

Description

The 8761I is a low voltage, low skew PCI / PCI-X clock generator. The device has a selectable REF_CLK or crystal input. The REF_CLK input accepts LVCMOS or LVTTL input levels. The 8761I has a fully integrated PLL along with frequency configurable clock and feedback outputs for multiplying and regenerating clocks with "zero delay" Using a 20MHz or 25MHz crystal or a 33.333MHz or 66.666MHz reference frequency, the 8761I will generate output frequencies of 33.333MHz, 66.666MHz, 100MHz and 133.333MHz simultaneously.

The low impedance LVCMOS/LVTTL outputs of the 8761I are designed to drive 50Ω series or parallel terminated transmission lines.

Block Diagram

Features

- Fully integrated PLL
- Seventeen LVCMOS/LVTTL outputs, 15Ω typical output impedance
- Selectable crystal oscillator interface or LVCMOS/LVTTL REF CLK
- Maximum output frequency: 166.67MHz
- Maximum crystal input frequency: 40MHz
- Maximum REF_CLK input frequency: 83.33MHz
- Individual banks with selectable output dividers for generating 33.333MHz, 66.66MHz, 100MHz and 133.333MHz simultaneously
- Separate feedback control for generating PCI / PCI-X frequencies from a 20MHz or 25MHz crystal or 33.333MHz or 66.666MHz reference frequency
- Cycle-to-cycle jitter: 70ps (maximum)
- Period jitter, RMS: 17ps (maximum)
- Output skew: 250ps (maximum)
- Bank skew: 50ps (maximum)
- Static phase offset: 0 ± 150ps (maximum)
- Full 3.3V or 3.3V core, 2.5V multiple output supply modes
- -40°C to 85°C ambient operating temperature
- Available in both standard and lead-free RoHS-compliant packages

Pin Assignments

Figure 1. 10mm x 10mm x 1.4mm, 64-Lead TQFP (Top View

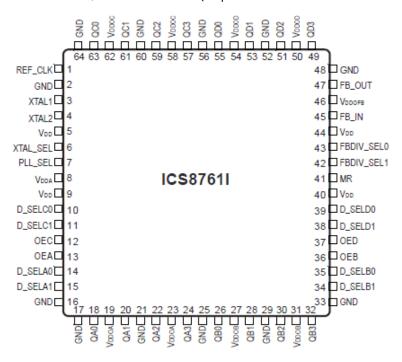


Table 1. Pin Descriptions

Number	Name	Тур	e ^[a]	Description
1	REF_CLK	Input	Pulldown	Reference clock input. LVCMOS / LVTTL interface levels.
2, 16, 17, 21, 25, 29, 33, 48, 52, 56, 60, 64	GND	Power		Power supply ground.
3, 4	XTAL1, XTAL2	Input		Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.
5, 9, 40, 44	V _{DD}	Power		Core supply pins.
6	XTAL_SEL	Input	Pullup	Selects between crystal oscillator or reference clock as the PLL reference source. Selects XTAL inputs when HIGH. Selects REF_CLK when LOW. LVCMOS / LVTTL interface levels.
7	PLL_SEL	Input	Pullup	Selects between PLL and bypass mode. When HIGH, selects PLL. When LOW, selects reference clock. LVCMOS / LVTTL interface levels.
8	V_{DDA}	Power		Analog supply pin. See Applications Note for filtering.
10, 11	D_SELC0, D_SELC1	Input	Pulldown	Selects divide value for Bank C outputs as described in Table 3. LVCMOS / LVTTL interface levels.
12	OEC	Input	Pullup	Determines state of Bank C outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
13	OEA	Input	Pullup	Determines state of Bank A outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.

Table 1. Pin Descriptions

Number	Name	Тур	pe ^[a]	Description
14, 15	D_SELA0, D_SELA1	Input	Pulldown	Selects divider value for Bank A outputs as described in Table 3. LVCMOS / LVTTL interface levels.
18, 20, 22, 24	QA0, QA1, QA2, QA3	Output		Bank A clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
19, 23	V_{DDOA}	Power		Output supply pins for Bank A outputs.
26, 28, 30, 32	QB0, QB1, QB2, QB3	Output		Bank B clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
27, 31	V_{DDOB}	Power		Output supply pins for Bank B outputs.
34, 35	D_SELB1, D_SELB0	Input	Pulldown	Selects divider value for Bank B outputs as described in Table 3. LVCMOS / LVTTL interface levels.
36	OEB	Input	Pullup	Determines state of Bank B outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
37	OED	Input	Pullup	Determines state of Bank D outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
38, 39	D_SELD1, D_SELD0	Input	Pulldown	Selects divider value for Bank D outputs as described in Table 3. LVCMOS / LVTTL interface levels.
41	MR	Input	Pulldown	Active HIGH Master reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
42	FBDIV_SEL1	Input	Pulldown	Selects divider value for bank feedback output as described in Table 3. LVCMOS / LVTTL interface levels.
43	FBDIV_SEL0	Input	Pullup	Selects divider value for bank feedback output as described in Table 3. LVCMOS / LVTTL interface levels.
45	FB_IN	Input	Pulldown	Feedback input to phase detector for generating clocks with "zero delay". LVCMOS / LVTTL interface levels.
46	V _{DDOFB}	Power		Output supply pin for FB_Out output.
47	FB_OUT	Output		Feedback output. Connect to FB_IN. 15Ù typical output impedance. LVCMOS / LVTTL interface levels.
49, 51, 53, 55	QD3, QD2, QD1, QD0	Output		Bank D clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
50, 54	V_{DDOD}	Power		Output supply pins for Bank D outputs.
57, 59, 61, 63	QC3, QC2, QC1, QC0	Output		Bank C clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
58, 62	V_{DDOC}	Power		Output supply pins for Bank C outputs.

[[]a] Pullup and Pulldown refer to internal input resistors. See Table 2 for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor				51	kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51	kΩ
C _{PD}	Power Dissipation Capacitance (per output) ^[a]	V_{DD} , $V_{DDA} = 3.465V$; $V_{DDOx} = 3.465V$			9	pF
		V_{DD} , $V_{DDA} = 3.465V$; $V_{DDOx} = 2.625V$			11	pF
R _{OUT}	Output Impedance			15		Ω

 $[\]label{eq:vdd} \text{[a]} \ \ V_{\text{DDOX}} \, \text{denotes} \, V_{\text{DDOA}}, \, V_{\text{DDOB}}, \, V_{\text{DDOC}}, \, V_{\text{DDOD}}, \, V_{\text{DDOFB}}.$

Table 3. Output Control Pin Function

Inputs						Out	puts	
MR	OEA	OEB	OEC	OED	QA0:QA3	QB0:QB3	QC0:QC3	QD0:QD3
1	1	1	1	1	LOW	LOW	LOW	LOW
0	1	1	1	1	Active	Active	Active	Active
Х	0	0	0	0	HiZ	HiZ	HiZ	HiZ

Table 4. Operating Mode Function

Inputs				
PLL_SEL	Operating Mode			
0	Bypass			
1	PLL			

Table 5. PLL Input Function

Inputs						
XTAL_SEL	PLL Input					
0	REF_CLK					
1	XTAL Oscillator					

Table 6. Control Functions

				Outputs			
Inputs ^[a]					PLL_SEL = 1	Frequ	iency
D_SELx1	D_SELx0	FBDIV_SEL1	FBDIV_SEL0	Reference Frequency Range (MHz)	QX0:QX3	QX0:QX3 (MHz)	FB_OUT (MHz)
0	0	0	0	41.6 - 83.33	x 2	83.33 - 166.67	41.6 - 83.33
0	0	0	1	20.83 - 41.67	x 4	83.33 - 166.67	20.83 - 41.67
0	0	1	0	15.62 - 31.25	x 5.33	83.33 - 166.67	15.62 - 31.25
0	0	1	1	12.5 - 25	x 6.67	83.33 - 166.67	12.5 - 25
0	1	0	0	41.6 - 83.33	x 1.5	62.4 - 125	41.6 - 83.33
0	1	0	1	20.83 - 41.67	x 3	62.4 - 125	20.83 - 41.67
0	1	1	0	15.62 - 31.25	x 4	62.4 - 125	15.62 - 31.25
0	1	1	1	12.5 - 25	x 5	62.4 - 125	12.5 - 25
1	0	0	0	41.6 - 83.33	x 1	41.6 - 83.33	41.6 - 83.33
1	0	0	1	20.83 - 41.67	x 2	41.6 - 83.33	20.83 - 41.67
1	0	1	0	15.62 - 31.25	x 2.67	41.6 - 83.33	15.62 - 31.25
1	0	1	1	12.5 - 25	x 3.33	41.6 - 83.33	12.5 - 25
1	1	0	0	41.6 - 83.33	÷ 2	20.8 - 41.67	41.6 - 83.33
1	1	0	1	20.83 - 41.67	÷1	20.8 - 41.67	20.83 - 41.67
1	1	1	0	15.62 - 31.25	x 1.33	20.8 - 41.67	15.62 - 31.25
1	1	1	1	12.5 - 25	x 1.67	20.8 - 41.67	12.5 - 25

[[]a] D_SELX1 denotes D_SELA1, D_SELB1, D_SELC1, and D_SELD1. D_SELX0 denotes D_SELA0, D_SELB0, D_ SELC0, and D_SELD0. QX0:QX3 denotes QA0:QA3, QB0:QB3, QC0:QC3, and QD0:QD3.

Table 7. Control Functions - PCI Configuration

				Outputs			
	Inputs ^[a]					Frequ	iency
D_SELx1	D_SELx0	FBDIV_SEL1	FBDIV_SEL0	Reference Frequency (MHz)	QX0:QX3	QX0:QX3 (MHz)	FB_OUT (MHz)
0	0	0	0	66.67	x 2	133	66.67
0	0	0	1	33.33	x 4	133	33.33
0	0	1	0	25	x 5.33	133	25
0	0	1	1	20	x 6.67	133	20
0	1	0	0	66.67	x 1.5	100	66.67
0	1	0	1	33.33	x 3	100	33.33
0	1	1	0	25	x 4	100	25
0	1	1	1	20	x 5	100	20
1	0	0	0	66.67	x 1	66.67	66.67
1	0	0	1	33.33	x 2	66.67	33.33
1	0	1	0	25	x 2.67	66.67	25
1	0	1	1	20	x 3.33	66.67	20
1	1	0	0	66.67	÷ 2	33.33	66.67
1	1	0	1	33.33	÷1	33.33	33.33
1	1	1	0	25	x 1.33	33.33	25
1	1	1	1	20	x 1.67	33.33	20

[[]a] D_SELX1 denotes D_SELA1, D_SELB1, D_SELC1, and D_SELD1. D_SELX0 denotes D_SELA0, D_SELB0, D_ SELC0, and D_SELD0. QX0:QX3 denotes QA0:QA3, QB0:QB3, QC0:QC3, and QD0:QD3.

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8761I at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 8. Absolute Maximum Ratings

Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{DD}	Supply Voltage			4.6	V
V ₁	Inputs		-0.5V	V _{DD} + 0.5 V	V
V ₀	Outputs		-0.5V	V _{DDx} + 0.5 V	V
θ_{JA}	Package Thermal Impedance			41.1 (0 Ifpm)	°C/W
T _{STG}	Storage Temperature		-65	150	°C

DC Characteristics

Table 9. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDOX} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}$ to 85° C

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V_{DDOx}	Output Supply Voltage ^[a]		3.135	3.3	3.465	V
	Output Supply Voltage: 1		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				175	mA
I _{DDA}	Analog Supply Current				55	mA
I _{DDOx}	Output Supply Current ^[b]				25	mA

[[]a] V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOD} , V_{DDOFB} .

[[]b] I_{DDOx} denotes I_{DDOA}, I_{DDOB}, I_{DDOC}, I_{DDOD}, I_{DDOFB}.

Table 10. LVCMOS/LVTTL DC Characteristics, V_{DD} = V_{DDA} = 3.3V ±5%, V_{DDX} = 3.3V ±5% or 2.5V ±5%, T_A = -40° to 85°C

Symbol		Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	OEA:OED, XTAL_SEL, MR, D_ SELAX, D_SELBX, FB_IN, D_SELCX, D_SELDX, PLL_SEL, FBDIV_SEL0, FBDIV_SEL1		2		V _{DD} + 0.3	V
		REF_CLK		2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	OEA:OED, XTAL_SEL, MR, D_ SELAX, D_SELBX, FB_IN, D_SELCX, D_SELDX, PLL_SEL, FBDIV_SEL0, FBDIV_SEL1		-0.3		0.8	V
		REF_CLK		-0.3		1.3	V
I _{IH}	Input High	D_SELAx, D_SELBx, FB_IN, MR, D_SELCx, D_SELDx, REF_CLK, FBDIV_SEL1	$V_{DD} = V_{IN} = 3.465V \text{ or}$ 2.625V			150	μΑ
	Current	XTAL_SEL, PLL_SEL, FBDIV_ SEL0, OEA:OED	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μA
I _{IL}	Input Low	D_SELAx, D_SELBx, FB_IN, MR, D_SELCx, D_SELDx, REF_CLK, FBDIV_SEL1	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-5			μΑ
	Current	XTAL_SEL, PLL_SEL, FBDIV_ SEL0, OEA:OED	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ
V _{OH}	Output High Vo	oltano[a]	V _{DDOx} = 3.465V	2.6			V
V OH	Output riigii ve	лич	V _{DDOx} = 2.625V	1.8		V _{DD} + 0.3 0.8 1.3 150	
V _{OL}	Output Low Vo	ltage ^[a]	V _{DDOx} = 3.465V or 2.625V			0.5	V
I _{OZL}	Output Tristate	Current Low		-5			μΑ
I _{OZH}	Output Tristate	Current High				5	μΑ

[[]a] Outputs terminated with 50Ω to V_{DDOx} /2. For more information, see "Output Load Test Circuit" in Parameter Measurement Information.

Table 11. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		10		38	MHz
Equivalent Series Resistance (ESR)				70	Ω
Shunt Capacitance			7		pF
Drive Level				1	mW

Table 12. Crystal Characteristics

	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{REF}	Reference Frequency		12.5		83.33	MHz

Table 13. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDOx} = 3.3V \pm 5\%$, $T_A = -40^{\circ}$ to 85° C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166.67	MHz
t(Ø)	Static Phase Offset; Note 1, 7	f = 50MHz	-150		150	ps
<i>t</i> sk(b)	Bank Skew; Note 2, 6				50	ps
<i>t</i> sk(o)	Output Skew; Note 3, 6				250	ps
		f = 50MHz; Note 4, 7			70	ps
/jit(cc)	Cycle-to-Cycle Jitter; 6	f = 25MHz XTAL, 133.3MHz out			190	ps
/jit(per)	Period Jitter, RMS; Note 4, 6, 7, 8				17	ps
t _L	PLL Lock Time				1	ms
t _R / t _F	Output Rise/Fall Time	20 to 80%	250		800	ps
odc	Output Duty Cycle; Note 5, 7		45		55	%

Note 1: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. Measured from V_{DD} /2 of the input to V_{DDOx} /2 of the output.

Note 2: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.

Note 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOx} /2.

Note 4: Jitter performance using LVCMOS inputs.

Note 5: Measured using REF_CLK. For XTAL input, refer to Application Note.

Note 6: This parameter is defined in accordance with JEDEC Standard 65.

Note 7: Tested with D_SELXX =10 (divide by 6); FBDIV_SEL = 00 (divide by 6).

Note 8: This parameter is defined as an RMS value.

Table 14. AC Characteristics, V_{DD} = V_{DDA} = 3.3V $\pm 5\%$, V_{DDOx} = 2.5V $\pm 5\%$, T_A = -40° to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166.67	MHz
t(Ø)	Static Phase Offset; Note 1, 7	f = 50MHz	-350		20	ps
<i>t</i> sk(b)	Bank Skew; Note 2, 6				50	ps
<i>t</i> sk(o)	Output Skew; Note 3, 6				250	ps
		f = 50MHz; Note 4, 7			70	ps
/jit(cc)	Cycle-to-Cycle Jitter; Note 6	f = 25MHz XTAL, 133.3MHz out			190	ps
/jit(per)	Period Jitter, RMS; Note 4, 6, 7, 8				17	ps
t _L	PLL Lock Time				1	ms
t _R / t _F	Output Rise/Fall Time	20 to 80%	250		800	ps
odc	Output Duty Cycle; Note 5, 7		45		55	%

Note 1: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. Measured from V_{DD} /2 of the input to V_{DDOX} /2 of the output.

Note 2: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.

Note 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOx} /2.

Note 4: Jitter performance using LVCMOS inputs.

Note 5: Measured using REF_CLK. For XTAL input, refer to Application Note.

Note 6: This parameter is defined in accordance with JEDEC Standard 65.

Note 7: Tested with D_SELXX =10 (divide by 6); FBDIV_SEL = 00 (divide by 6).

Note 8: This parameter is defined as an RMS value.

Parameter Measurement Information

Figure 2. 3.3V Core/3.3V Output Load AC Test Circuit

Figure 4. Output Skew

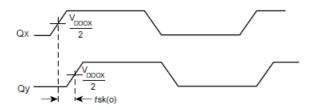


Figure 6. Cycle-to-Cycle Jitter

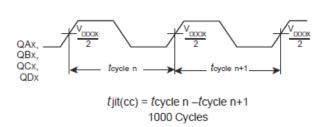


Figure 8. Output Duty Cycle/Pulse Width/Period

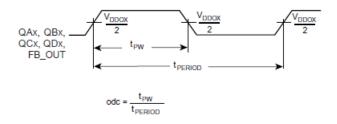


Figure 3. 3.3V Core/2.5V Output Load AC Test Circuit

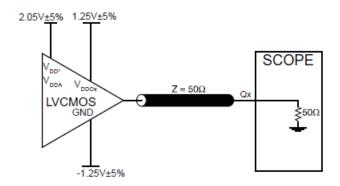


Figure 5. Bank Skew (Where X denotes outputs in the same bank)

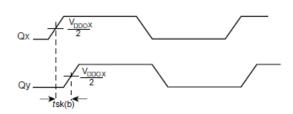


Figure 7. Static Phase Offset

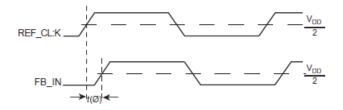
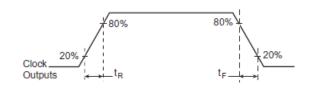
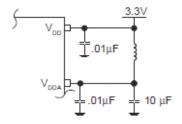



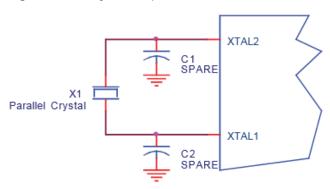
Figure 9. Output Rise/Fall Time



Application Information

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 8761I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} , and V_{DDOx} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 10 illustrates how a ferrite bead along with a $10\mu F$ and a $0.01\,F$ bypass capacitor should be connected to each V. DDA


Figure 10. Power Supply Filtering

Crystal Input Interface

The 8761I crystal interface is shown in Figure 11. While layout the PC Board, it is recommended to provide C1 and C2 spare footprints for frequency fine tuning. For an 18pF parallel resonant crystal, the C1 and C2 are expected to be ~10pF and ~5pF respectively.

Figure 11. Crystal Input Interface

Recommended for Unused Input and Output Pins

Inputs

Crystal Input

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

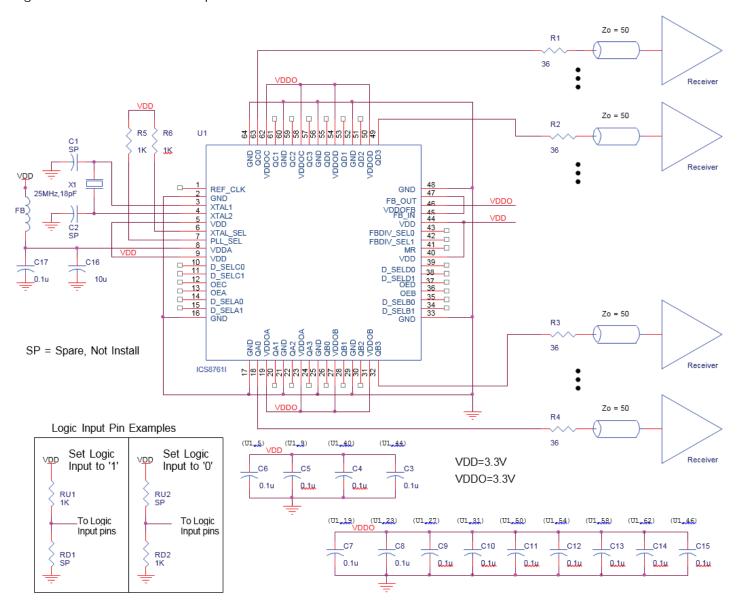
REF_CLK Input

For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF CLK to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs


LVCMOS Output

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

Schematic Example

Figure 12 shows a schematic example of the 8761I. In this example, the input is driven by an 18pF parallel crystal. The de-coupling capacitors should be physically located near the power pin. For 8761I, the unused clock outputs can be left floating. The optional C1 and C2 are spare footprints for frequency fine tuning.

Figure 12. Schematic Example

Reliability Information

Table 15. θ_{JA} versus Air Flow Table for 64 Lead TQFP

θ _{JA} by Velocity (Linear Feet per Minute) ^[a]				
	0	1	2	Unit
Single-Layer PCB, JEDEC Standard Test Boards	58.8	48.5	43.2	°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 41.1		35.8	33.6	°C/W

[[]a] Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for the 8761I is 6040.

Package Outline Drawings

Figure 13. Package Outline Drawings - Page 1

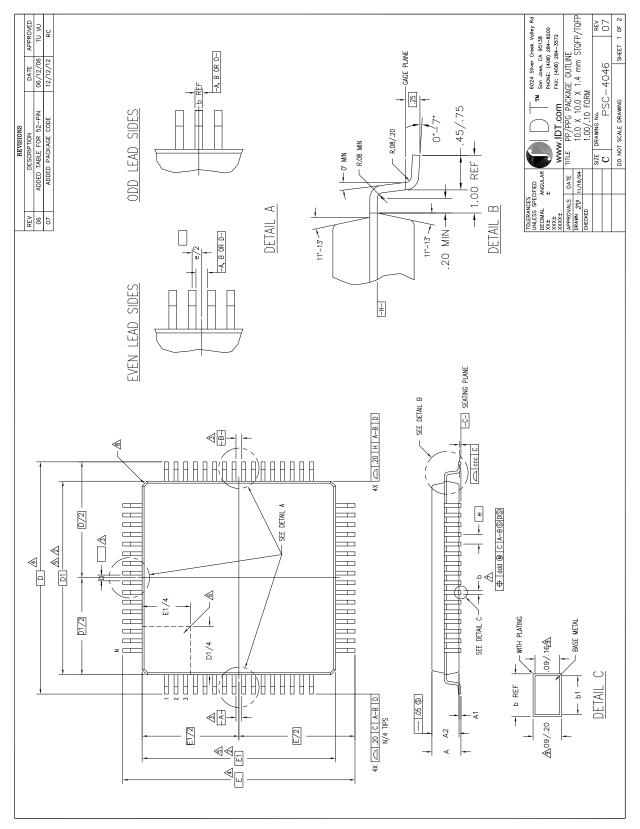
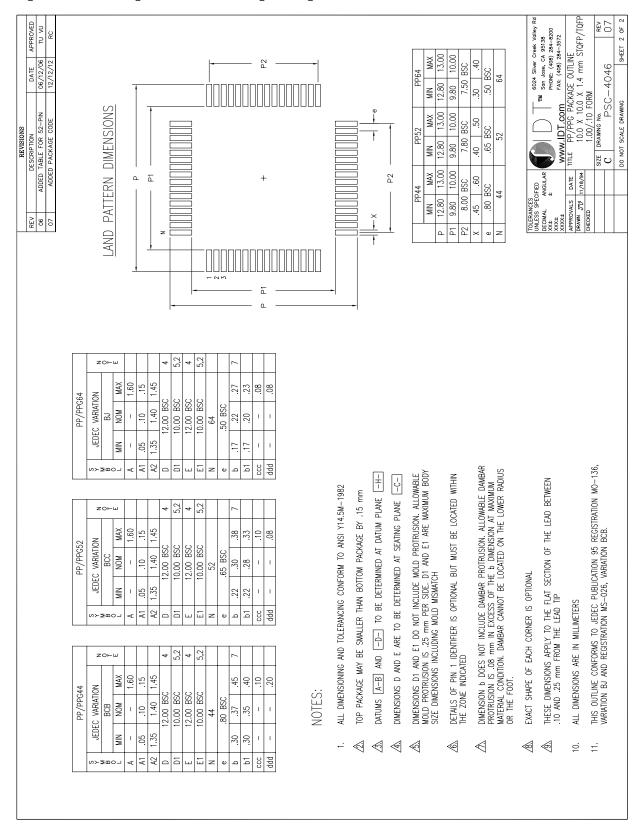



Figure 14. Package Outline Drawings - Page 2

Ordering Information

Orderable Part Number	Marking	Package	Carrier Type	Temperature
8761CYILF	ICS8761CYILF	64 lead "Lead Free" TQFP	Tray	-40°C to +85°C
8761CYILFT	ICS8761CYILF	64 lead "Lead Free" TQFP	Tape and Reel	-40°C to +85°C

Revision History

Revision Date	Description of Change
October 31, 2017	Fixed an incorrect part number.
October 16, 2017	 Changed LQFP references to TQFP. Updated the packaging information; however, no mechanical differences. Completed minor changes throughout the document
January 25, 2016	 Removed ICS from part numbers where needed. Features Section - removed reference to leaded package. Ordering Information - removed quantity from tape and reel. Deleted LF note below the table. Updated header and footer.
July 27, 2010	 Updated the header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.
January 13, 2006	 Pin Characteristics Table - changed C from 4pF max. to 4pF typical. Crystal Characteristics Table - added Drive Level. Power Supply Filtering Techniques - corrected last sentence in the paragraph Corrected Power Supply Filtering diagram. Added Recommendations for Unused Input and Output Pins. Corrected Schematic Example diagram. Ordering Information Table - added Lead-Free note.
October 5, 2004	 Features Section - added Lead-Free bullet. Added Crystal Section. Ordering Information Table - added Lead-Free Part Number. Updated format throughout the datasheet.

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales Tech Support www.IDT.com/go/supp ort

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.