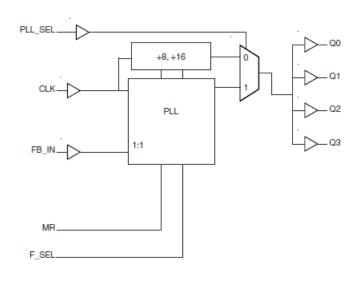
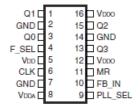
DATA SHEET


GENERAL DESCRIPTION

The 86004I is a high performance 1:4 LVCMOS/LVTTL Clock Buffer. The 86004I has a fully integrated PLL and can be configured as zero delay buffer and has an input and output frequency range of 15.625MHz to 62.5MHz. The VCO operates at a frequency range of 250MHz to 500MHz. The external feedback allows the device to achieve "zero delay" between the input clock and the output clocks. The PLL_SEL pin can be used to bypass the PLL for system test and debug purposes. In bypass mode, the reference clock is routed around the PLL and into the internal output divider.


FEATURES

- Four LVCMOS/LVTTL outputs, 7Ω typical output impedance
- Single LVCMOS/LVTTL clock input
- · CLK accepts the following input levels: LVCMOS or LVTTL
- Output frequency range: 15.625MHz to 62.5MHz
- Input frequency range: 15.625MHz to 62.5MHz
- VCO range: 250MHz to 500MHz
- External feedback for "zero delay" clock regeneration with configurable frequencies
- Fully integrated PLL
- Cycle-to-cycle jitter: 75ps (maximum)
- Output skew: 65ps (maximum)
- Full 3.3V or 2.5V, or 3.3V core/2.5V output operating supply
- -40°C to 85° ambient operating temperature
- · Available in lead-free RoHS compliant package

BLOCK DIAGRAM

PIN ASSIGNMENT

86004I 16-Lead TSSOP 4.4mm x 5.0mm x 0.925mm package body G Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1, 3, 13, 15	Q1, Q0, Q3, Q2	Output		Clock outputs. 7 typical output impedance. LVCMOS/LVTTL interface levels.
2, 7, 14	GND	Power		Power supply ground.
4	F_SEL	Input	Pulldown	Frequency range select input. See Table 3A and 3B. LVCMOS/LVTTL interface levels.
5	V _{DD}	Power		Core supply pin.
6	CLK	Input	Pulldown	LVCMOS/LVTTL clock input.
8	V	Power		Analog supply pin.
9	PLL_SEL	Input	Pullup	Selects between the PLL and reference clock as input to the dividers. When LOW, selects the reference clock (PLL Bypass). When HIGH, selects PLL (PLL Enabled). LVCMOS/LVTTL interface levels.
10	FB_IN	Input	Pulldown	Feedback input to phase detector for regenerating clocks with "zero delay". Connect to one of the outputs. LVCMOS/LVTTL interface levels.
11	MR	Input	Pulldown	Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels.
12, 16	V _{DDO}	Power		Output supply pins.

NOTE: andrefer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R	Input Pullup Resistor			51		kΩ
R	Input Pulldown Resistor			51		kΩ
_	Power Dissipation Capacitance	V_{DD} , V_{DDA} , $V_{DDO} = 3.465V$			23	pF
PD	(per output)	$V_{_{DD}}, V_{_{DDA}}, V_{_{DDO}} = 2.625V$			17	pF
R _{out}	Output Impedance	3.3V ± 5%	5	7	12	Ω

TABLE 3A. CONTROL INPUT FUNCTION TABLE, PLL_SEL = 1

Input	Input/Output Frequency Range (MHz)				
F_SEL	Minimum	Maximum			
0	31.25	62.5			
1	15.625	31.25			

TABLE 3B. CONTROL INPUT FUNCTION TABLE, PLL_SEL = 0

Input	Output
F_SEL	Output
0	Ref ÷8
1	Ref ÷16

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{DD} -0.5 V to V_{DD} + 0.5 V

Outputs, V_{o} -0.5V to V_{dd} + 0.5V

Package Thermal Impedance, $\theta_{_{JA}}$ 89°C/W (0 lfpm)

Storage Temperature, T_{sta} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V	Analog Supply Voltage		3.135	3.3	V	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
l _{DD}	Power Supply Current				98	mA
DDA	Analog Supply Current				22	mA
I _{DDO}	Output Supply Current				8	mA

 $\textbf{TABLE 4B. Power Supply DC Characteristics, V}_{\text{dd}} = V_{\text{dda}} = 3.3 \text{V} \pm 5\%, V_{\text{ddo}} = 2.5 \text{V} \pm 5\%, \text{Ta} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	V	V
V	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				98	mA
DDA	Analog Supply Current				22	mA
I _{DDO}	Output Supply Current				8	mA

Table 4C. Power Supply DC Characteristics, $V_{dd} = V_{dda} = V_{dda} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Core Supply Voltage		2.375	2.5	2.625	V
V	Analog Supply Voltage		2.375	2.5	V	V
V	Output Supply Voltage		2.375	2.5	2.625	V
l _{DD}	Power Supply Current				88	mA
DDA	Analog Supply Current				18	mA
DDO	Output Supply Current				6	mA

Table 4D. LVCMOS / LVTTL DC Characteristics, $V_{_{DD}} = V_{_{DDA}} = V_{_{DDO}} = 3.3 \text{V} \pm 5\%$ or $2.5 \text{V} \pm 5\%$, Ta = -40°C to $85 ^{\circ}$ C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
\/	Input High Voltage		V _{DD} = 3.3V	2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage		V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
V	Input Low Voltage		$V_{_{DD}} = 3.3V$	-0.3		0.8	V
V	Imput Low voltage		$V_{_{DD}} = 2.5V$	-0.3		0.7	V
I _{IH}	Input High Current	CLK, MR, FB_IN, F_SEL	$V_{_{DD}} = V_{_{IN}} = 3.465V$			150	μΑ
"		PLL_SEL	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
I _L	Input Low Current	CLK, MR, FB_IN, F_SEL	$V_{_{DD}} = 3.465V, V_{_{IN}} = 0V$	-5			μΑ
		PLL_SEL	$V_{_{DD}} = 3.465 \text{V}, V_{_{IN}} = 0 \text{V}$	-150			μΑ
V	Output High Voltage; NOTE 1		V _{DDO} = 3.465V	2.6			٧
V _{OH}	Output Flight Voltage	, NOTE I	V _{DDO} = 2.625V	1.8			V
V _{oL}	Output Low Voltage:	NOTE 1	$V_{DDO} = 3.465 \text{V or } 2.625 \text{V}$			0.5	٧

NOTE 1: Outputs terminated with 50W to V_{nno}/2. See Parameter Measurement Information Section, Output Load Test Circuit diagrams.

Table 5A. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Fraguency	F_SEL = 0	31.25		62.5	MHz
MAX	Output Frequency	F_SEL = 1	15.625		31.25	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	PLL_SEL = 0V, Bypass Mode	4.1		6.1	ns
t(Ø)	Static Phase Offset; NOTE 2, 4	PLL_SEL = 3.3V	-500		500	ps
tsk(o)	Output Skew; NOTE 3, 4	PLL_SEL = 0V			65	ps
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 4				75	ps
t	PLL Lock Time				1	mS
t _R / t _F	Output Rise/Fall Time		0.4		1	ns
odc	Output Duty Cycle		49		51	%

All parameters measured at $f_{\text{\tiny MAX}}$ unless noted otherwise. NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from $V_{nn}/2$ of the input crossing point to the output at $V_{nn}/2$.

NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable.

NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at V_{DDD}/2.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Table 5B. AC Characteristics, $V_{dd} = V_{dda} = 3.3V \pm 5\%$, $V_{ddo} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Frequency	F_SEL = 0	31.25		62.5	MHz
MAX	Output Frequency	F_SEL = 1	15.625		31.25	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	PLL_SEL = 0V, Bypass Mode	4.25		6.25	ns
t(Ø)	Static Phase Offset; NOTE 2, 4	PLL_SEL = 2.5V	-500		500	ps
tsk(o)	Output Skew; NOTE 3, 4	PLL_SEL = 0V			65	ps
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 4				75	ps
t_	PLL Lock Time				1	mS
t _R / t _F	Output Rise/Fall Time		0.4		1	ns
odc	Output Duty Cycle		48		52	%

All parameters measured at $f_{\text{\tiny MAX}}$ unless noted otherwise.

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from $V_{_{DD}}/2$ of the input crossing point to the output at $V_{_{DDO}}/2$.

NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable.

NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions.

Measured at V_{DDO}/2.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Table 5C. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

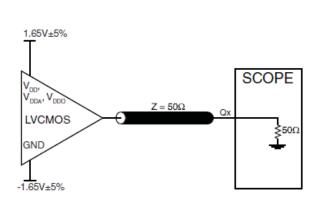
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Frequency	F_SEL = 0	31.25		62.5	MHz
f _{MAX}	Output Frequency	F_SEL = 1	15.625		31.25	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	PLL_SEL = 0V, Bypass Mode	4.5		6.5	ns
t(Ø)	Static Phase Offset; NOTE 2, 4	PLL_SEL = 2.5V	-500		500	ps
tsk(o)	Output Skew; NOTE 3, 4	PLL_SEL = 0V			65	ps
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 4				75	ps
t_	PLL Lock Time				1	mS
t _R / t _F	Output Rise/Fall Time		0.4		1	ns
odc	Output Duty Cycle		48		52	%

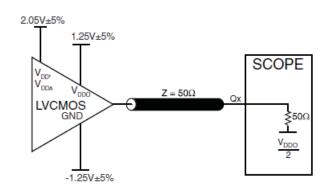
All parameters measured at $f_{\mbox{\tiny MAX}}$ unless noted otherwise.

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

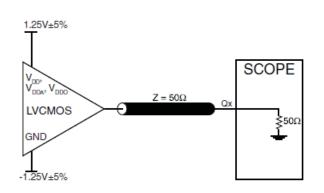
NOTE 1: Measured from $V_{pp}/2$ of the input crossing point to the output at $V_{ppp}/2$.

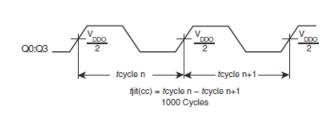
NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable.


NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions.

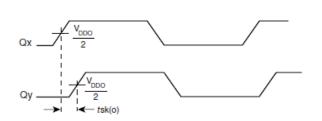

Measured at V_{nno}/2.

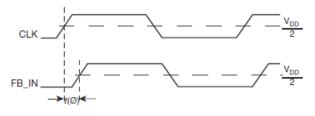
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION



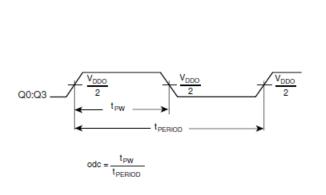
3.3V CORE/3.3V OUTPUT LOAD ACTEST CIRCUIT


3.3V Core/2.5V OUTPUT LOAD ACTEST CIRCUIT



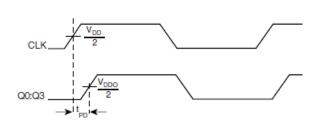
2.5VCore/ 2.5V OUTPUT LOAD AC TEST CIRCUIT

CYCLE-TO-CYCLE JITTER


 $t(\mathcal{O})_{\text{mean}} = \text{Static Phase Offset}$ (where $t(\mathcal{O})_{\text{mean}}$ is the average of the sampled cycles measured on controlled edges)


OUTPUT SKEW

STATIC PHASE OFFSET


PARAMETER MEASUREMENT INFORMATION, CONTINUED

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 86004l provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{_{\rm DD}},\,V_{_{\rm DDA}}$ and $V_{_{\rm DDO}}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic $V_{_{\rm DD}}$ pin and also shows that $V_{_{\rm DDA}}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the $V_{_{\rm DDA}}$ pin.

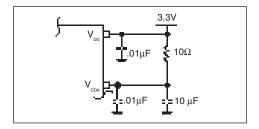


FIGURE 1. POWER SUPPLY FILTERING

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

LVCMOS CONTROL PINS

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUTS

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

SCHEMATIC EXAMPLE

Figure 2 shows a schematic example of using an 86004l. It is recommended to have one decouple capacitor per power pin. Each decoupling capacitor should be located as close as possible to the

power pin. The low pass filter R7, C11 and C16 for clean analog supply should also be located as close to the $V_{\tiny DDA}$ pin as possible.

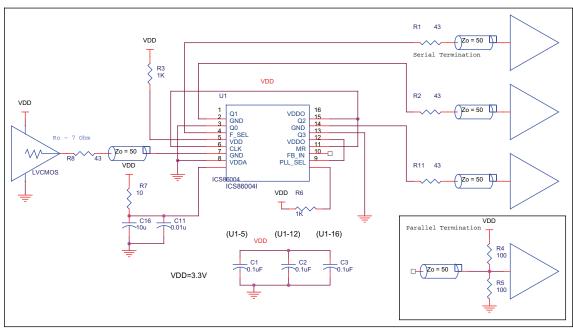


FIGURE 2. 860041 SCHEMATIC EXAMPLE

RELIABILITY INFORMATION

Table 5. $\theta_{_{JA}} vs.$ Air Flow Table for 16 Lead TSSOP

$\theta_{\mbox{\tiny JA}}$ by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 86004l is: 2496

PACKAGE OUTLINE - G SUFFIX 16 LEAD TSSOP

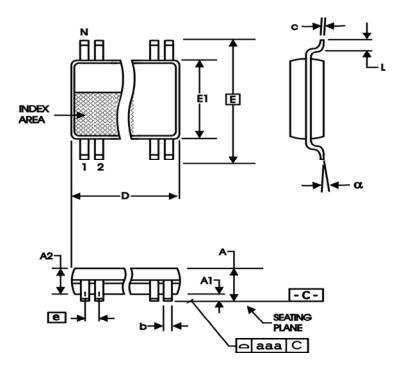


TABLE 6. PACKAGE DIMENSIONS

SYMBOL	Millimeters		
STWIDOL	Minimum	Maximum	
N	16		
Α		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	4.90	5.10	
E	6.40 BASIC		
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Table 7. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
86004BGILF	86004BIL	16 Lead "Lead-Free" TSSOP	Tube	-40°C to 85°C
86004BGILFT	86004BIL	16 Lead "Lead-Free" TSSOP	Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

	REVISION HISTORY SHEET				
Rev	Rev Table Page Description of Change		Date		
А	5A - 5C T7	4 - 5 11	AC Tables - added thermal note and corrected NOTE 1. Ordering Information Table - added LF marking and deleted "ICS" prefix from Part/Order Number column. Updated Header/Footer.	2/24/10	
A	T7	11	Ordering Information - removed leaded devices. Updated data sheet format.	7/10/15	

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2015. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): 86004BGILF 86004BGILFT