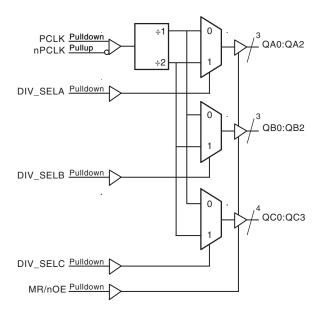
Low Skew, ÷1, ÷2 LVPECL-To-LVCMOS/LVTTL Clock

DATA SHEET

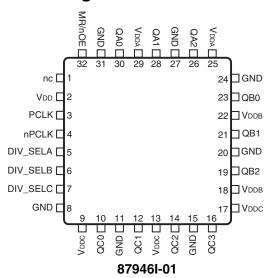
General Description

The 87946I-01 is a low skew, ÷1, ÷2 Clock Generator. The 87946I-01 has one LVPECL clock input pair. The PCLK/nPCLK pair can accept LVPECL, CML, or SSTL input levels. The low impedance

LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 10 to 20 by utilizing the ability of the outputs to drive two series terminated lines.


The divide select inputs, DIV_SELx, control the output frequency of each bank. The outputs can be utilized in the ÷1, ÷2 or a combination of ÷1 and ÷2 modes. The master reset input, MR/nOE, resets the internal frequency dividers and also controls the active and high impedance states of all outputs.

The 87946I-01 is characterized at 3.3V core/3.3V output and 3.3V core/2.5V output. Guaranteed bank, output and part-to-part skew characteristics make the 87946I-01 ideal for those clock distribution applications demanding well defined performance and repeatability.


Features

- Ten single ended LVCMOS/LVTTL outputs, 7Ω typical output impedance
- LVPECL clock input pair
- PCLK/nPCLK supports the following input levels: LVPECL, CML, SSTL
- Maximum input frequency: 250MHz
- Output skew: 120ps (maximum)
- Part-to-part skew: 700ps (maximum)
- Multiple frequency skew: 320ps (maximum)
- Additive phase jitter, RMS: 0.19ps (typical)
- 3.3V core, 3.3V or 2.5V output supply modes-40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

32-Lead LQFP 7mm x 7mm x 1.45mm package body Y Package **Top View**

Table 1. Pin Descriptions

Number	Name	T	уре	Description	
1	nc	Unused		No connect.	
2	V _{DD}	Power		Power supply pin.	
3	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.	
4	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.	
5	DIV_SELA	Input	Pulldown	Controls frequency division for Bank A outputs. See Table 3 LVCMOS/LVTTL interface levels.	
6	DIV_SELB	Input	Pulldown	Controls frequency division for Bank B outputs. See Table 3. LVCMOS/LVTTL interface levels.	
7	DIV_SELC	Input	Pulldown	Controls frequency division for Bank C outputs. See Table 3. LVCMOS/LVTTL interface levels.	
8, 11, 15, 20, 24, 27, 31	GND	Power		Power supply ground.	
9, 13, 17	V_{DDC}	Power		Output supply pins for Bank C outputs.	
10, 12, 14, 16	QC0, QC1, QC2, QC3	Output		Single-ended Bank C clock outputs. LVCMOS/LVTTL interface levels. 7Ω typical output impedance.	
18, 22	V_{DDB}	Power		Output supply pins for Bank B outputs.	
19, 21, 23	QB2, QB1, QB0	Output		Single-ended Bank B clock outputs. LVCMOS/LVTTL interface levels. 7Ω typical output impedance.	
25, 29	V_{DDA}	Power		Output supply pins for Bank A outputs.	
26, 28, 30	QA2, QA1, QA0	Output		Single-ended Bank A clock outputs. LVCMOS/LVTTL interface levels. 7Ω typical output impedance.	
32	MR/nOE	Input	Pulldown	Active HIGH Master Reset. Active LOW Output Enable. When logic HIGH the internal dividers are reset and the outputs are High-Impedance (Hi-When logic LOW, the internal dividers and the outputs are enabled. Se Table 3. LVCMOS/LVTTL interface levels.	

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance	$V_{DD} = V_{DDA} = V_{DDB} = V_{DDC} = 3.465V$			23	pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance		5	7	12	Ω

Function Tables

Table 3. Clock Input Function Table

	Inp	uts		Outputs			
MR/nOE	DIV_SELA	DIV_SELB	DIV_SELC	QA0:QA2	QB0:QB2	QC0:QC3	
1	Х	Х	X	High-Impedance	High-Impedance	High-Impedance	
0	0	X	X	fIN/1	Active	Active	
0	1	Х	Х	fIN/2	Active	Active	
0	Х	0	X	Active	fIN/1	Active	
0	Х	1	X	Active	fIN/2	Active	
0	Х	Х	0	Active	Active	fIN/1	
0	Х	Х	1	Active	Active	fIN/2	

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, V _O	-0.5V to V _{DDx} + 0.5V	
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 Ifpm)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDB} = V_{DDC} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
$V_{DDA}, V_{DDB}, V_{DDC}$	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				54	mA
I _{DDA} , I _{DDB} , I _{DDC}	Output Supply Current				23	mA

 $\textbf{Table 4B. Power Supply DC Characteristics, } V_{DD} = 3.3V \pm 5\%, \ V_{DDA} = V_{DDB} = V_{DDC} = 2.5V \pm 5\%, \ T_{A} = -40^{\circ}C \ to \ 85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
$V_{DDA}, V_{DDB}, V_{DDC}$	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				54	mA
I _{DDA} , I _{DDB} , I _{DDC}	Output Supply Current				22	mA

Table 4C. LVCMOS/LVTTL DC Characteristics, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	V _{DD} = 3.465V	-0.3		0.8	V
I _{IH}	Input High Current	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
I _{IL}	Input Low Current	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
V _{OH}	OUtput High Voltage; NOTE 1	$V_{DDA} = V_{DDB} = V_{DDC} = 3.465V$	2.6			V
V _{OL}	Output Low Voltage; NOTE 1	$V_{DDA} = V_{DDB} = V_{DDC} = 3.465V \text{ or } 2.525V$			0.5	V
I _{OZL}	Output Hi-Z Current Low		-5			μΑ
I _{OZH}	Output Hi-Z Current High				5	μΑ

NOTE 1: Outputs terminated with 50Ω to $V_{DDx}/2$. See Parameter Measurement Information section. Load Test Circuit diagrams.

Table 4D. LVPECL DC Characteristics, $T_A = -40^{\circ} C$ to $85^{\circ} C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	PCLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
l IH	Input High Current	nPCLK	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
	Input Low Current	PCLK	V _{DD} = 3.465V, V _{IN} = 0V	-5			μΑ
l IIL	Input Low Current	nPCLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μΑ
V _{PP}	Peak-to-Peak Voltag	je		0.3		1.0	V
V _{CMR}	Common Mode Inpu	t Voltage; NOTE 1		GND + 1.5		V_{DD}	V

NOTE 1: Common mode input voltage is defined as V_{IH} .

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDB} = V_{DDC} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

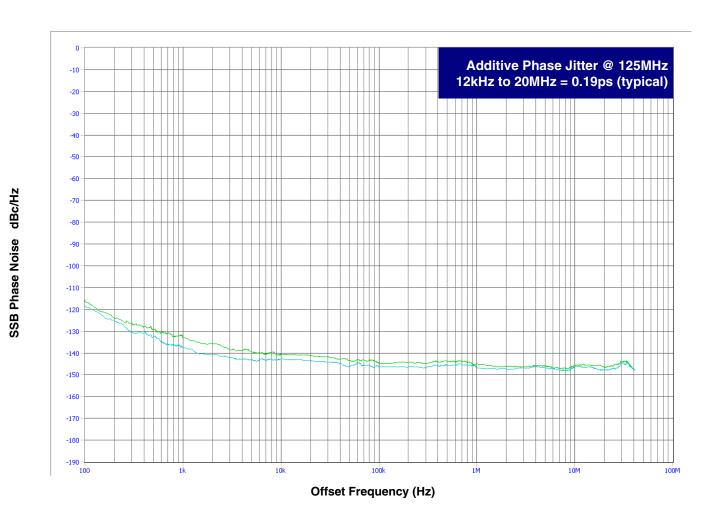
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
t _{PD}	Propagation Delay; NOTE 1	<i>f</i> ≤ 250MHz	2.3	3.1	3.8	ns
tsk(b)	Bank Skew, NOTE 2, 7	Measured on rising edge at V _{DDX} /2			30	ps
tsk(o)	Output Skew; NOTE 3, 7	Measured on rising edge at V _{DDX} /2			130	ps
tsk(w)	Multiple Frequency Skew; NOTE 4, 7	Measured on rising edge at V _{DDX} /2			320	ps
tsk(pp)	Part-to-Part Skew; NOTE 5, 7	Measured on rising edge at V _{DDX} /2			700	ps
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	125MHz, 12kHz – 20MHz		0.19		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	400		950	ps
odc	Output Duty Cycle		40	50	60	%
t _{EN}	Output Enable Time; NOTE 6	f= 10MHz			3	ns
t _{DIS}	Output Disable Time; NOTE 6	f= 10MHz			3	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

- NOTE 1: Measured from the differential input crossing point to $V_{DDX}/2$ of the output.
- NOTE 2: Defined as skew within a bank of outputs at the same supply voltages and with equal load conditions.
- NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDX}/2.
- NOTE 4: Defined as skew across banks of outputs operating at different frequencies with the same supply voltage and equal load conditions.
- NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDX}/2.
- NOTE 6: These parameters are guaranteed by characterization. Not tested in production.
- NOTE 7: This parameter is defined in accordance with JEDEC Standard 65.

Table 5B. AC Characteristics, V_{DD} = 3.3V \pm 5%, V_{DDA} = V_{DDB} = V_{DDC} = 2.5V \pm 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
t _{PD}	Propagation Delay; NOTE 1	<i>f</i> ≤ 250MHz	2.5	3.2	3.8	ns
tsk(b)	Bank Skew, NOTE 2, 7	Measured on rising edge at V _{DDX} /2			35	ps
tsk(o)	Output Skew; NOTE 3, 7	Measured on rising edge at V _{DDX} /2			120	ps
tsk(w)	Multiple Frequency Skew; NOTE 4, 7	Measured on rising edge at V _{DDX} /2			325	ps
tsk(pp)	Part-to-Part Skew; NOTE 5, 7	Measured on rising edge at V _{DDX} /2			700	ps
tjit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	125MHz, 12kHz – 20MHz		0.19		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	350		800	ps
odc	Output Duty Cycle		40	50	57	%
t _{EN}	Output Enable Time; NOTE 6	f= 10MHz			3	ns
t _{DIS}	Output Disable Time; NOTE 6	f= 10MHz			3	ns


For NOTES, please see Table 5A above.

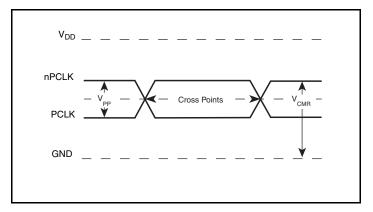
Additive Phase Jitter

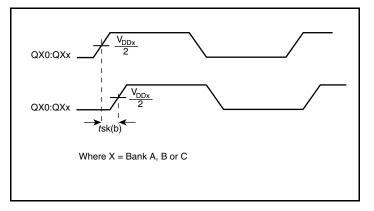
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

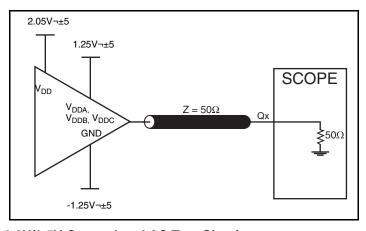
of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

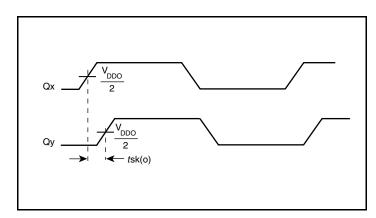


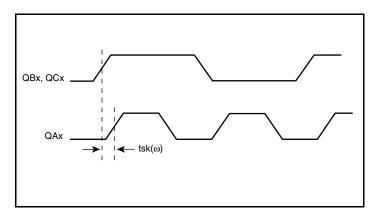
As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This


is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

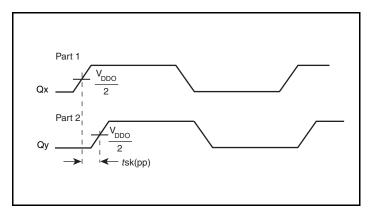

Parameter Measurement Information

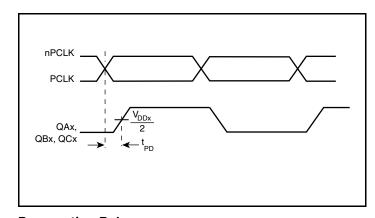

3.3V Output Load AC Test Circuit


Differential Input Level

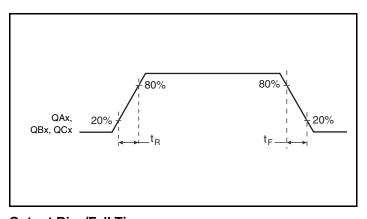

Bank Skew

3.3V/2.5V Output Load AC Test Circuit

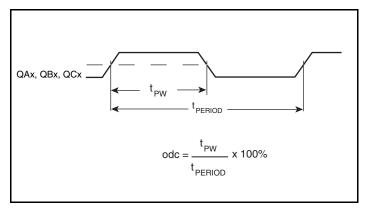

Output Skew



Multiple Frequency Skew



Parameter Measurement Information, continued



Part-to-Part Skew

Propagation Delay

Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period

Application Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k}\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

Wiring the Differential Input to Accept Single Ended Levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

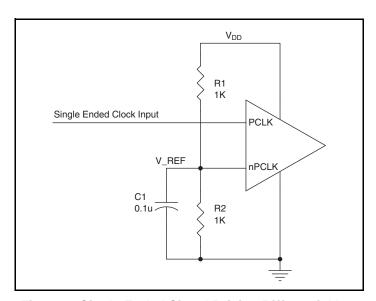


Figure 1. Single-Ended Signal Driving Differential Input

LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. The differential signal must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2E* show interface examples for the PCLK/nPCLK input driven by the most common driver types.

 $Z_{0} = 50\Omega$ $Z_{0} = 50\Omega$ CML IVPECLInput

Figure 2A. PCLK/nPCLK Input
Driven by a CML Driver

 $\begin{array}{c|c} Z_0 = 50\Omega \\ \hline \\ LVPECL \\ \hline \\ \hline \\ R1 \\ 84\Omega \\ \hline \\ R2 \\ 84\Omega \\ \hline \\ \hline \\ \end{array}$

Figure 2C. PCLK/nPCLK Input
Driven by a 3.3V LVPECL Driver

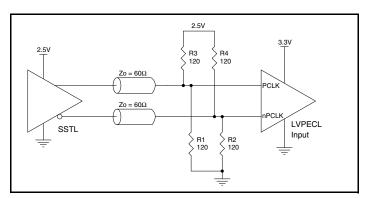


Figure 2E. PCLK/nPCLK Input
Driven by an SSTL Driver

The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

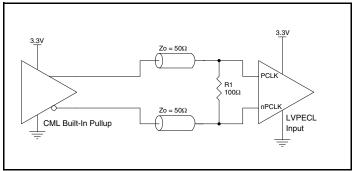


Figure 2B. PCLK/nPCLK Input
Driven by a Built-In Pullup CML Driver

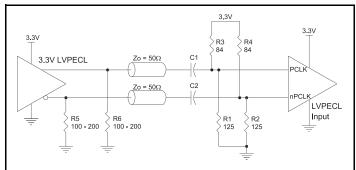


Figure 2D. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

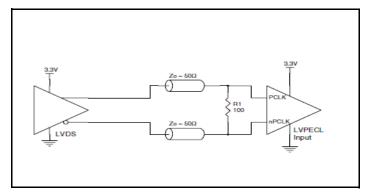


Figure 2F. PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 32 Lead LQFP

	θ_{JA} vs. Air Flow		
Linear Feet per Minute	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boa	rds. The data in the second	d row pertains to most design	าร.

Transistor Count

The transistor count for 87946I-01 is: 1204

Package Outline and Package Dimension

Package Outline - Y Suffix for 32 Lead LQFP

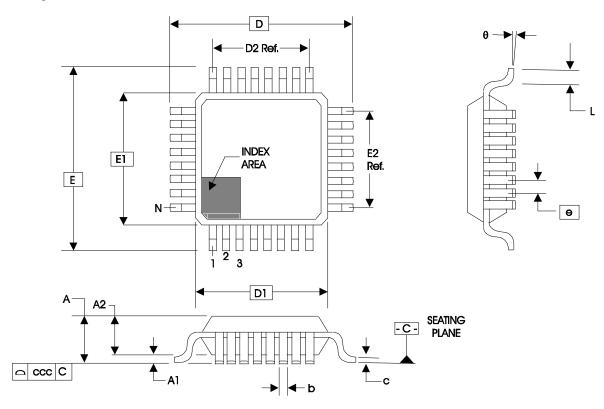


Table 7. Package Dimensions for 32 Lead LQFP

	JEDEC Variation: BBC - HD All Dimensions in Millimeters								
Symbol	Minimum								
N		32							
Α			1.60						
A 1	0.05	0.10	0.15						
A2	1.35	1.40	1.45						
b	0.30	0.37	0.45						
С	0.09		0.20						
D&E		9.00 Basic							
D1 & E1		7.00 Basic							
D2 & E2		5.60 Ref.							
е		0.80 Basic							
L	0.45 0.60 0.75								
θ	0°		7°						
ccc			0.10						

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87946AYI-01LF	ICS7946AI01L	"Lead-Free" 32 Lead LQFP	Tray	-40°C to 85°C
87946AYI-01LFT	ICS7946AI01L	"Lead-Free" 32 Lead LQFP	Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
	T5A & T5B	1	Features section added Additive Phase Jitter and Lead-Free bullets	
		5	AC Characteristics Tables - added Additive Phase Jitter row.	
		6	Added Additive Phase Jitter section.	
В		9	Application Section - added <i>Recommendations for Unused Input and Output Pins</i> .	5/4/07
	13		Ordering Information Table - added lead-free Part/Order Number and Note. Updated format throughout the datasheet.	
В	T8	13	Ordering Information Table - added lead-free marking. Updated header/footer of datasheet.	11/10/09
В	Т8	13	Ordering Information - removed leaded devices. Updated data sheet format.	7/21/15

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.IDT.com

Tech Support

email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

DT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.