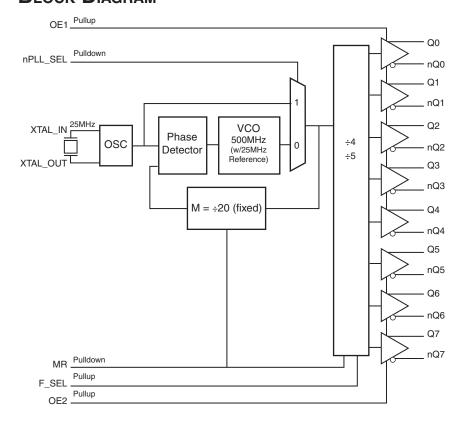


# FemtoClock® Crystal-to-LVDS Frequency Synthesizer

**DATASHEET** 

# GENERAL DESCRIPTION

The 844008I-15 is an 8 output LVDS Synthesizer optimized to generate PCI Express™ reference clock frequencies and is a member of the high performance clock solutions from IDT. Using a 25MHz parallel resonant crystal, the following frequencies can be generated based on F\_SEL pin: 100MHz or 125MHz. The 844008I-15 uses IDT's 3rd generation low phase noise VCO technology and can achieve <1ps typical rms phase jitter, easily meeting PCI Express jitter requirements. The 844008I-15 is packaged in a 32pin LQFP package.


### **F**EATURES

- · Eight LVDS outputs
- · Crystal oscillator interface
- Supports the following output frequencies: 100MHz or 125MHz
- VCO: 500MHz
- RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.42ps (typical)
- Full 3.3V supply modes
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

#### FREQUENCY SELECT FUNCTION TABLE

|                             |       | Input              |                    |                      |                              |
|-----------------------------|-------|--------------------|--------------------|----------------------|------------------------------|
| Input<br>Frequency<br>(MHz) | F_SEL | M Divider<br>Value | N Divider<br>Value | M/N Divider<br>Value | Output<br>Frequency<br>(MHz) |
| 25MHz                       | 0     | 20                 | 4                  | 5                    | 125                          |
| 25MHz                       | 1     | 20                 | 5                  | 4                    | 100 (default)                |

# **BLOCK DIAGRAM**



# PIN ASSIGNMENT





TABLE 1. PIN DESCRIPTIONS

| Number           | Name                 | Т      | ype      | Description                                                                                                                                                                                                                                                 |
|------------------|----------------------|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2             | Q0, nQ0              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 3, 12, 22,<br>27 | V <sub>DD</sub>      | Power  |          | Core supply pin.                                                                                                                                                                                                                                            |
| 4, 5             | Q1, nQ1              | Ouput  |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 6, 13, 19,<br>29 | GND                  | Power  |          | Power supply ground.                                                                                                                                                                                                                                        |
| 7, 8             | Q2, nQ2              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 9                | F_SEL                | Input  | Pullup   | Frequency select pin LVCMOS/LVTTL interface levels.                                                                                                                                                                                                         |
| 10, 11           | Q3, nQ3              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 14, 15           | Q4, nQ4              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 16               | MR                   | Input  | Pulldown | Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels. |
| 17, 18           | nQ5, Q5              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 20, 21           | nQ6, Q6              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 23, 24           | nQ7, Q7              | Output |          | Differential output pair. LVDS interface levels.                                                                                                                                                                                                            |
| 25               | V <sub>DDA</sub>     | Power  |          | Analog supply pin.                                                                                                                                                                                                                                          |
| 26               | nPLL_SEL             | Input  | Pulldown | Selects between the PLL and XTAL as input to the dividers. When LOW, selects PLL (PLL Enable). When HIGH, selects the XTAL (PLL Bypass). LVCMOS/LVTTL interface levels.                                                                                     |
| 28               | OE2                  | Input  | Pullup   | Output enable for Q5/nQ5:Q7/nQ7 outputs.<br>LVCMOS/LVTTL interface levels.                                                                                                                                                                                  |
| 30, 31           | XTAL_OUT,<br>XTAL_IN | Input  |          | Parallel resonant crystal interface. XTAL_OUT is the output, XTAL_IN is the input.                                                                                                                                                                          |
| 32               | OE1                  | Input  | Pullup   | Output enable for Q0/nQ0:Q4/nQ4 outputs.<br>LVCMOS/LVTTL interface levels.                                                                                                                                                                                  |

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

| Symbol | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|--------|-------------------------|-----------------|---------|---------|---------|-------|
| C      | Input Capacitance       |                 |         | 4       |         | pF    |
| R      | Input Pulldown Resistor |                 |         | 51      |         | kΩ    |
| R      | Input Pullup Resistor   |                 |         | 51      |         | kΩ    |

TABLE 3A. OE1 FUNCTION TABLE

| Input | Outputs                      |
|-------|------------------------------|
| OE1   | Q0:Q4, nQ0:nQ4               |
| 0     | Places outputs in Hi-Z state |
| 1     | Normal operation             |

TABLE 3B. OE2 FUNCTION TABLE

| Input | Outputs                      |
|-------|------------------------------|
| OE2   | Q5:Q7, nQ5:nQ7               |
| 0     | Places outputs in Hi-Z state |
| 1     | Normal operation             |



#### **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage, V<sub>DD</sub> 4.6V

Inputs,  $V_{po}$  -0.5V to  $V_{po}$  + 0.5V

Outputs, I

Continuous Current 10mA Surge Current 15mA

Package Thermal Impedance,  $\theta_{_{JA}}$  65.7°C/W (0 mps) Storage Temperature, T $_{_{STG}}$  -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics,  $_{\tiny DD}$  =  $V_{\tiny DDA}$  =  $3.3V\pm5\%$ , Ta =  $-40^{\circ}C$  to  $85^{\circ}C$ 

| Symbol           | Parameter             | Test Conditions | Minimum                | Typical | Maximum         | Units |
|------------------|-----------------------|-----------------|------------------------|---------|-----------------|-------|
| V <sub>DD</sub>  | Core Supply Voltage   |                 | 3.135                  | 3.3     | 3.465           | V     |
| V <sub>DDA</sub> | Analog Supply Voltage |                 | V <sub>DD</sub> - 0.15 | 3.3     | V <sub>DD</sub> | V     |
| l <sub>DD</sub>  | Power Supply Current  |                 |                        |         | 150             | mA    |
| DDA              | Analog Supply Current |                 |                        |         | 15              | mA    |

Table 4B. LVCMOS / LVTTL DC Characteristics,  $_{DD} = V_{DDA} = 3.3V \pm 5\%$ , Ta = -40°C to 85°C

| Symbol          | Parameter      |                 | Test Conditions                      | Minimum | Typical | Maximum               | Units |
|-----------------|----------------|-----------------|--------------------------------------|---------|---------|-----------------------|-------|
| V <sub>IH</sub> | Input High Vol | tage            | $V_{_{\rm DD}} = 3.3V$               | 2       |         | V <sub>DD</sub> + 0.3 | V     |
| V               | Input Low Volt | age             | $V_{_{DD}} = 3.3V$                   | -0.3    |         | 0.8                   | V     |
|                 | Input          | MR, nPLL_SEL    | $V_{_{DD}} = V_{_{IN}} = 3.465$      |         |         | 150                   | μA    |
| <b>'</b> ін     | High Current   | OE1, OE2, F_SEL | $V_{_{DD}} = V_{_{IN}} = 3.465$      |         |         | 5                     | μΑ    |
|                 | Input          | MR, nPLL_SEL    | $V_{_{DD}} = 3.465V, V_{_{IN}} = 0V$ | -5      |         |                       | μΑ    |
| IL.             | Low Current    | OE1, OE2, F_SEL | $V_{_{DD}} = 3.465V, V_{_{IN}} = 0V$ | -150    |         |                       | μΑ    |

Table 4C. LVDS DC Characteristics,  $_{\tiny DD}$  =  $V_{\tiny DDA}$  =  $3.3V\pm5\%$ , Ta = -40°C to  $85^{\circ}$ C

| Symbol                | Parameter                                 | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|-------------------------------------------|-----------------|---------|---------|---------|-------|
| V <sub>od</sub>       | Differential Output Voltage               |                 | 260     | 360     | 460     | mV    |
| $\Delta V_{_{ m OD}}$ | V <sub>∞</sub> Magnitude Change           |                 |         |         | 50      | mV    |
| V <sub>os</sub>       | Offset Voltage                            |                 | 1.2     | 1.3     | 1.5     | V     |
| ΔV <sub>os</sub>      | V <sub>os</sub> Magnitude Change          |                 |         |         | 50      | mV    |
| I <sub>oz</sub>       | High Impedance Leakage Current            |                 | -10     | ±1      | 10      | μΑ    |
| OFF                   | Power Off Leakage                         |                 | -20     | ±1      | 20      | μΑ    |
| OSD                   | Differential Output Short Circuit Current |                 |         | -3.5    | -5      | mA    |
| Ios                   | Output Short Circuit Current              |                 |         | -3.5    | -5      | mA    |



TABLE 5. CRYSTAL CHARACTERISTICS

| Parameter                          | Test Conditions | Minimum | Typical   | Maximum | Units |
|------------------------------------|-----------------|---------|-----------|---------|-------|
| Mode of Oscillation                |                 | Fı      | ındamenta | I       |       |
| Frequency                          |                 |         | 25        |         | MHz   |
| Parts per Million (ppm); NOTE 1    |                 |         |           | 100     | ppm   |
| Equivalent Series Resistance (ESR) |                 |         |           | 40      | Ω     |
| Shunt Capacitance                  |                 |         |           | 5       | pF    |
| Drive Level                        |                 |         |           | 100     | μW    |

NOTE: Characterized using an18pF parallel resonant crystal.

NOTE 1: When used with recommended 50ppm crystal and external trim caps adjusted for user PC board.

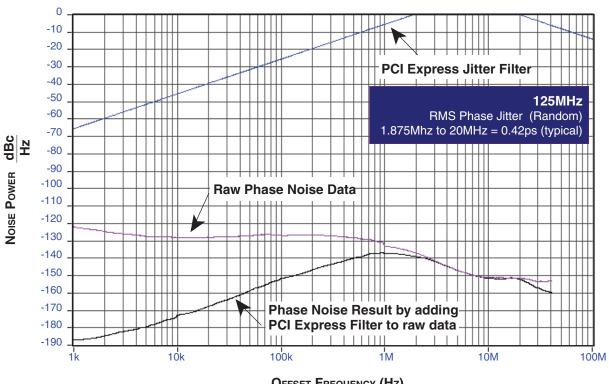
Table 6. AC Characteristics,  $V_{_{DD}} = V_{_{DDA}} = 3.3V \pm 5\%$ , Ta = -40°C to 85°C

| Symbol                          | Parameter                  | Test Conditions            | Minimum | Typical | Maximum | Units |
|---------------------------------|----------------------------|----------------------------|---------|---------|---------|-------|
| f                               | Output Frequency           | FSEL = 0                   |         | 125     |         | MHz   |
| <b>f</b><br>out                 | Output Frequency           | FSEL = 1                   |         | 100     |         | MHz   |
| tsk(o)                          | Output Skew; NOTE 1, 2     |                            |         |         | 110     | ps    |
| tak(b)                          | Bank Skew; NOTE 2, 3       | Q0/nQ0:Q4/nQ4              |         |         | 50      | ps    |
| tsk(b)                          | Balik Skew, NOTE 2, 3      | Q5/nQ5:Q7/nQ7              |         |         | 50      | ps    |
| tjit(cc)                        | Cycle-to-Cycle Jitter      |                            |         |         | 25      | ps    |
| +ii+( <i>C</i> X)               | RMS Phase Jitter (Random); | 125MHz, (1.875MHz - 20MHz) |         | 0.42    |         | ps    |
| tjit(Ø)                         | NOTE 4                     | 100MHz, (1.875MHz - 20MHz) |         | 0.46    |         | ps    |
| t <sub>R</sub> / t <sub>F</sub> | Output Rise/Fall Time      | 20% to 80%                 | 100     |         | 600     | ps    |
| odc                             | Output Duty Cycle          |                            | 45      |         | 55      | %     |

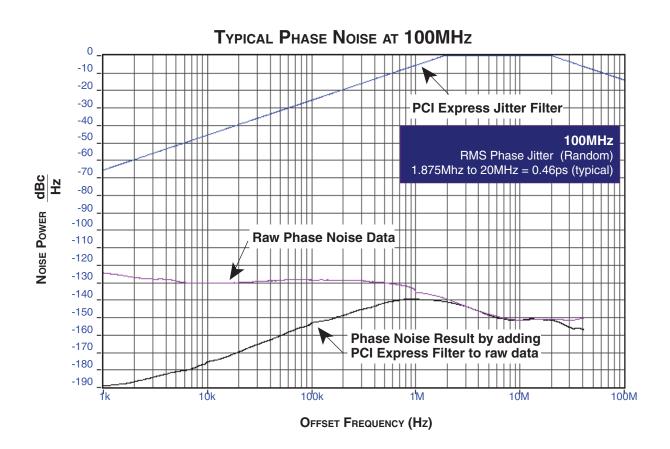
Minimum and Maximum values are design target specs.

NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions.

Measured at V<sub>nn</sub>/2.

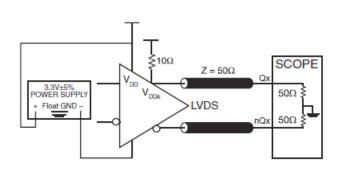

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

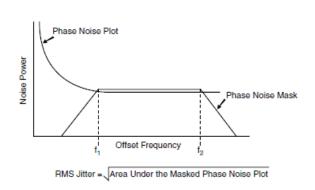
NOTE 3: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.


NOTE 4: Please refer to the Phase Noise Plot.



# Typical Phase Noise at 125MHz

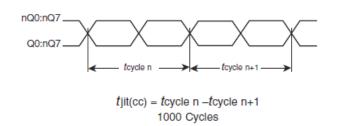




**OFFSET FREQUENCY (Hz)** 

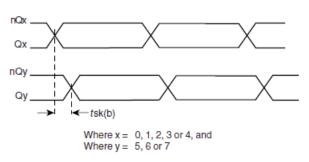




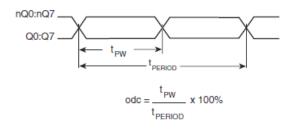
# PARAMETER MEASUREMENT INFORMATION



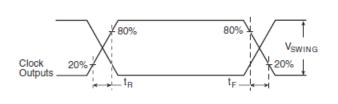




#### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT

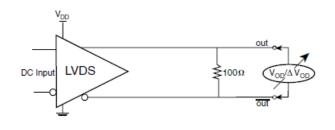



#### **RMS PHASE JITTER**




## **OUTPUT SKEW**



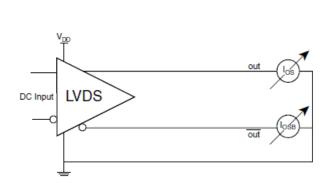

CYCLE-TO-CYCLE JITTER

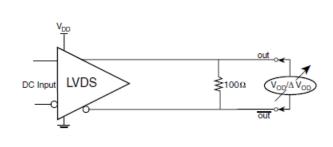


# BANK SKEW



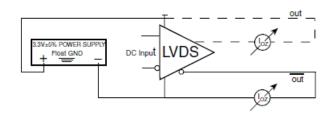
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

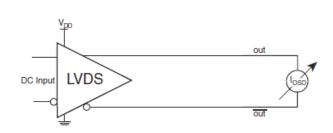




## OUTPUT RISE/FALL TIME

DIFFERENTIAL OUTPUT VOLTAGE SETUP

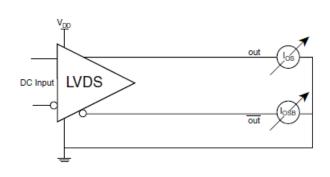


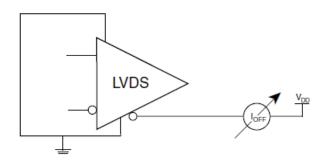

# PARAMETER MEASUREMENT INFORMATION, CONTINUED






## OFFSET VOLTAGE SETUP


DIFFERENTIAL OUTPUT VOLTAGE SETUP






#### HIGH IMPEDANCE LEAKAGE CURRENT SETUP

DIFFERENTIAL OUTPUT SHORT CIRCUIT SETUP





**OUTPUT SHORT CIRCUIT CURRENT SETUP** 

POWER OFF LEAKAGE SETUP



# **APPLICATION INFORMATION**

## Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 844008I-15 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL.  $V_{_{DD}}$  and  $V_{_{DDA}}$  should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a  $10\Omega$  resistor along with a  $10\mu F$  and a  $0.01\mu F$  bypass capacitor should be connected to each  $V_{_{DDA}}$ .

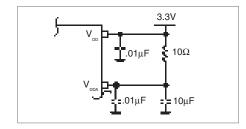



FIGURE 1. POWER SUPPLY FILTERING

#### **CRYSTAL INPUT INTERFACE**

The 844008I-15 has been characterized with an 18pF parallel resonant crystals. The capacitor values shown in

Figure 2 below were determined using a 25MHz parallel resonant crystal and were chosen to minimize the ppm error.

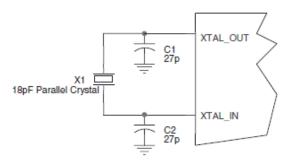



FIGURE 2. CRYSTAL INPUT INTERFACE

## RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

#### INPUTS:

#### LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A  $1k\Omega$  resistor can be used.

#### **O**UTPUTS:

#### LVDS

All unused LVDS outputs should be terminated with  $100\Omega$  resistor between the differential pair.



#### 3.3V LVDS DRIVER TERMINATION

A general LVDS interface is shown in Figure 3. In a 100 $\Omega$  differential transmission line environment, LVDS drivers require a matched load termination of 100 $\Omega$  across near the receiver input. For a

multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

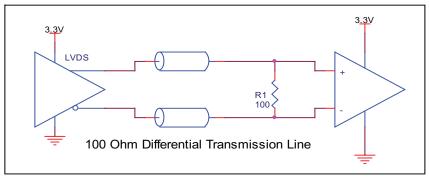



FIGURE 3. TYPICAL LVDS DRIVER TERMINATION

#### SCHEMATIC EXAMPLE

Figure 4 shows an example of 844008I-15 application schematic. In this example, the device is operated at  $V_{\tiny DD}$ =3.3V. The 18pF parallel resonant 25MHz crystal is used. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For

different board layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. Two examples of LVDS for receiver without built-in termination are shown in this schematic.

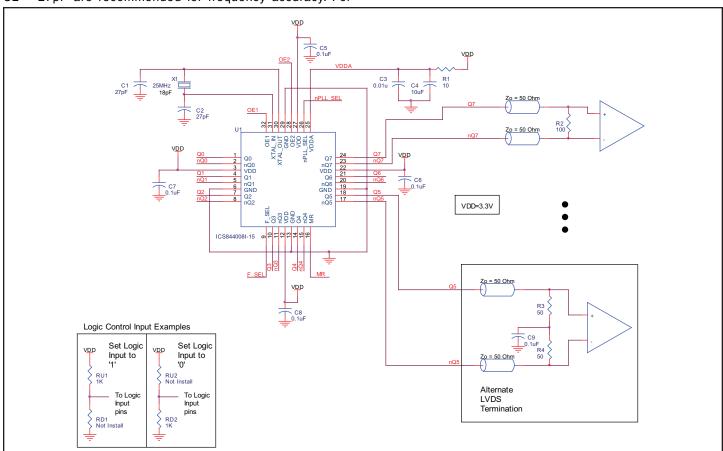



FIGURE 4. 844008I-15 SCHEMATIC EXAMPLE



# Power Considerations

This section provides information on power dissipation and junction temperature for the 844008I-15. Equations and example calculations are also provided.

#### 1. Power Dissipation.

The total power dissipation for the 844008I-15 is the sum of the core power plus the power dissipated in the load(s).

The following is the power dissipation for  $V_{pp} = 3.3V + 5\% = 3.465V$ , which gives worst case results.

#### 2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C.

The equation for Tj is as follows: Tj =  $\theta_{JA}$  \* Pd\_total + T<sub>A</sub>

Tj = Junction Temperature

 $\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

Pd\_total = Total Device Power Dissipation (example calculation is in section 1 above)

T<sub>A</sub> = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming no air flow and a multi-layer board, the appropriate value is 65.7°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.572W \* 65.7°C/W = 122.5°C. This is below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance  $\theta_{\text{JA}}$  for 32-Lead LQFP, Forced Convection

| 012.5Multi-Layer PCB, JEDEC Standard Test Boards65.7°C/W55.9°C/W52.4°C/W | θ <sub>JA</sub> by Velocity (Meters per Second) |          |          |          |
|--------------------------------------------------------------------------|-------------------------------------------------|----------|----------|----------|
| Multi-Layer PCB, JEDEC Standard Test Boards 65.7°C/W 55.9°C/W 52.4°C/W   |                                                 | 0        | 1        | 2.5      |
|                                                                          | Multi-Layer PCB, JEDEC Standard Test Boards     | 65.7°C/W | 55.9°C/W | 52.4°C/W |



# RELIABILITY INFORMATION

Table 8.  $\theta_{_{\mathrm{JA}}} \text{vs. Air Flow Table for 32 Lead LQFP}$ 

| θ <sub>JA</sub> by Velocity (Meters per Second) |          |          |          |  |
|-------------------------------------------------|----------|----------|----------|--|
|                                                 | 0        | 1        | 2.5      |  |
| Multi-Layer PCB, JEDEC Standard Test Boards     | 65.7°C/W | 55.9°C/W | 52.4°C/W |  |
|                                                 |          |          |          |  |

### TRANSISTOR COUNT

The transistor count for 844008I-15 is: 2609



### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

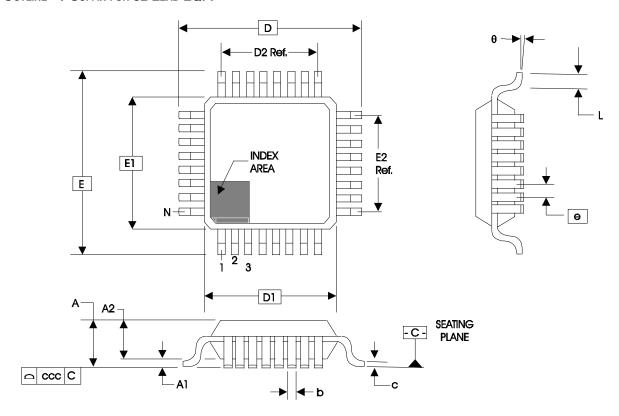



TABLE 9. PACKAGE DIMENSIONS

| JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS |            |         |         |  |  |  |
|-----------------------------------------------|------------|---------|---------|--|--|--|
| SYMBOL                                        | ВВА        |         |         |  |  |  |
|                                               | MINIMUM    | NOMINAL | MAXIMUM |  |  |  |
| N                                             | 32         |         |         |  |  |  |
| A                                             |            |         | 1.60    |  |  |  |
| A1                                            | 0.05       |         | 0.15    |  |  |  |
| A2                                            | 1.35       | 1.40    | 1.45    |  |  |  |
| b                                             | 0.30       | 0.37    | 0.45    |  |  |  |
| С                                             | 0.09       |         | 0.20    |  |  |  |
| D                                             | 9.00 BASIC |         |         |  |  |  |
| D1                                            | 7.00 BASIC |         |         |  |  |  |
| D2                                            | 5.60 Ref.  |         |         |  |  |  |
| E                                             | 9.00 BASIC |         |         |  |  |  |
| E1                                            | 7.00 BASIC |         |         |  |  |  |
| E2                                            | 5.60 Ref.  |         |         |  |  |  |
| е                                             | 0.80 BASIC |         |         |  |  |  |
| L                                             | 0.45       | 0.60    | 0.75    |  |  |  |
| θ                                             | 0°         |         | 7°      |  |  |  |
| ccc                                           | 0.10       |         |         |  |  |  |

Reference Document: JEDEC Publication 95, MS-026



# TABLE 10. ORDERING INFORMATION

| Part/Order Number | Marking      | Package                  | Shipping Packaging | Temperature   |
|-------------------|--------------|--------------------------|--------------------|---------------|
| 844008BYI-15LF    | ICS4008BI15L | 32 Lead "Lead-Free" LQFP | tube               | -40°C to 85°C |
| 844008BYI-15LFT   | ICS4008BI15L | 32 Lead "Lead-Free" LQFP | tape & reel        | -40°C to 85°C |

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.



# REVISION HISTORY SHEET

| Rev | Table | Page | Description of Change                                                                  | Date   |
|-----|-------|------|----------------------------------------------------------------------------------------|--------|
| А   | T10   | 13   | Ordering Information - Removed ICS from Part/Order number.  Updated data sheet format. | 7/2/15 |
|     |       |      |                                                                                        |        |



**Corporate Headquarters** 

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2015. All rights reserved.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): 844008BYI-15LF 844008BYI-15LFT