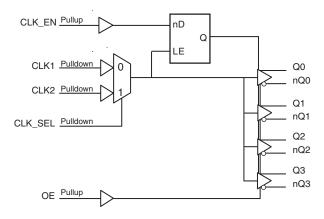


LOW SKEW, 1-TO-4 LVCMOS/LVTTL-TO-LVDS FANOUT BUFFER

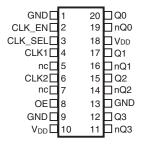
8545-02

Product Discontinuation Notice - Last Time Buy Expires May 5, 2016

Description


The 8545-02 is a low skew, high performance 1-to-4 LVCMOS/LVTTL-to-LVDS Clock Fanout Buffer. Utilizing Low Voltage Differential Signaling (LVDS) the 8545-02 provides a low power, low noise, solution for distributing clock signals over controlled impedances of 100Ω . The 8545-02 accepts an LVCMOS/LVTTL input level and translates it to 3.3V LVDS output levels.

Guaranteed output and part-to-part skew characteristics make the 8545-02 ideal for those applications demanding well defined performance and repeatability.


Features

- Four differential LVDS output pairs
- Two LVCMOS/LVTTL clock inputs to support redundant or selectable frequency fanout applications
- Maximum output frequency: 350MHz
- Translates LVCMOS/LVTTL input signals to LVDS levels
- Output skew: 60ps (maximum)
- Part-to-part skew: 450ps (maximum)
- Propagation delay: 1.45ns (maximum)
- Additive phase jitter, RMS: 0.14ps (typical)
- Full 3.3Vsupply mode
- 0°C to 70°C ambient operating temperature
- Available in lead-free package

Block Diagram

Pin Assignment

8545-02

20-Lead TSSOP 6.5mm x 4.4mm x 0.925mm package body G Package Top View

Table 1. Pin Descriptions

Number	Name	T	уре	Description
1, 9, 13	GND	Power		Power supply ground.
2	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follows clock input. When LOW, Qx outputs are forced low, nQx outputs are forced high. LVCMOS / LVTTL interface levels.
3	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK2 input. When LOW, selects CLK1 input. LVCMOS / LVTTL interface levels.
4	CLK1	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
5, 7	nc	Unused		No connect.
6	CLK2	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
8	OE	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q0/nQ0 through Q3/nQ3. LVCMOS/LVTTL interface levels.
10, 18	V_{DD}	Power		Positive supply pins.
11, 12	Q 3, Q3	Output		Differential output pair. LVDS interface levels.
14, 15	Q2, Q2	Output		Differential output pair. LVDS interface levels.
16, 17	Q1, Q1	Output		Differential output pair. LVDS interface levels.
19, 20	Q0, Q0	Output		Differential output pair. LVDS interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

	Inputs				puts
OE	CLK_EN	CLK_SEL	Selected Source	Q0:Q3	nQ0:nQ3
0	X	Х		Hi-Z	Hi-Z
1	0	0	CLK1	Low	High
1	0	1	CLK2	Low	High
1	1	0	CLK1	Active	Active
1	1	1	CLK2	Active	Active

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK1 and CLK2 inputs as described in Table 3B.

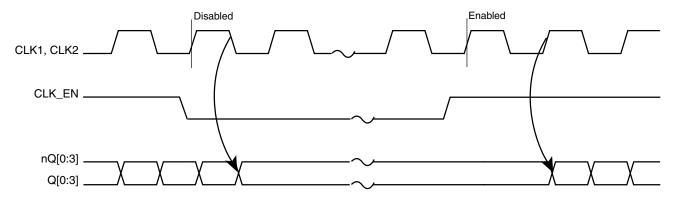


Figure 1. CLK_EN Timing Diagram

Table 3B. Clock Input Function Table

Inputs	Outputs			
CLK1 or CLK2	Q0:Q3	nQ0:nQ3		
0	LOW	HIGH		
1	HIGH	LOW		

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O Continuos Current Surge Current	10mA 15mA
Package Thermal Impedance, θ_{JA}	91.1°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				90	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	٧
V_{IL}	Input Low Voltage			-0.3		0.8	V
	Input	CLK1, CLK2, CLK_SEL	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
ін	High Current	OE, CLK_EN	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
	Input	CLK1, CLK2, CLK_SEL	V _{DD} = 3.465V, V _{IN} = 0V	-5			μΑ
'IL	Low Current	OE, CLK_EN	V _{DD} = 3.465V, V _{IN} = 0V	-150			μΑ

Table 4C. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		275		525	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.1	1.25	1.4	V
ΔV _{OS}	V _{OS} Magnitude Change			5	50	mV

AC Electrical Characteristics

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				350	MHz
t _{PD}	Propagation Delay; NOTE 1		1.0		1.45	ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: 12kHz – 20MHz		0.14		ps
tsk(o)	Output Skew; NOTE 2, 4				60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				450	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	150		700	ps
odc	Output Duty Cycle: NOTE 5	<i>f</i> ≤ 166MHz	45		55	%
ouc	Output Duty Cycle; NOTE 5	f > 166MHz	40		60	%

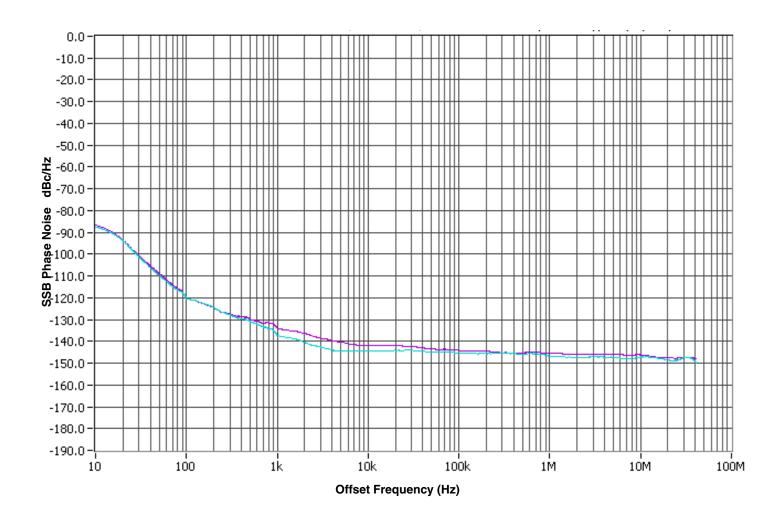
All parameters measured at $f_{\mbox{\scriptsize MAX}}$ unless noted otherwise.

NOTE 1: Measured from $V_{DD}/2$ of the input to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

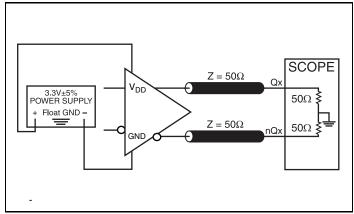
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.

Using the same type of inputs on each device, the outputs are measured at the differential cross points.

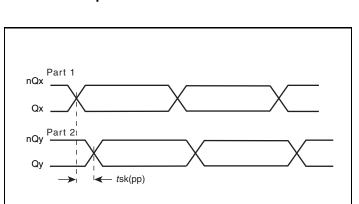

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: Measured using 50% duty cycle.

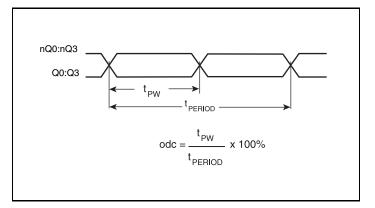
Additive Phase Jitter

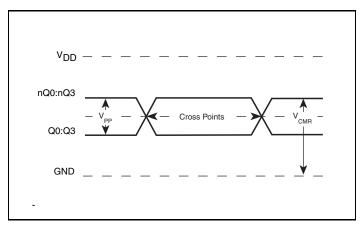

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

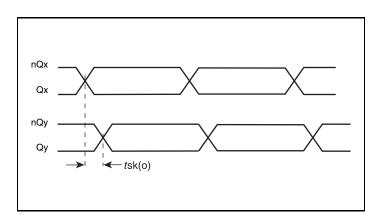
to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

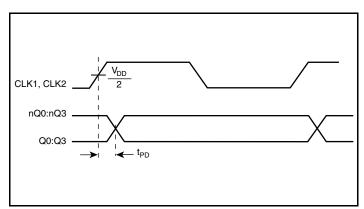


As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

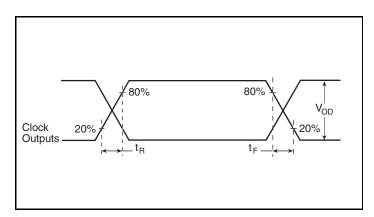

Parameter Measurement Information

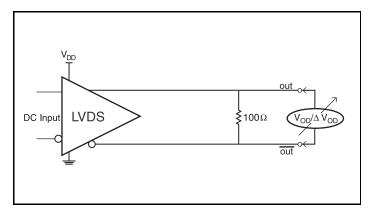

3.3V LVDS Output Load AC Test Circuit


Part-to-Part Skew

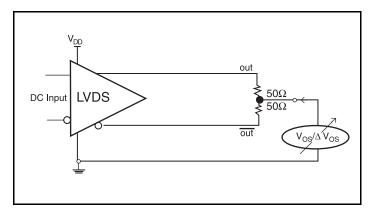

Output Duty Cycle/Pulse Width/Period

Differential Output Level




Output Skew

Propagation Delay


Parameter Measurement Information, continued

Output Rise/Fall Time

Differential Output Voltage Setup

Offset Voltage Setup

Application Information

Recommendations for Unused Input and Output Pins

Inputs:

CLK Inputs

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1 k\Omega$ resistor can be tied from the CLK input to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100 Ω across. If they are left floating, there should be no trace attached.

3.3V LVDS Driver Termination

A general LVDS interface is shown in Figure 2. In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver input.

For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

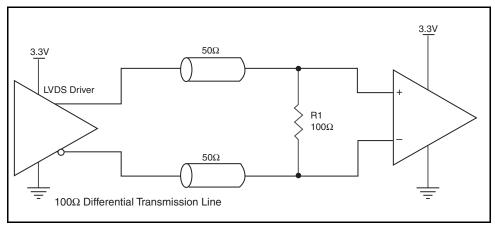


Figure 2. Typical LVDS Driver Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the 8545-02. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8545-02 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.465V * 90mA = 311.85mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 91.1°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0.312\text{W} * 91.1^{\circ}\text{C/W} = 98.4^{\circ}\text{C}$. This is well below the limit of 125°C .

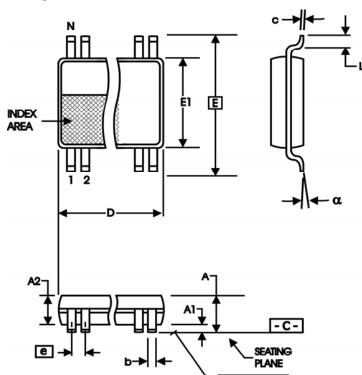
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 20 Lead TSSOP, Forced Convection

θ_{JA} by Velocity				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W	

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP


θ _{JA} by Velocity				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	91.1°C/W	86.7°C/W	84.6°C/W	

Transistor Count

The transistor count for 8545-02 is: 360

Package Outline and Package Dimension

Package Outline - G Suffix for 20 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
N	2	0		
Α		1.20		
A1	0.05	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	6.40	6.60		
E	6.40	Basic		
E1	4.30	4.50		
е	0.65	Basic		
L	0.45	0.75		
α	0°	8°		
aaa		0.10		

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS8545AG-02LF	ICS8545AG-02LF	"Lead-Free" 20 Lead TSSOP	Tube	0°C to 70°C
ICS8545AG-02LFT	ICS8545AG-02LF	"Lead-Free" 20 Lead TSSOP	Tape & Reel	0°C to 70°C

NOTE: "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

clocks@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

