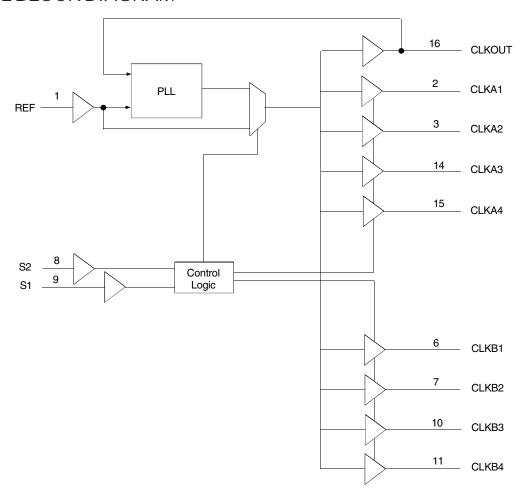


2.5V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM COMPATIBLE

IDT23S09T

FEATURES:

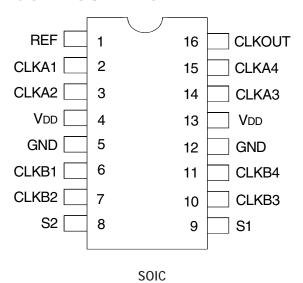

- · Phase-Lock Loop Clock Distribution
- 10MHz to 133MHz operating frequency
- Distributes one clock input to one bank of five and one bank of four outputs
- · Separate output enable for each output bank
- Output Skew < 250ps
- · Low jitter <200 ps cycle-to-cycle
- · No external RC network required
- · Operates at 2.5V VDD
- · Spread spectrum compatible
- · Available in SOIC package

DESCRIPTION:

The IDT23S09T is a high-speed phase-lock loop (PLL) clock buffer, designed to address high-speed clock distribution applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133 MHz.

The IDT23S09T is a 16-pin version of the IDT23S05T. The IDT23S09T accepts one reference input, and drives two banks of four low skew clocks. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad. In the absence of an input clock, the IDT23S09T enters power down, and the outputs are tri-stated. In this mode, the device will draw less than $12\mu A$.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

MAY 2010

PIN CONFIGURATION

TOP VIEW

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- PC Motherboards/Workstations
- Critical Path Delay Designs

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VDD	Supply Voltage Range	-0.5 to +4.6	V
VI (2)	Input Voltage Range (REF)	-0.5 to +5.5	V
Vı	Input Voltage Range	-0.5 to	V
	(except REF)	VDD+0.5	
IIK (VI < 0)	Input Clamp Current	-50	mA
Io (Vo = 0 to VDD)	Continuous Output Current	±50	mA
VDD or GND	Continuous Current	±100	mA
TA = 55°C	Maximum Power Dissipation	0.7	W
(in still air) ⁽³⁾			
Tstg	Storage Temperature Range	-65 to +150	°C
Operating	Commercial Temperature	0 to +70	°C
Temperature	Range		

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

PIN DESCRIPTION

Pin Name	Pin Number	Туре	Functional Description
REF ⁽¹⁾	1	IN	Input reference clock, 3.3V tolerant input
CLKA1 ⁽²⁾	2	Out	Output clock for bank A
CLKA2 ⁽²⁾	3	Out	Output clock for bank A
VDD	4, 13	PWR	2.5V Supply
GND	5,12	GND	Ground
CLKB1 ⁽²⁾	6	Out	Output clock for bank B
CLKB2 ⁽²⁾	7	Out	Output clock for bank B
S2 ⁽³⁾	8	IN	Select input Bit 2
S1 ⁽³⁾	9	IN	Select input Bit 1
CLKB3 ⁽²⁾	10	Out	Output clock for bank B
CLKB4 ⁽²⁾	11	Out	Output clock for bank B
CLKA3 ⁽²⁾	14	Out	Output clock for bank A
CLKA4 ⁽²⁾	15	Out	Output clock for bank A
CLKOUT ⁽²⁾	16	Out	Output clock, internal feedback on this pin

NOTES:

- 1. Weak pull down.
- 2. Weak pull down on all outputs.
- 3. Weak pull ups on these inputs.

2.5V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM COMPATIBLE

FUNCTION TABLE(1)

S2	S1	CLKA	CLKB	CLKOUT ⁽²⁾	Output Source	PLL Shut Down
L	L	Tri-State	Tri-State	Driven	PLL	N
L	Н	Driven	Tri-State	Driven	PLL	N
Н	L	Driven	Driven	Driven	REF	Υ
Н	Н	Driven	Driven	Driven	PLL	N

NOTES:

- 1. H = HIGH Voltage Level.
 - L = LOW Voltage Level
- 2. This output is driven and has an internal feedback for the PLL. The load on this ouput can be adjusted to change the skew between the REF and the output.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage Level		_	0.7	V
VIH	Input HIGH Voltage Level		1.7	_	V
lıL	Input LOW Current	VIN = 0V	_	50	μΑ
Іін	Input HIGH Current	VIN = VDD	_	100	μΑ
Vol	Output LOW Voltage	Standard Drive, IoL = 8mA	_	0.3	V
Vон	Output HIGH Voltage	Standard Drive, Iон = -8mA	2	_	V
IDD_PD	Power Down Current	REF = 0MHz (S2 = S1 = H)	_	12	μΑ
IDD	Supply Current	Unloaded Outputs at 66.66MHz, SEL inputs at VDD or GND	_	32	mA

OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	2.3	2.7	V
TA	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance 10MHz - 133MHz	_	15	pF
CIN	Input Capacitance	_	7	pF

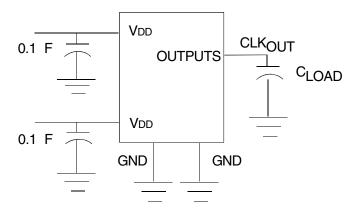
SWITCHING CHARACTERISTICS (1,2)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	15pF Load	10	_	133	MHz
	Duty Cycle = t2 ÷ t1	Measured at VDD/2, FOUT = 66.66MHz	40	50	60	%
ts	Rise Time	Measured between 0.7V and 1.7V	-	_	2.5	ns
t4	FallTime	Measured between 0.7V and 1.7V	_	_	2.5	ns
t5	Output to Output Skew	All outputs equally loaded	-	_	250	ps
t6A	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at VDD/2	-	0	±350	ps
t6B	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at VDD/2 in PLL bypass mode	1	5	8.7	ns
t7	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
tı	Cycle-to-Cycle Jitter	Measured at 66.66MHz, loaded outputs	_	_	200	ps
tlock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	_	_	1	ms

NOTES:

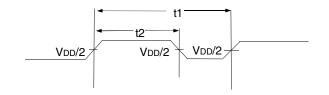
- 1. REF Input has a threshold voltage of VDD/2.
- 2. All parameters specified with loaded outputs.

ZERO DELAY AND SKEW CONTROL

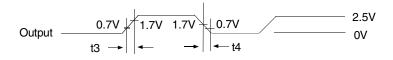

All outputs should be uniformly loaded in order to achieve Zero I/O Delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative loading can affect and adjust the input/output delay.

For designs utilizing zero I/O Delay, all outputs including CLKOUT must be equally loaded. Even if the output is not used, it must have a capacitive load equal to that on the other outputs in order to obtain true zero I/O Delay. For zero output-to-output skew, all outputs must be loaded equally.

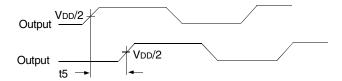
SPREAD SPECTRUM COMPATIBLE


Many systems being designed now use a technology called Spread Spectrum Frequency Timing Generation. This product is designed not to filter off the Spread Spectrum feature of the reference input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew, which may cause problems in systems requiring synchronization.

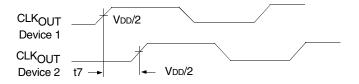
TEST CIRCUIT



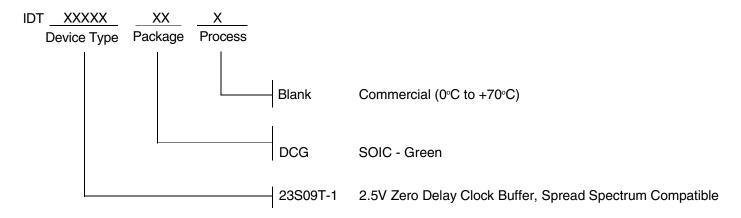
Test Circuit for All Parameters


SWITCHING WAVEFORMS


Duty Cycle Timing


All Outputs Rise/Fall Time

Output to Output Skew



Input to Output Propagation Delay

Device to Device Skew

ORDERING INFORMATION

Part / Order Number	Shipping Packaging	Package	Temperature
23S09T-1DCG	Tubes	16-pin SOIC	0° to +70° C
23S09T-1DCG8	Tape and Reel	16-pin SOIC	0° to +70° C

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: clockhelp@idt.com