Data Sheet No. PD 10031 revI

Series PVU414 & PbF

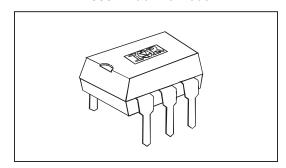
HEXFET® Power MOSFET Photovoltaic Relay Single Pole, Normally Open 0-400V, 140mA AC/DC

General Description

The PVU414 Series Photovoltaic Relay is a singlepole, normally open solid-state relay that can replace electromechanical relays in many applications. It utilizes International Rectifier's proprietary HEXFET® power MOSFET as the output switch, driven by an integrated circuit photovoltaic generator of novel construction. The output switch is controlled by radiation from a GaAlAs light emitting diode (LED) which is optically isolated from the photovoltaic generator.

The PVU414 is ideally suited for instrumentation, multiplexing, scanning and data acquisition applications. It offers high operating speed, low thermal offset (EMF) voltage, low and stable on-state resistance and high off-state resistance.

The PVU414 relay is packaged in a 6-pin, molded DIP package with either thru-hole or surface-mount (gull-wing) terminals. It is available in standard plastic shipping tubes or on tape-and-reel. Please refer to Part Identification information.)


Applications

- Multiplexing
- Scanning
- Multichannel Sampling
- Data Acquisition
- Signal Level Switching
- Instrumentation and Measurement

Features

- **HEXFET Power MOSFET output**
- Bounce-free operation
- High operating speed
- High off-state resistance
- 0.2 µV thermal offset voltage
- $4,000 \ V_{\rm RMS} \ I/O \ isolation$ Linear AC/DC operation
- Solid-State Reliability
- UL recognized; pending for lead-free part numbers (PbF)
- **ESD Tolerance**:

4000V Human Body Model 500V Machine Model

Part Identification

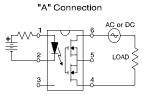
PVU414 & PbF thru-hole PVU414S & PbF surface-mount

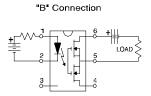
PVU414S-T & PbF surface-mount, tape-and-

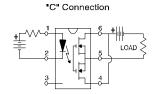
reel

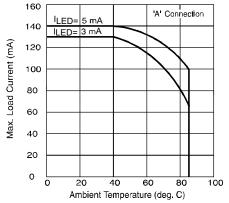
(HEXFET is the registered trademark for International Rectifier's power MOSFETs)

Electrical Specifications (-40°C \leq T_A \leq +85°C unless otherwise specified)


INPUT CHARACTERISTICS	Limits	Units
Minimum Control Current (see figure 1)	3.0	mA
Maximum Control Current for Off-State Resistance @T _A =+25°C	0.4	mA
Control Current Range (Caution: current limit input LED, see figure 6)	3.0 to 25	mA
Maximum Reverse Voltage	6.0	V


OUTPUT CHARACTERISTICS	Limits	Units
Operating Voltage Range	0 to ±400	V(DC or AC peak)
Maximum Load Current @T _A =+40°C, 5mA Control (See figure 1)		
A Connection	140	mA (AC or DC)
B Connection	150	mA (DC)
C Connection	210	mA (DC)
Maximum On-State Resistance @T _A =+25°C		
For 50mA pulsed load, 5mA Control (see figure 4)		
A Connection	27	Ω
B Connection	14	Ω
C Connection	7	Ω
Minimum Off-State Resistance @T _A =+25°C, ±320V (see figure 5)	1010	Ω
Maximum Turn-On Time @T _A =+25°C (see figure 7)	500	μs
For 50mA, 100 V _{DC} Load, 5mA Control		
Maximum Turn-Off Time @T _A =+25°C (see figure 7)	200	μs
For 50mA, 100 V _{DC} Load, 5m _A Control		
Maximum Thermal Offset Voltage @ 5mA Control	0.2	μV
Maximum Output Capacitance @ 50V _{DC} (see figure 2)	12	pF


GENERAL CHARACTERISTICS		Limits	Units
Minimum Dielectric Strength, Input-Output		4000	V _{RMS}
Minimum Insulation Resistance, Input-Output @T _A =+25°C, 50%RH, 100V _{DC}		10 ¹²	Ω
Maximum Capacitance, Input-Output		1.0	pF
Maximum Pin Soldering Temperature (10 seconds maximum)		+260	℃
Ambient Temperature Range:	Operating	-40 to +85	∞
	Storage	-40 to +100	


International Rectifier does not recommend the use of this product in aerospace, avionics, military or life support applications. Users of this International Rectifier product in such applications assume all risks of such use and indemnify International Rectifier against all damages resulting from such use.

Connection Diagrams

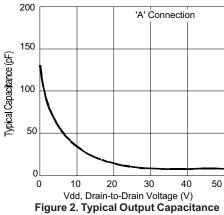


Figure 1. Current Derating Curves

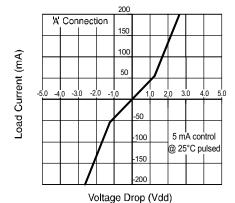


Figure 3. Linearity Characteristics

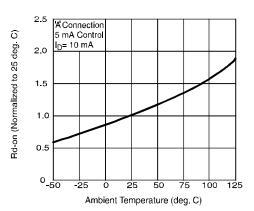


Figure 4. Typical Normalized On-Resistance

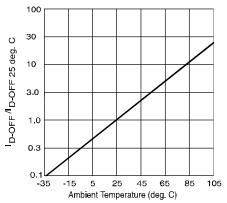


Figure 5. Typical Normalized Off-State Leakage

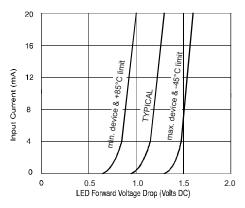


Figure 6. Input Characteristics (Current Controlled)

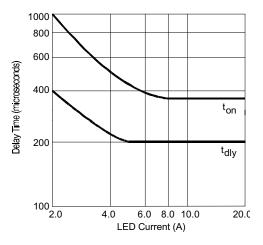


Figure 7. Typical Delay Times

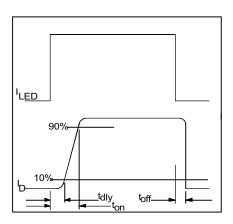
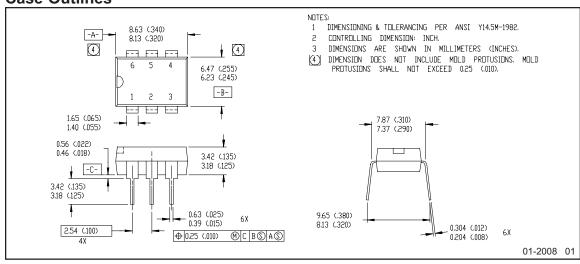
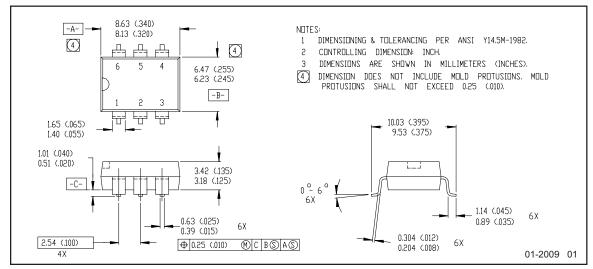




Figure 8. Delay Time Definitions

Case Outlines

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 8/25/2006