter		Value					
Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" Input Voltage	14	2.2	_	_	V	
V _{IL}	Logic "0" Input Voltage	15	_	_	0.8	•	
V _{CSTH+}	CS Input Positive Going Threshold	16	150	230	320		
V _{CSTH-}	CS Input Negative Going Threshold	17	130	210	300	mV	
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	18	_	_	100	IIIV	I _O = 0A
V _{OL}	Low Level Output Voltage, V _O	19	_	_	100		I _O = 0A
I _{QCC}	Quiescent VCC Supply Current	20	_	1.1	2.2	mA	$V_{IN} = V_{CS} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current	21	_	4.5	10		V _{IN} = 5V
I _{IN-}	Logic "0" Input Bias Current	22	_	_	1.0		V _{IN} = 0V
I _{CS+}	"High" CS Bias Current	23	_	4.5	10	μA	V _{CS} = 3V or 5V
I _{CS} -	"Low" CS Bias Current	24	_	_	1.0		V _{CS} = 0V
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going	25	8.3	8.9	9.6		
	Threshold					V	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	26	7.3	8.0	8.7	V	
I _{ERR}	ERR Timing Charge Current	27	65	100	130		V _{IN} = 5V, V _{CS} = 3V
LIXIX	0					μA	ERR < V _{ERR+}
I _{ERR+}	ERR Pull-Up Current	28	8.0	15	_		V _{IN} = 5V, V _{CS} = 3V
						mA	ERR > V _{ERR+}
I _{ERR-}	ERR Pull-Down Current	29	16	30	_		V _{IN} = 0V
I _{O+}	Output High Short Circuit Pulsed Current	30	1.0	1.6	_		$V_{O} = 0V, V_{IN} = 5V$
						A	PW ≤ 10 µs
I _{O-}	Output Low Short Circuit Pulsed Current	31	2.0	3.3	_	^	V _O = 15V, V _{IN} = 0V
							PW ≤ 10 µs

www.irf.com 3