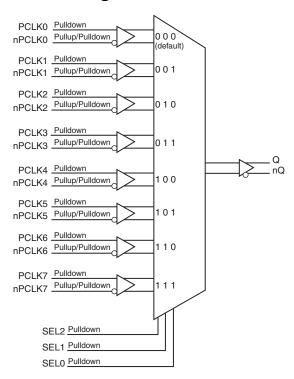


8:1 Differential-to-3.3V or 2.5V LVPECL/ECL Clock Multiplexer

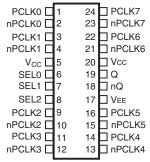
ICS853S058I

DATASHEET

General Description


The ICS853S058I is an 8:1 Differential-to-3.3V or 2.5V LVPECL / ECL Clock Multiplexer which can operate up to 2.5 GHz. The ICS853S058I has 8 differential selectable clock inputs. The PCLK, nPCLK input pairs can accept LVPECL, LVDS or SSTL levels. The fully

differential architecture and low propagation delay make it ideal for use in clock distribution circuits. The select pins have internal pulldown resistors. The SEL2 pin is the most significant bit and the binary number applied to the select pins will select the same numbered data input (i.e., 000 selects PCLK0, nPCLK0).


Features

- High speed 8:1 differential muliplexer
- One differential 3.3V or 2.5V LVPECL output pair
- Eight selectable differential PCLKx/nPCLKx input pairs
- Differential PCLKx/nPCLKx pairs can accept the following interface levels: LVPECL, LVDS, SSTL
- Maximum output frequency: 2.5GHz
- Translates any single ended input signal to LVPECL levels with resistor bias on nPCLKx input
- Additive phase jitter, RMS: 0.075ps (typical)
- Part-to-part skew: 350ps (maximum)
- Propagation delay: 600ps (maximum)
- LVPECL mode operating voltage supply range:
 V_{CC} = 2.375V to 3.465V, V_{EE} = 0V
- ECL mode operating voltage supply range:
 V_{CC} = 0V, V_{EE} = -3.465V to -2.375V
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

ICS853S058I

24-Lead TSSOP, 173-MIL 4.4mm x 7.8mm x 0.925mm package body G Package Top View

Table 1. Pin Descriptions

Number	Name	-	Гуре	Description
1	PCLK0	Input	Pulldown	Non-inverting differential clock input.
2	nPCLK0	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
3	PCLK1	Input	Pulldown	Non-inverting differential clock input.
4	nPCLK1	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
5, 20	V _{CC}	Power		Positive supply pins.
6, 7, 8	SEL0, SEL1, SEL2	Input	Pulldown	Clock select input pins. LVCMOS/LVTTL interface levels.
9	PCLK2	Input	Pulldown	Non-inverting differential clock input.
10	nPCLK2	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
11	PCLK3	Input	Pulldown	Non-inverting differential clock input.
12	nPCLK3	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
13	nPCLK4	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
14	PCLK4	Input	Pulldown	Non-inverting differential clock input.
15	nPCLK5	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
16	PCLK5	Input	Pulldown	Non-inverting differential clock input.
17	V _{EE}	Power		Negative supply pin.
18, 19	nQ, Q	Output		Differential output pair. LVPECL interface levels.
21	nPCLK6	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
22	PCLK6	Input	Pulldown	Non-inverting differential clock input.
23	nPCLK7	Input	Pullup/ Pulldown	Inverting differential clock input. V _{CC} /2 default when left floating.
24	PCLK7	Input	Pulldown	Non-inverting differential clock input.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			2		pF
R _{PULLDOWN}	Pulldown Resistor			75		kΩ
R _{VCC} /2	RPullup/Pulldown Resistor			50		kΩ

Function Tables

Table 3. Control Input Function Table

	Inputs	Outputs		
SEL2	SEL1	SEL0	Q	nQ
0 (default)	0	0	PCLK0	nPCLK0
0	0	1	PCLK1	nPCLK1
0	1	0	PCLK2	nPCLK2
0	1	1	PCLK3	nPCLK3
1	0	0	PCLK4	nPCLK4
1	0	1	PCLK5	nPCLK5
1	1	0	PCLK6	nPCLK6
1	1	1	PCLK7	nPCLK7

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V (LVPECL mode, V _{EE} = 0V)
Negative Supply Voltage, V _{EE}	-4.6V (ECL mode, V _{CC} = 0V)
Inputs, V _I (LVPECL mode)	-0.5V to V _{CC} + 0.5V
Inputs, V _I (ECL mode)	0.5V to V _{EE} – 0.5V
Outputs, I _O Continuous Current Surge Current	50mA 100mA
Operating Temperature Range, T _A	-40°C to +85°C
Package Thermal Impedance, θ_{JA}	85.1°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{CC} = 2.375V to 3.465V; V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	3.3	3.465	V
I _{EE}	Power Supply Current				51	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, V_{CC} = 2.375V to 3.465V; V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		V _{CC} = 3.3V	2.2		V _{CC} + 0.3	V
I VIH			V _{CC} = 2.5V	1.7		V _{CC} + 0.3	V
V	land I am Vallana		V _{CC} = 3.3V	-0.3		0.8	V
V _{IL}	Input Low Voltage		V _{CC} = 2.5V	-0.3		0.7	V
I _{IH}	Input High Current	SEL[0:2]	V _{CC} = V _{IN} = 3.465V or 2.625V			150	μΑ
I _{IL}	Input Low Current	SEL[0:2]	V _{CC} = 3.465V or 2.625V, V _{IN} = 0V	-10			μΑ

Table 4C. LVPECL DC Characteristics, V_{CC} = 2.375V to 3.465V; V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH}	Input High Current	PCLK[0:7], nPCLK[0:7]	V _{CC} = V _{IN} = 3.465V or 2.625V			150	μΑ
	Input Low	PCLK[0:7]	V _{CC} = 3.465V or 2.625V, V _{IN} = 0V	-10			μΑ
'IL	Current	nPCLK[0:7]	V _{CC} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ
V _{PP}	Peak-to-Peak I NOTE 1	nput Voltage;		0.15		1.2	V
V _{CMR}	Common Mode NOTE 1, 2	e Range;		1.2		V _{CC}	V
V _{OH}	Output High Vo	oltage; NOTE 3		V _{CC} – 1.125		V _{CC} - 0.875	٧
V _{OL}	Output Low Vo	Itage; NOTE 3		V _{CC} – 1.895		V _{CC} - 1.62	٧
V _{SWING}	Peak-to-Peak Output Voltage	Swing		0.6		1.0	V

NOTE 1: V_{IL} should not be less than $V_{EE}-0.3V$.

NOTE 2: Common mode voltage is defined as V_{IH} .

NOTE 3: Outputs terminated with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

Table 4D. ECL DC Characteristics, $V_{CC} = 0V$, $V_{EE} = -3.465V$ to -2.375V, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Volta	ige; NOTE 1		-1.225		-0.935	V
V _{OL}	Output Low Volta	ge; NOTE 1		-1.895		-1.67	V
V _{PP}	Peak-to-Peak Input Voltage; NOTE 2			0.15		1.2	V
V _{CMR}	Input High Voltag Range; NOTE 2,			V _{EE} + 1.2		V _{CC}	V
I _{IH}	Input High Current	PCLK[0:7], nPCLK[0:7]	V _{CC} = V _{IN} = 3.465V or 2.625V			150	μΑ
I _{IL}	Input	PCLK[0:7]	V _{CC} = 3.465V or 2.625V, V _{IN} = 0V	-10			μA
IL .	Low Current nPCLK[0:7]	nPCLK[0:7]		-150			μA

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{CC}$ – 2V.

NOTE 2: V_{IL} should not be less than $V_{EE} - 0.3V$.

NOTE 3: Common mode voltage is defined as V_{IH}.

AC Electrical Characteristics

Table 5. AC Characteristics, $V_{CC} = 0V$, $V_{EE} = -3.465V$ to -2.375V or $V_{CC} = 2.375$ to 3.465V, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

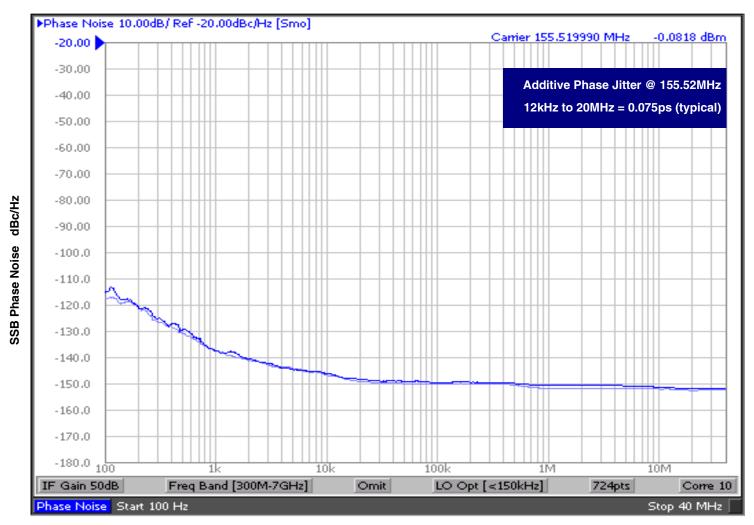
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				2.5	GHz
fjit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter section	155.52MHz, Integration Range: 12kHz – 20MHz		0.075		ps
t _{PD}	Propagation Delay; NOTE 1		250		600	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				350	ps
tsk(i)	Input Skew				75	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	75		250	ps
MUXISOLATION	MUX Isolation; NOTE 4	155.52MHz, Input Peak-to-Peak = 800mV		90		dB

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured $\leq 1.0 GHz$, unless otherwise noted.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

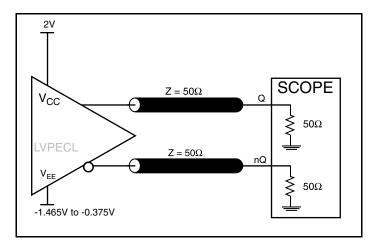

NOTE 3: This parameter is defined according with JEDEC Standard 65.

NOTE 4: Q/nQ output measured differentially. See Parameter Measurement Information for MUX Isolation diagram.

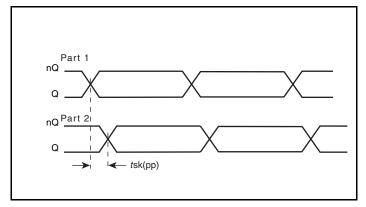
Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

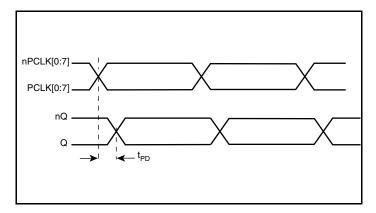
of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

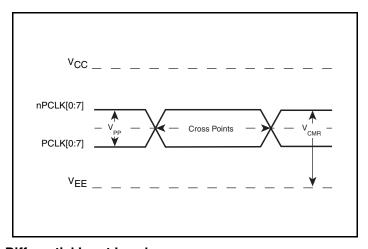


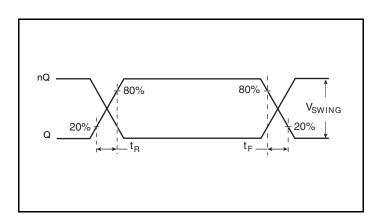
Offset from Carrier Frequency (Hz)

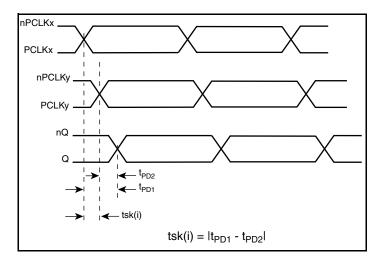

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

The source generator "Rohde & Schwarz SMA100A Signal Generator 9kHz - 6GHz as external input to an Agilent 8133A 3GHz Pulse Generator".

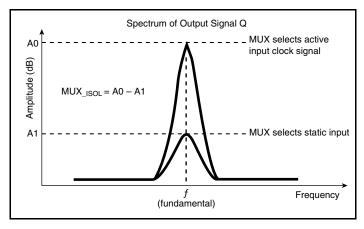

Parameter Measurement Information


LVPECL Output Load AC Test Circuit


Part-to-Part Skew


Propagation Delay

Differential Input Level



Output Rise/Fall Time

Input Skew

Parameter Measurement Information, continued

MUX Isolation

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{CC}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{CC} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

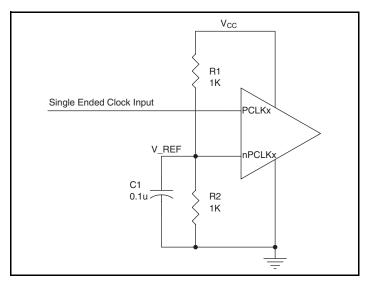


Figure 1. Single-Ended Signal Driving Differential Input

LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the PCLK/nPCLK input driven by the most common driver types.

The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

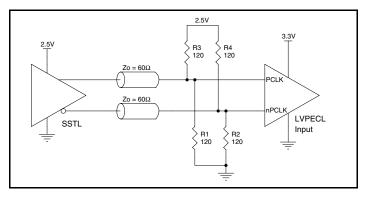


Figure 2A. PCLK/nPCLK Input Driven by an SSTL Driver

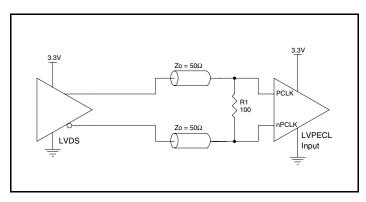


Figure 2B. PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

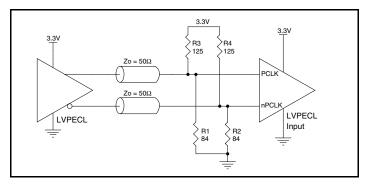


Figure 2C. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

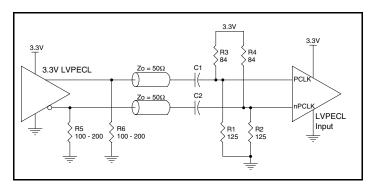


Figure 2D. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

Recommendations for Unused Input Pins

Inputs:

PCLK/nPCLK Inputs

For applications not requiring the use of the differential input, both PCLK and nPCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

LVCMOS Control Pins

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

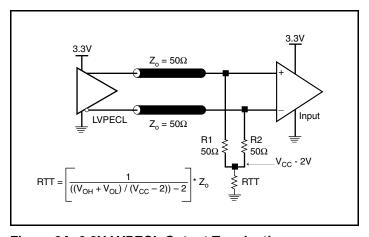


Figure 3A. 3.3V LVPECL Output Termination

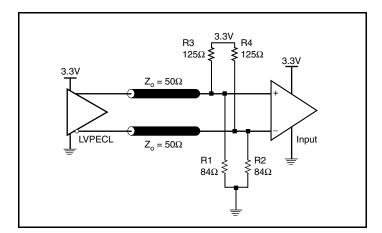


Figure 3B. 3.3V LVPECL Output Termination

10

Termination for 2.5V LVPECL Outputs

Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

level. The R3 in Figure 4B can be eliminated and the termination is shown in *Figure 4C*.

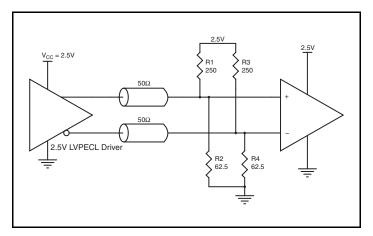


Figure 4A. 2.5V LVPECL Driver Termination Example

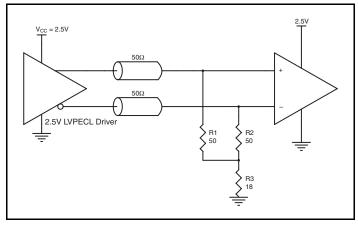


Figure 4B. 2.5V LVPECL Driver Termination Example

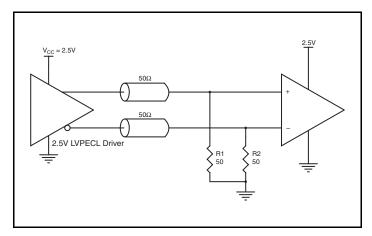


Figure 4C. 2.5V LVPECL Driver Termination Example

Schematic Example

An application schematic example of ICS853S058I is shown in *Figure 5*. The inputs can accept various types of differential signals. In this example, the inputs are driven by LVPECL drivers. The ICS853S058I output is an LVPECL driver. An example of LVPECL terminations is shown in this schematic. Other termination

approaches are available in the LVPECL Termination Application Note. It is recommended at least one decoupling capacitor per power pin. The decoupling capacitor should be low ESR and located as close as possible to the power pin.

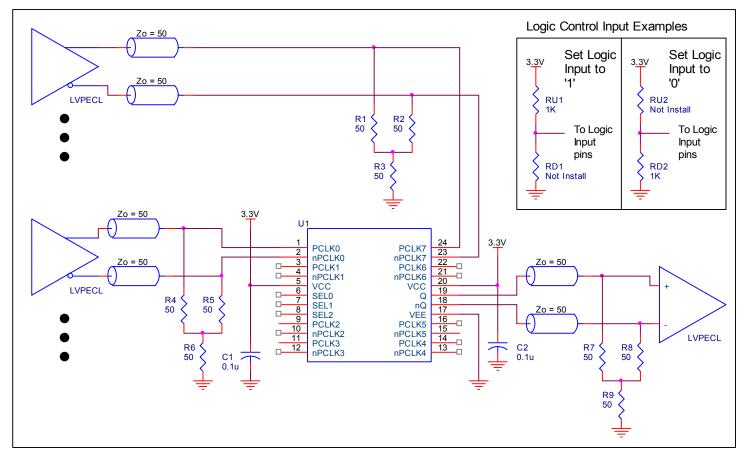


Figure 5. ICS853S058I Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS853S058I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS853S058I is the sum of the core power plus the power dissipation in the load(s).

The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 51mA = 176.72mW
- Power (outputs)_{MAX} = 32mW/Loaded Output pair

Total Power_MAX (3.3V, with all outputs switching) = 176.72mW + 32mW = 208.72mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 85.1°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.209\text{W} * 85.1^{\circ}\text{C/W} = 102.8^{\circ}\text{C}$. This is well below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 24 Lead TSSOP, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	85.1°C/W	79.7°C/W	76.5°C/W		

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

The LVPECL output driver circuit and termination are shown in Figure 6.

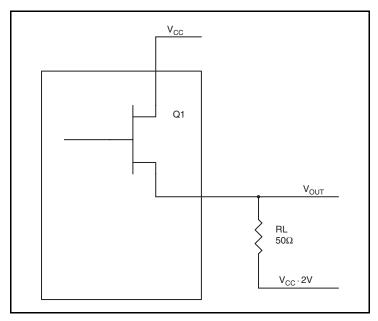


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.875V$ $(V_{CC_MAX} V_{OH_MAX}) = 0.875V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.62V$ $(V_{CC_MAX} V_{OL_MAX}) = 1.62V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.875V)/50\Omega] * 0.875V = 19.69mW$$

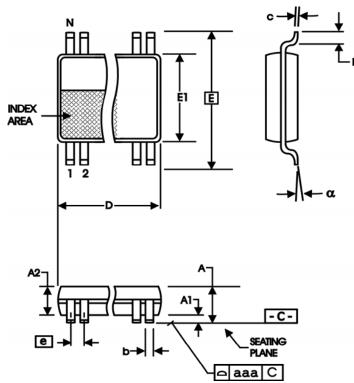
$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.62V)/50\Omega] * 1.62V = 12.31mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 24 Lead TSSOP

θ_{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	85.1°C/W	79.7°C/W	76.5°C/W		


Transistor Count

The transistor count for ICS853S058I is: 436

This is a suggested replacement for ICS853058

Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

Table 9. Package Dimensions

All Dim	All Dimensions in Millimeters						
Symbol	Minimum Maximun						
N	2	4					
Α		1.20					
A1	0.5	0.15					
A2	0.80	1.05					
b	0.19	0.30					
С	0.09	0.20					
D	7.70	7.90					
E	6.40	Basic					
E1	4.30	4.50					
е	0.65	Basic					
L	0.45	0.75					
α	0°	8°					
aaa		0.10					

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
853S058AGILF	ICS853S058AIL	"Lead-Free" 24 Lead TSSOP	Tube	-40°C to 85°C
853S058AGILFT	ICS853S058AIL	"Lead-Free" 24 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

6024 Silver Creek Valley Road San Jose, California 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA)

Fax: 408-284-2775

www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.