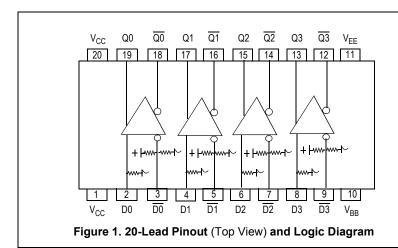


3.3 V ECL/PECL Quad Differential Receiver


MC100ES6017

The MC100ES6017 is a 3.3 V ECL/PECL quad differential receiver. Under open input conditions, the \overline{D} input will be biased at $V_{CC}/2$ and the D input will be pulled down to V_{EE} . This operation will force the Q output LOW and ensure stability.

For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

- · High bandwidth output transitions
- LVPECL operating range: V_{CC} = 3.0 V to 3.6 V
- Internal input pulldown resistors on D inputs, pullup and pulldown resistors on D inputs
- 20 lead SOIC package
- Ambient temperature range -40°C to +85°C

ECL/PECL QUAD DIFFERENTIAL RECEIVER

DW SUFFIX 20 LEAD SOIC PACKAGE CASE 751D-06

ORDERING INFORMATION								
Device	Package							
MC100ES6017DW	SO-20							
MC100ES6017DWR2	SO-20							

PIN DESCRIPTION						
Pin	Function					
Dn, Dn	ECL Differential Data Inputs					
Qn, Qn	ECL Differential Data Outputs					
V _{BB}	Reference Voltage Output					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					

Table 1. General Specifications

Characteristic	Value		
Internal Input Pulldown Resistor	75 kΩ		
Internal Input Pullup Resistor	75 kΩ		
SD Protection Human Body Model Machine Model Charged Device Model		> 2000 V > 200 V > 1500 V	
θ_{JA} Thermal Resistance (Junction to Ambient)	0 LFPM, 20 SOIC 500 LFPM, 20 SOIC	90 °C/W 60 °C/W	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Te	est		

Table 2. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Rating	Unit	
V _{SUPPLY}	Power Supply Voltage	difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} - 0.3	V V
l _{out}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source		± 0.5	mA
TA	Operating Temp Range		-40 to +85	°C
T _{STG}	Storage Temp Range		-65 to +150	°C

^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 3. DC Characteristics (V_{CC} = 3.0 to 3.6 V; V_{EE} = 0 V or V_{CC} = 0 V; V_{EE} = -3.6 to -3.0 V)

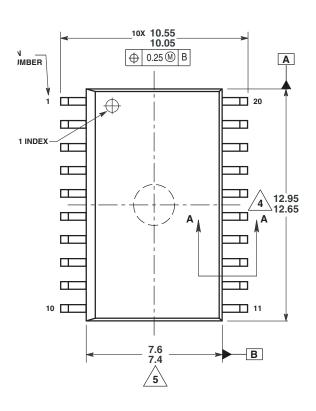
			-40°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		20	31		28	35	mA
V _{OH} ⁽¹⁾	Output HIGH Voltage	V _{CC} - 1150	V _{CC} - 1020	V _{CC} - 800	V _{CC} - 1200	V _{CC} - 970	V _{CC} - 750	mV
V _{OL} ⁽¹⁾	Output LOW Voltage	V _{CC} - 1950	V _{CC} - 1620	V _{CC} - 1250	V _{CC} - 2000	V _{CC} - 1680	V _{CC} - 1300	mV
V _{IH}	Input HIGH Voltage	V _{CC} - 1165		V _{CC} - 880	V _{CC} - 1165		V _{CC} - 880	mV
V _{IL}	Input LOW Voltage	V _{CC} - 1810		V _{CC} - 1475	V _{CC} - 1810		V _{CC} - 1475	mV
V _{BB} ⁽²⁾	Output Voltage Reference (I _{BB} = 0.5 mA)	V _{CC} - 1440		V _{CC} - 1235	V _{CC} - 1440		V _{CC} - 1235	mV
V _{PP}	Differential Input Votage	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage	V _{EE} + 1.3		V _{CC} - 0.9	V _{EE} + 1.3		V _{CC} - 0.9	V
I _{IH}	Input HIGH Current			150			150	μΑ
I _{IL}	Input LOW Current Dn Dn	0.5 -300			0.5 -300			μ Α μ Α

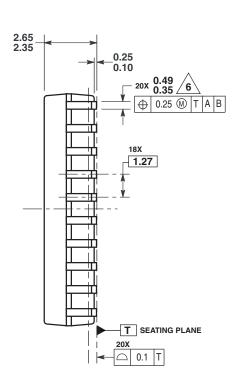
^{1.} Outputs are terminated through a 50Ω resistor to $\mbox{V}_{\mbox{CC}}\mbox{-2}$ volts.

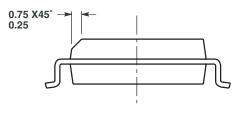
^{2.} Input swing is centered around V_{BB}.

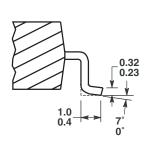
Table 4. AC Characteristics (V_{CC} = 3.0 to 3.6 V; V_{EE} = 0 V or V_{CC} = 0 V; V_{EE} = -3.6 to -3.0 V)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		1.75			1.75			1.75		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Diff S.E. ⁽¹⁾	310 225		510 595	310 225		510 595	310 225		510 595	ps
t _{SKEW}	Data Path Skew ⁽²⁾ (differential) Part-to-Part Skew ⁽²⁾ (differential) Pulse Width Skew ^{(2) (3)} (differential)			50 200 50			50 200 50			50 200 50	ps
t _{JITTER}	Cycle to Cycle Jitter			1			1			1	ps
V _{PP} ⁽⁴⁾	Input Swing	150		1000	150		1000	150		1000	mV
t _r / t _f	Output Rise/Fall Times (20% - 80%)	50		250	50		250	50		250	ps


^{1.} Single-ended input propagation delay requires t_r and $t_f \le 350$ ps to meet specified propagation delay. Device will function with larger t_r and t_f values.


^{2.} Skews are valid across specified voltage range, part-to-part skew is for a given temperature and frequency


^{3.} Pulse width skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.


^{4.} VPP (min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of approximately 40.

PACKAGE DIMENSIONS

SECTION A-A

CASE 751D-06 ISSUE H DW SUFFIX

NOTEC.

- DIMENSIONS ARE IN MILLIMETERS.
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- A SME 114.3M, 1994.

 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- ATT THE FASTIS BOOK.

 ATHIS DIMENSION DOES NOT INCLUDE MOLD
 FLASH, PROTRUSION OR GATE BURRS. MOLD
 FLASH, PROTRUSION OR GATE BURRS SHALL
 NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION
 IS DETERMINED AT THE PLANE WHERE THE
 BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- SUTTOM OF THE LEADS EATH THE PLASTIC BOUTS.
 THIS DIMENSION DOES NOT INCLUDE INTER-LEAD
 FLASH OR PROTRUSIONS. INTER-LEAD FLASH
 AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM
 PER SIDE. THIS DIMENSION IS DETERMINED AT
 THE PLANE WHERE THE BOTTOM OF THE LEADS
 EXIT THE PLASTIC BODY.
- EXIT THE PLASTIC BODY.

 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE WIDTH TO EXCEED 0.62 MM.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200

Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 **United States** 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA