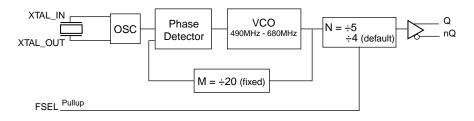
### **DATASHEET**

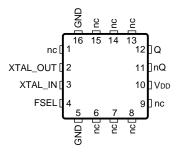
### **General Description**

The ICS844201I-45 is a PCI Express<sup>TM</sup> Clock Generator. The ICS844201I-45 can synthesize 100MHz or 125MHz reference clock frequencies with a 25MHz crystal. The ICS844201I-45 has excellent phase jitter performance and is packaged in a small 16-pin VFQFN, making it ideal for use in systems with limited board space.

#### **Features**


- One differential LVDS output pair
- Crystal oscillator interface designed for 18pF, 25MHz parallel resonant crystal
- VCO range: 490MHz 680MHz
- RMS phase jitter at 100MHz (12kHz 20MHz): 0.792ps (typical)
- RMS phase jitter at 125MHz (12kHz 20MHz): 0.773ps (typical)
- Full 3.3V output supply mode
- PCI Express (2.5Gb/s) and Gen 2 (5Gb/S) jitter compliant
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

#### **Frequency Table**


| Inputs                  |    |      |   |                          | Output Frequency Range |
|-------------------------|----|------|---|--------------------------|------------------------|
| Crystal Frequency (MHz) | M  | FSEL | N | Multiplication Value M/N | (MHz)                  |
| 25                      | 20 | 1    | 4 | 5                        | 125 (default)          |
| 25                      | 20 | 0    | 5 | 4                        | 100                    |

1

### **Block Diagram**



### **Pin Assignment**



ICS844201I-45 16-Lead VFQFN Top View

### **Pin Descriptions and Characteristics**

**Table 1. Pin Descriptions** 

| Number                       | Name                | Ту     | ре     | Description                                                                 |
|------------------------------|---------------------|--------|--------|-----------------------------------------------------------------------------|
| 1, 6, 7, 8, 9,<br>13, 14, 15 | nc                  | Unused |        | No connect.                                                                 |
| 2,<br>3                      | XTAL_OUT<br>XTAL_IN | Input  |        | Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. |
| 4                            | FSEL                | Input  | Pullup | Frequency select pin. LVCMOS/LVTTL interface levels.                        |
| 5, 16                        | GND                 | Power  |        | Power supply ground.                                                        |
| 10                           | $V_{DD}$            | Power  |        | Power supply pin.                                                           |
| 11, 12                       | nQ, Q               | Output |        | Differential output pair. LVDS interface levels.                            |

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

**Table 2. Pin Characteristics** 

| Symbol              | Parameter             | Test Conditions | Minimum | Typical | Maximum | Units |
|---------------------|-----------------------|-----------------|---------|---------|---------|-------|
| C <sub>IN</sub>     | Input Capacitance     |                 |         | 4       |         | pF    |
| R <sub>PULLUP</sub> | Input Pullup Resistor |                 |         | 51      |         | kΩ    |

### **Absolute Maximum Ratings**

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

| Item                                                     | Rating                                                   |
|----------------------------------------------------------|----------------------------------------------------------|
| Supply Voltage, V <sub>DD</sub>                          | 4.6V                                                     |
| Inputs, V <sub>I</sub> XTAL_IN Other Inputs              | 0V to V <sub>DD</sub><br>-0.5V to V <sub>DD</sub> + 0.5V |
| Outputs, I <sub>O</sub> Continuous Current Surge Current | 10mA<br>15mA                                             |
| Package Thermal Impedance, $\theta_{JA}$                 | 74.9°C/W (0 mps)                                         |
| Storage Temperature, T <sub>STG</sub>                    | -65°C to 150°C                                           |

### **DC Electrical Characteristics**

### Table 3A. Power Supply DC Characteristics, $V_{DD}$ = 3.3V $\pm$ 10%, $T_{A}$ = -40°C to 85°C

| Symbol          | Parameter            | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------|----------------------|-----------------|---------|---------|---------|-------|
| $V_{DD}$        | Power Supply Voltage |                 | 2.97    | 3.3     | 3.63    | V     |
| I <sub>DD</sub> | Power Supply Current |                 |         |         | 95      | mA    |

### Table 3B. LVCMOS/LVTTL DC Characteristics, $V_{DD}$ = 3.3V $\pm$ 10%, $T_{A}$ = -40°C to 85°C

| Symbol          | Parameter          | Test Conditions               | Minimum | Typical | Maximum               | Units |
|-----------------|--------------------|-------------------------------|---------|---------|-----------------------|-------|
| V <sub>IH</sub> | Input High Voltage |                               | 2       |         | V <sub>DD</sub> + 0.3 | V     |
| V <sub>IL</sub> | Input Low Voltage  |                               | -0.3    |         | 0.8                   | V     |
| I <sub>IH</sub> | Input High Current | $V_{DD} = V_{IN} = 3.63V$     |         |         | 5                     | μA    |
| I <sub>IL</sub> | Input Low Current  | $V_{DD} = 3.63V, V_{IN} = 0V$ | -150    |         |                       | μA    |

### Table 3C. LVDS DC Characteristics, $V_{DD}$ = 3.3V $\pm$ 10%, $T_{A}$ = -40°C to 85°C

| Symbol                | Parameter                                   | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|---------------------------------------------|-----------------|---------|---------|---------|-------|
| V <sub>OD</sub>       | Differential Output Voltage                 |                 | 247     |         | 454     | mV    |
| $\Delta V_{OD}$       | V <sub>OD</sub> Magnitude Change            |                 |         |         | 50      | mV    |
| V <sub>DIFF_OUT</sub> | Peak-to-Peak Differential<br>Output Voltage |                 | 494     |         | 908     | mV    |
| V <sub>OS</sub>       | Offset Voltage                              |                 | 1.3     |         | 1.63    | V     |
| $\Delta V_{OS}$       | V <sub>OS</sub> Magnitude Change            |                 |         |         | 50      | mV    |

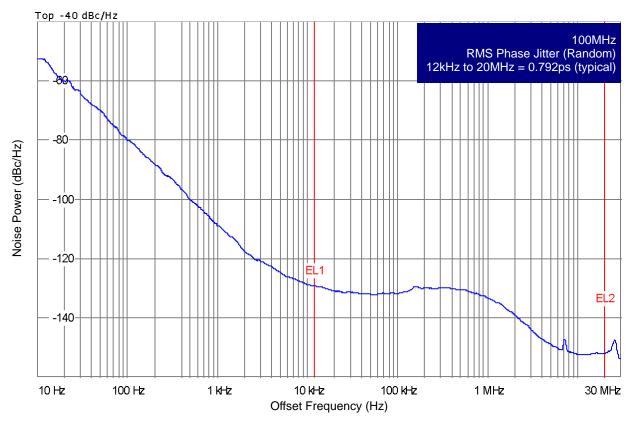
#### **Table 4. Crystal Characteristics**

| Parameter                          | Test Conditions | Minimum     | Typical | Maximum | Units |
|------------------------------------|-----------------|-------------|---------|---------|-------|
| Mode of Oscillation                |                 | Fundamental |         |         |       |
| Frequency                          |                 | 24.5        | 25      | 34      | MHz   |
| Equivalent Series Resistance (ESR) |                 |             |         | 50      | Ω     |
| Shunt Capacitance                  |                 |             |         | 7       | pF    |

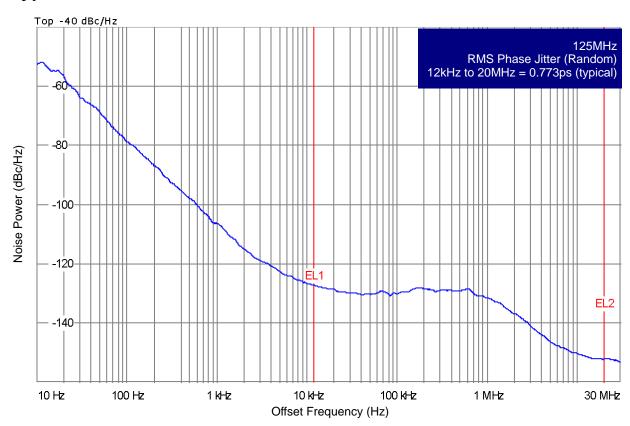
#### **AC Electrical Characteristics**

Table 5. AC Characteristics,  $V_{DD} = 3.3V \pm 10\%$ ,  $T_A = -40$ °C to 85°C

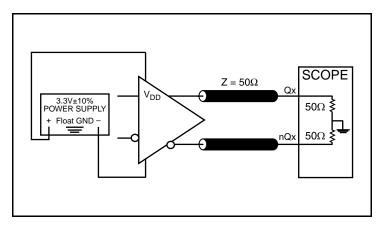
| Symbol                     | Parameter                   | Test Conditions                                                                                            | Minimum | Typical | Maximum | Units |
|----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------|
| 4                          | Output Frequency            |                                                                                                            |         | 125     |         | MHz   |
| f <sub>OUT</sub>           | Output Frequency            |                                                                                                            |         | 100     |         | MHz   |
| fjit(Ø)                    | RMS Phase Jitter,           | 125MHz, Integration Range:<br>12kHz – 20MHz                                                                |         | 0.773   |         | ps    |
| git( <b>©</b> )            | Random; NOTE 1              | 100MHz, Integration Range:<br>12kHz – 20MHz                                                                |         | 0.792   |         | ps    |
| t <sub>j</sub>             | Phase Jitter Peak-to-Peak:  | 125MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>Evaluation Band: 0Hz - Nyquist<br>(clock frequency/2) |         | 12.51   |         | ps    |
|                            | NOTE 2                      | 100MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>Evaluation Band: 0Hz - Nyquist<br>(clock frequency/2) |         | 13.48   |         | ps    |
| <sup>t</sup> REFCLK_HF_RMS | Phase Jitter RMS;<br>NOTE 3 | 125MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>High Band: 1.5MHz - Nyquist<br>(clock frequency/2)    |         | 1.13    |         | ps    |
|                            |                             | 100MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>High Band: 1.5MHz - Nyquist<br>(clock frequency/2)    |         | 1.25    |         | ps    |
| <sup>t</sup> REFCLK_LF_RMS | Phase Jitter RMS;           | 125MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>Low Band: 10kHz - 1.5MHz                              |         | 0.32    |         | ps    |
|                            | NOTE 3                      | 100MHz, (1.2MHz – 21.9MHz)<br>25MHz crystal input<br>Low Band: 10kHz - 1.5MHz                              |         | 0.33    |         | ps    |
| $t_R / t_F$                | Output Rise/Fall Time       | 20% to 80%                                                                                                 | 250     |         | 450     | ps    |
| odo                        | Output Duty Cycle           | f <sub>OUT</sub> = 125MHz                                                                                  | 48      |         | 52      | %     |
| odc                        | Output Duty Cycle           | f <sub>OUT</sub> = 100MHz                                                                                  | 46      |         | 54      | %     |


NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

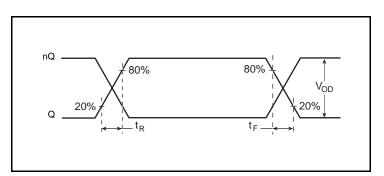
NOTE: Characterized using a 25MHz crystal.


NOTE 1: Refer to Phase Noise Plots.

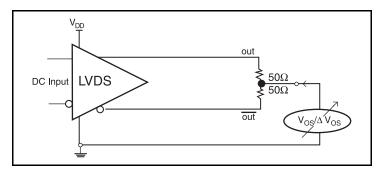
NOTE 2: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86ps peak-to-peak for a sample size of  $10^6$  clock periods. See IDT Application Note *PCI Express Reference Clock Requirements* and also the PCI Express Application section of this datasheet which show each individual transfer function and the overall composite transfer function. NOTE 3: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps rms for  $t_{REFCLK\_HF\_RMS}$  (High Band) and 3.0 ps RMS for  $t_{REFCLK\_LF\_RMS}$  (Low Band). See IDT Application Note *PCI Express Reference Clock Requirements* and also the PCI Express Application section of this datasheet which show each individual transfer function and the overall composite transfer function.


## **Typical Phase Noise at 100MHz**

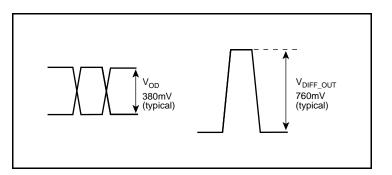



## **Typical Phase Noise at 125MHz**

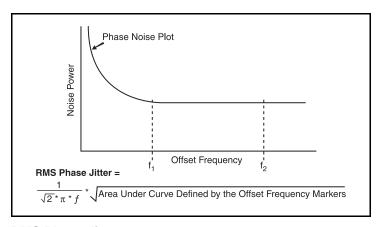



### **Parameter Measurement Information**

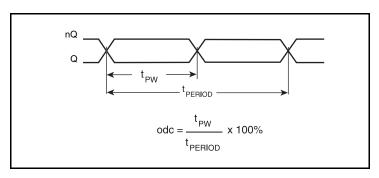



3.3V LVDS Output Load AC Test Circuit

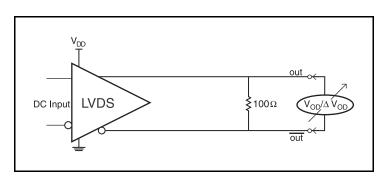



**Output Rise/Fall Time** 




**Offset Voltage Setup** 




**Differential Output Voltage** 



**RMS Phase Jitter** 



**Output Duty Cycle/Pulse Width/Period** 



**Differential Output Voltage Setup** 

### **Application Information**

### **Crystal Input Interface**

The ICS844201I-45 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 1* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

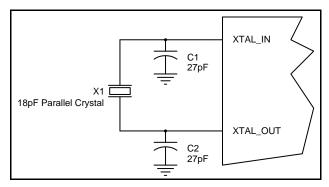



Figure 1. Crystal Input Interface

### **Overdriving the XTAL Interface**

The XTAL\_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL\_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 2A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most  $50\Omega$  applications, R1 and R2 can be  $100\Omega$ . This can also be accomplished by removing R1 and changing R2 to  $50\Omega$ . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 2B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL\_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and quaranteed by using a quartz crystal as the input.

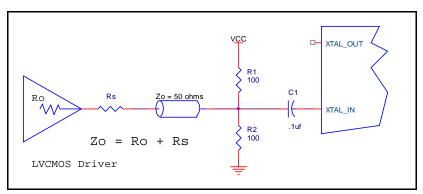



Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface

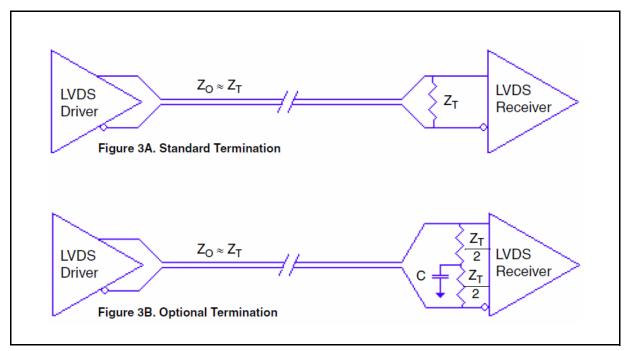




Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface

#### **LVDS Driver Termination**

For a general LVDS interface, the recommended value for the termination impedance  $(Z_T)$  is between  $90\Omega$  and  $132\Omega.$  The actual value should be selected to match the differential impedance  $(Z_0)$  of your transmission line. A typical point-to-point LVDS design uses a  $100\Omega$  parallel resistor at the receiver and a  $100\Omega$  differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The

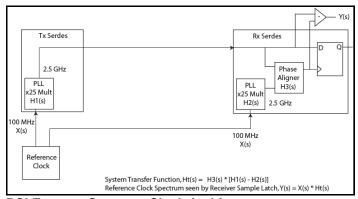
standard termination schematic as shown in *Figure 3A* can be used with either type of output structure. *Figure 3B*, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.



**LVDS Termination** 

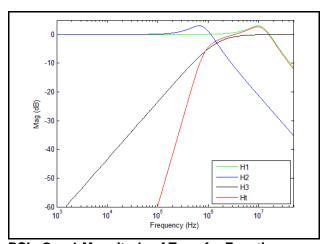
#### **PCI Express Application Note**

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used *Common Clock Architecture* in which a copy of the reference clock is provided to both ends of the PCI Express Link.


In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called H1, H2, and H3 respectively. The overall system transfer function at the receiver is:

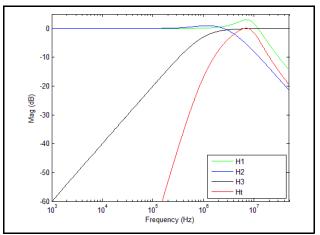
$$Ht(s) = H3(s) \times [H1(s) - H2(s)]$$

The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum X(s) and is:

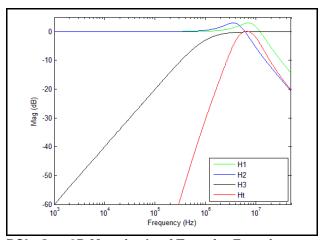

$$Y(s) = X(s) \times H3(s) \times [H1(s) - H2(s)]$$

In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on X(s)\*H3(s) \* [H1(s) - H2(s)].



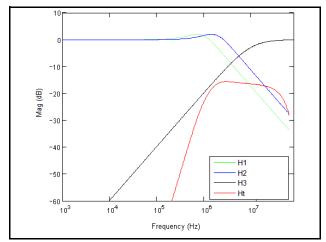

**PCI Express Common Clock Architecture** 

For **PCI Express Gen 1**, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g for a 100 MHz reference clock: 0 Hz - 50 MHz) and the jitter result is reported in peak-peak.




PCIe Gen 1 Magnitude of Transfer Function

For **PCI Express Gen 2**, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in rms. The two evaluation ranges for PCI Express Gen 2 are 10kHz – 1.5MHz (Low Band) and 1.5MHz – Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function Ht.




PCIe Gen 2A Magnitude of Transfer Function



PCIe Gen 2B Magnitude of Transfer Function

For **PCI Express Gen 3**, one transfer function is defined and the evaluation is performed over the entire spectrum. The transfer function parameters are different from Gen 1 and the jitter result is reported in RMS.



**PCIe Gen 3 Magnitude of Transfer Function** 

For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note *PCI Express Reference Clock Requirements*.

### **Schematic Example**

Figure 4 shows an example of ICS844201I-45 application schematic. In this example, the device is operated at  $V_{DD}=3.3V$ . The 18pF parallel resonant 25MHz crystal is used. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For different board

layouts, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. Two examples of LVDS for receiver without built-in termination are shown in this schematic.

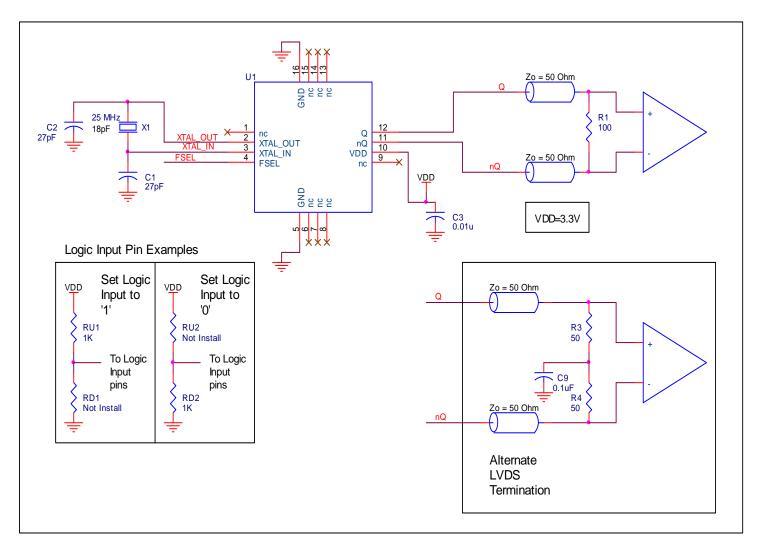



Figure 4. ICS844201I-45 Schematic Example

#### **Power Considerations**

This section provides information on power dissipation and junction temperature for the ICS844201I-45. Equations and example calculations are also provided.

#### 1. Power Dissipation.

The total power dissipation for the ICS844201I-45 is the sum of the core power plus the power dissipation in the load(s). The following is the power dissipation for  $V_{DD} = 3.3V + 10\% = 3.63V$ , which gives worst case results.

Power (core)<sub>MAX</sub> = V<sub>DD MAX</sub> \* I<sub>DD MAX</sub> = 3.63V \* 95mA = 344.85mW

#### 2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj =  $\theta_{JA}$  \* Pd\_total + T<sub>A</sub>

Tj = Junction Temperature

 $\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

Pd\_total = Total Device Power Dissipation (example calculation is in section 1 above)

T<sub>A</sub> = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming no air flow and a multi-layer board, the appropriate value is 74.9°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

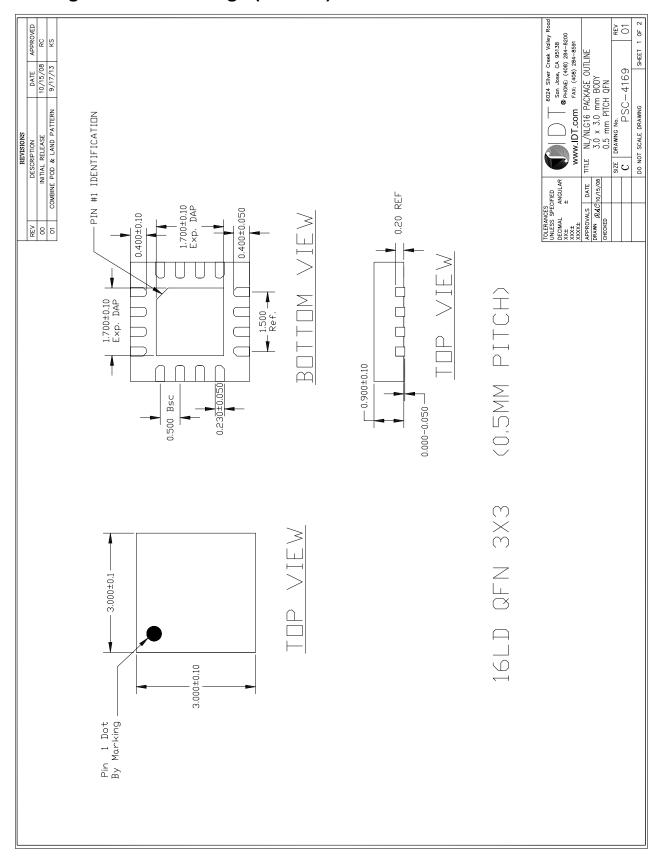
 $85^{\circ}\text{C} + 0.345\text{W} * 74.9^{\circ}\text{C/W} = 110.8^{\circ}\text{C}$ . This is below the limit of  $125^{\circ}\text{C}$ .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

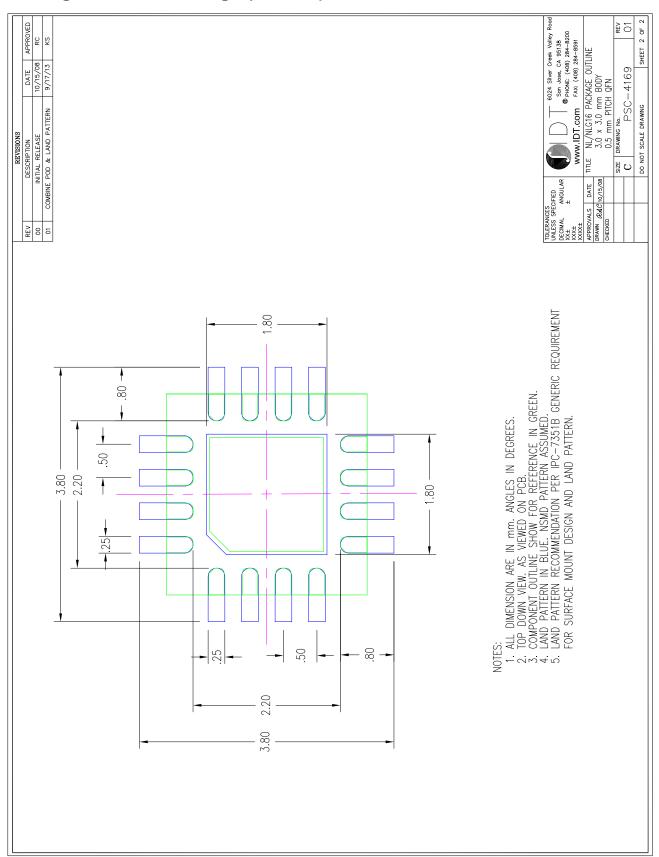
Table 6. Thermal Resistance  $\theta_{JA}$  for 16 Lead VFQFN, Forced Convection

| $\theta_{JA}$ vs. Air Flow                  |          |          |          |  |  |
|---------------------------------------------|----------|----------|----------|--|--|
| Meters per Second                           | 0        | 1        | 2.5      |  |  |
| Multi-Layer PCB, JEDEC Standard Test Boards | 74.9°C/W | 65.5°C/W | 58.8°C/W |  |  |

## **Reliability Information**


### Table 7. $\theta_{\mbox{\scriptsize JA}}$ vs. Air Flow Table for a 16 Lead VFQFN

| $\theta_{JA}$ vs. Air Flow                  |          |          |          |  |  |
|---------------------------------------------|----------|----------|----------|--|--|
| Meters per Second                           | 0        | 1        | 2.5      |  |  |
| Multi-Layer PCB, JEDEC Standard Test Boards | 74.9°C/W | 65.5°C/W | 58.8°C/W |  |  |


#### **Transistor Count**

The transistor count for ICS844201I-45 is: 1986

## **Package Outline Drawings (Sheet 1)**



## **Package Outline Drawings (Sheet 2)**



### **Ordering Information**

#### **Table 9. Ordering Information**

| Part/Order Number | Marking | Package                   | Shipping Packaging | Temperature   |
|-------------------|---------|---------------------------|--------------------|---------------|
| 844201BKI-45LF    | B15L    | "Lead-Free" 16 Lead VFQFN | Tube               | -40°C to 85°C |
| 844201BKI-45LFT   | B15L    | "Lead-Free" 16 Lead VFQFN | Tape & Reel        | -40°C to 85°C |

### **Revision History Sheet**

| Rev | Table | Page  | Description of Change                 | Date       |
|-----|-------|-------|---------------------------------------|------------|
| Α   | -     | -     | Initial release.                      | 10/07/2013 |
| В   | -     | 11/12 | Updated the package outline drawings. | 5/27/2017  |



Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.IDT.com/go/sales Tech Support www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

844201BG-45LF 844201BG-45LFT 844201BKI-45LF 844201BKI-45LFT