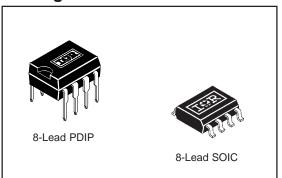
IR2127(S) / IR2128(S) IR21271(S) & (PbF)

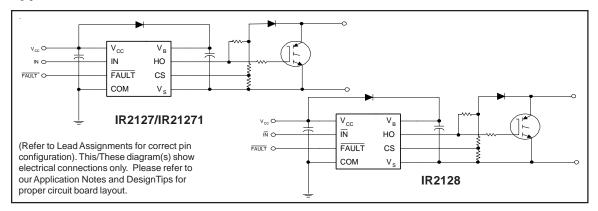
CURRENT SENSING SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Application- specific gate drive range: Motor Drive: 12 to 20V (IR2127/IR2128) Automotive: 9 to 20V (IR21271)
- Undervoltage lockout
- 3.3V, 5V and 15V input logic compatible
- FAULT lead indicates shutdown has occured
- Output in phase with input (IR2127/IR21271)
- Output out of phase with input (IR2128)
- Avaliable in Lead-Free


Description

The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts.


Product Summary

Voffset	600V max.				
l _O +/-	200 mA / 420 mA				
Vout	12 - 20V (IR2127/IR2128)	9 - 20V (IR21271)			
Vcsth	250 mV o	r 1.8V			
t _{on/off} (typ.	200 & 15	0 ns			

Packages

Typical Connection

www.irf.com 1

IR2127(S) / IR21271(S) / IR2128(S) & (PbF)

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
VB	High Side Floating Supply Voltage		-0.3	625	
Vs	High Side Floating Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	
Vcc	Logic Supply Voltage		-0.3	25	V
VIN	Logic Input Voltage		-0.3	V _{CC} + 0.3	
V _{FLT}	FAULT Output Voltage		-0.3	V _{CC} + 0.3	
Vcs	Current Sense Voltage		V _S - 0.3	V _B + 0.3	
dV _s /dt	Allowable Offset Supply Voltage Transient		_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	W
		(8 Lead SOIC)	_	0.625	VV
Rth _{JA}	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	_	125	°C/W
		(8 Lead SOIC)	_	200	C/VV
TJ	Junction Temperature		_	150	
TS	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The Vs offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating Supply Voltage (IR2127/IR2128)		V _S + 12	V _S + 20	
		(IR21271)	V _S + 9	V _S + 20	
Vs	High Side Floating Offset Voltage		Note 1	600	
VHO	High Side Floating Output Voltage		Vs	VB	
Vcc	Logic Supply Voltage		10	20	V
V _{IN}	Logic Input Voltage		0	V _{CC}	
V _{FLT}	FAULT Output Voltage		0	V _{CC}	
Vcs	Current Sense Signal Voltage		Vs	Vs + 5	
T _A	Ambient Temperature		-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

2 www.irf.com

International TOR Rectifier

IR2127(S) / IR21271(S) / IR2128(S) & (PbF)

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	200	250		V _S = 0V
t _{off}	Turn-Off Propagation Delay	_	150	200		V _S = 600V
t _r	Turn-On Rise Time	_	80	130		
t _f	Turn-Off Fall Time	_	40	65	ns	
t _{bl}	Start-Up Blanking Time	500	700	900		
t _{cs}	CS Shutdown Propagation Delay	_	240	360		
t _{flt}	CS to FAULT Pull-Up Propagation Delay	_	340	510		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions	
V _{IH}	Logic "1" Input Voltage Logic "0" Input Voltage	(IR2127/IR21271) (IR2128)	3.0	_	_	V		
V _{IL}	Logic "0" Input Voltage Logic "1" Input Voltage	(IR2127/IR21271) (IR2128)	_	_	0.8	٧	V _{CC} = 10V to 20V	
V _{CSTH+}	CS Input Positive	(IR2127/IR2128)	180	250	320	mV		
	Going Threshold	(IR21271)	_	1.8	_	V		
V _{OH}	High Level Output Voltage, VBI	AS - VO	_	_	100	mV	IO = 0A	
V _{OL}	Low Level Output Voltage, VO		_	_	100	111.	IO = 0A	
I _{LK}	Offset Supply Leakage Curren	t	_	_	50		$V_{B} = V_{S} = 600V$	
I _{QBS}	Quiescent V _{BS} Supply Current		_	200	400		V _{IN} = 0V or 5V	
Iqcc	Quiescent V _{CC} Supply Current		_	60	120	μΑ	VIN = 0 V 01 3 V	
I _{IN+}	Logic "1" Input Bias Current Logic "0" Input Bias Current "High" CS Bias Current		_	7.0	15		V _{IN} = 5V	
I _{IN-}			_	_	1.0		$V_{IN} = 0V$	
I _{CS+}			_	_	1.0		$V_{CS} = 3V$	
I _{CS} -	"High" CS Bias Current		_	_	1.0		V _{CS} = 0V	
V _{BSUV+}	V _{BS} Supply Undervoltage	(IR2127/IR2128)	8.8	10.3	11.8			
	Positive Going Threshold	(IR21271)	6.3	7.2	8.2	V		
V _{BSUV} -	V _{BS} Supply Undervoltage	(IR2127/IR2128)	7.5	9.0	10.6			
	Negative Going Threshold	(IR21271)	6.0	6.8	7.7			
I _{O+}	Output High Short Circuit Pulsed Current		200	250	_	mA	$V_O = 0V, V_{IN} = 5V$ PW $\leq 10 \mu s$	
I _O .	Output Low Short Circuit Pulsed Current		420	500		ША	$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus	
Ron, FLT	FAULT - Low on Resistance			125	_	Ω		

www.irf.com 3