

3.3 V ECL/PECL/HSTL/LVDS ÷2/4, ÷4/5/6 Clock Generation Chip

MC100ES6139

The MC100ES6139 is a low skew ÷2/4, ÷4/5/6 clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended ECL or, if positive power supplies are used, LVPECL input signals. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device. If a singleended input is to be used, the V_{BB} output should be connected to the \overline{CLK} input and bypassed to ground via a 0.01 μF capacitor.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple ES6139s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one ES6139, the MR pin need not be exercised as the internal divider design ensures synchronization between the ÷2/4 and the ÷4/5/6 outputs of a single device. All V_{CC} and V_{EE} pins must be externally connected to power supply to guarantee proper operation.

The 100ES Series contains temperature compensation.

Features

- Maximum Frequency >1.0 GHz Typical
- 50 ps Output-to-Output Skew
- PECL Mode Operating Range: V_{CC} = 3.135 V to 3.8 V with V_{EE} = 0 V
- ECL Mode Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.135 \text{ V}$ to -3.8 V
- Open Input Default State
- Synchronous Enable/Disable
- Master Reset for Synchronization of Multiple Chips
- V_{RR} Output
- LVDS and HSTL Input Compatible
- 20-Lead Pb-Free Package Available



20-LEAD TSSOP PACKAGE **CASE 948E-03**

20-LEAD TSSOP PACKAGE Pb-FREE PACKAGE CASE 948E-03

ORDERING INFORMATION						
Device	Package					
MC100ES6139DT	TSSOP-20					
MC100ES6139DTR2	TSSOP-20					
MC100ES6139EJ	TSSOP-20 (Pb-Free)					
MC100ES6139EJR2	TSSOP-20 (Pb-Free)					

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View)

Table 1. Pin Description

Pin	Function
CLK ⁽¹⁾ , CLK ⁽¹⁾	ECL Diff Clock Inputs
EN ⁽¹⁾	ECL Sync Enable
MR ⁽¹⁾	ECL Master Reset
V_{BB}	ECL Reference Output
Q0, Q1, Q0, Q1	ECL Diff ÷2/4 Outputs
Q2, Q3, <u>Q2</u> , <u>Q3</u>	ECL Diff ÷4/5/6 Outputs
DIVSELa ⁽¹⁾	ECL Freq. Select Input ÷2/4
DIVSELb0 ⁽¹⁾	ECL Freq. Select Input ÷4/5/6
DIVSELb1 ⁽¹⁾	ECL Freq. Select Input ÷4/5/6
V _{CC}	ECL Positive Supply
V _{EE}	ECL Negative Supply

1. Pins will default low when left open.

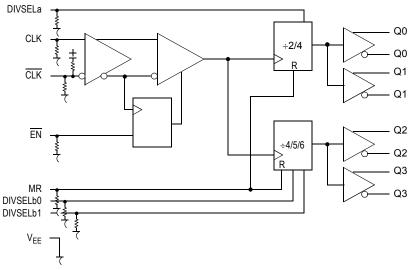


Figure 2. Logic Diagram

Table 2. Function Tables

CLK	EN	MR	Function
Z	L	L	Divide
ZZ	Н	L	Hold Q0:3
Х	X	Н	Reset Q0:3

X = Don't Care

Z = Low-to-High Transition

ZZ = High-to-Low Transition

DIVS	SELa	Q0:1 Outputs
I	L - I	Divide by 2 Divide by 4
DIVSELb0	DIVSELb1	Q2:3 Outputs
L H L H	L L H H	Divide by 4 Divide by 6 Divide by 5 Divide by 5

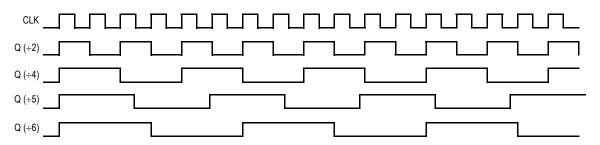


Figure 3. Timing Diagram

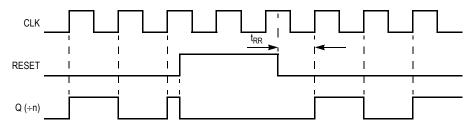


Figure 4. Timing Diagram

Table 3. Attributes

Characteristics	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
	rotection Human Body Model Machine Model Charged Device Model	

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. Maximum Ratings⁽¹⁾

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		3.9	V
V _{EE}	ECL Mode Power Supply	V _{CC} = 0 V		-3.9	V
VI	PECL Mode Input Voltage ECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{aligned} &V_I \leq V_{CC} \\ &V_I \geq V_{EE} \end{aligned}$	3.9 -3.9	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	20 TSSOP 20 TSSOP	74 64	°C/W

^{1.} Maximum Ratings are those values beyond which device damage may occur.

Table 5. DC Characteristics ($V_{CC} = 0 \text{ V}, V_{EE} = -3.8 \text{ V} \text{ to } -3.135 \text{ V} \text{ or } V_{CC} = 3.135 \text{ V} \text{ to } 3.8 \text{ V}, V_{EE} = 0 \text{ V})^{(1)}$

Symbol	nbol Characteristic		-40°C			0°C to 85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		35	60		35	60	mA	
V _{OH}	Output HIGH Voltage ⁽²⁾	V _{CC} –1150	V _{CC} -1020	V _{CC} -800	V _{CC} –1200	V _{CC} –970	V _{CC} –750	mV	
V _{OL}	Output LOW Voltage ⁽²⁾	V _{CC} –1950	V _{CC} –1620	V _{CC} –1250	V _{CC} –2000	V _{CC} –1680	V _{CC} –1300	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	V _{CC} –1165		V _{CC} -880	V _{CC} -1165		V _{CC} –880	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	V _{CC} –1810		V _{CC} -1475	V _{CC} –1810		V _{CC} –1475	mV	
V _{BB}	Output Reference Voltage	V _{CC} –1400		V _{CC} –1200	V _{CC} -1400		V _{CC} –1200	mV	
V _{PP}	Differential Input Voltage ⁽³⁾	0.12		1.3	0.12		1.3	V	
V _{CMR}	Differential Cross Point Voltage ⁽⁴⁾	V _{EE} +0.2		V _{CC} -1.1	V _{EE} +0.2		V _{CC} –1.1	V	
I _{IH}	Input HIGH Current			150			150	μΑ	
I _{IL}	Input LOW Current	0.5			0.5			μА	

MC100ES6139 circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
 The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

^{2.} All loading with 50 Ω to V $_{\mbox{CC}}\mbox{--}2.0$ volts.

^{3.} V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

^{4.} V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Symbol	Characte	riatio		-40°C			25°C			85°C		Unit
Symbol	Character	ristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequenc	у		> 1			> 1			> 1		GHz
t _{PLH} , t _{PHL}	Propagation Delay	CLK, Q (Diff) MR, Q	550 400		850 850	550 400		850 850	550 400		850 850	ps
t _{RR}	Reset Recovery		200	100		200	100		200	100		ps
t _s	Setup Time	EN, CLK DIVSEL, CLK	200 400	120 180		200 400	120 180		200 400	120 180		ps
t _h	Hold Time	CLK, EN CLK, DIVSEL	100 200	50 140		100 200	50 140		100 200	50 140		ps
t _{PW}	Minimum Pulse Wid	th MR	550	450		550	450		550	450		ps
t _{SKEW}	Within Device Skew Q, Q @ Sa Device-to-Device Sk	me Frequency			100 50 300			100 50 300			100 50 300	ps
t _{JITTER}	Cycle-to-Cycle Jitter	(RSM 1σ)			1			1			1	ps
V _{PP}	Input Voltage Swing	(Differential)	200		1200	200		1200	200		1200	mV
V _{CMR}	Differential Cross Po	oint Voltage	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V
t _r t _f	Output Rise/Fall Tin (20% – 80%)	nes Q, $\overline{\mathbb{Q}}$	50	_	300	50	_	300	50		300	ps

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} –2.0 V.
- 2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

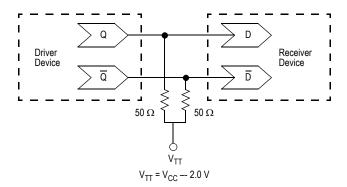
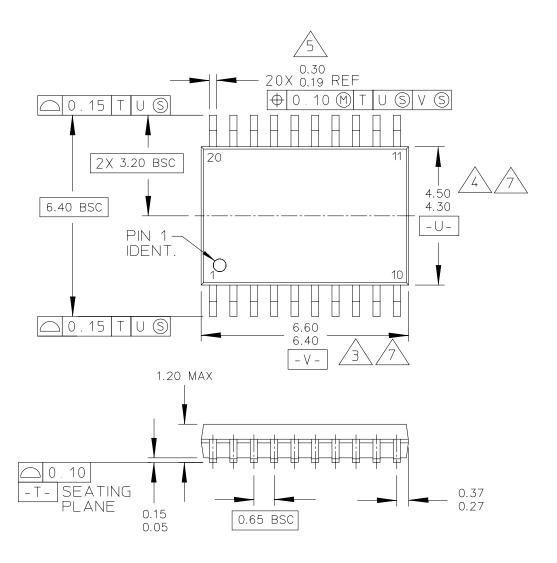
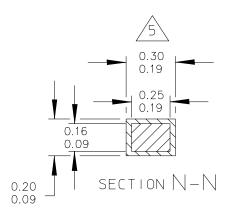
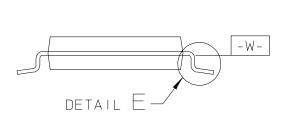
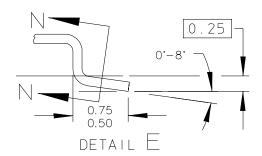



Figure 5. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS




© FREE	SCALE SEMICONDUCTOR, IN	NC.	MECHANICAL OUTLINE		PRINT VERSION NO	TO SCALE
TITLE:				DOCUMENT NO): 98ASH70169A	RE√: B
	20 LD TSSOP, I	PITCH	0.65MM	CASE NUMBER	∷ 948E-03	09 MAR 2005
				STANDARD: JE	DEC	


PAGE 1 OF 3

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PRINT VERSION NO	IT TO SCALE
TITLE:	- 20 D TSSHP PITCH 045MM]: 98ASH70169A	RE∨: B
20 LD TSSOP, PITC			R: 948E-03	09 MAR 2005
			DEC	

PAGE 2 OF 3

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

/4ackslash dimension does not include interlead flash or protrusion. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

/5\ DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

	Λ	
/	7	

/7ackslash dimensions are to be determined at datum plane $\lceil -Wceil$.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI			MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:				DOCUMENT NO]: 98ASH70169A	RE∨: B
	20 LD TSSOP,	LD TSSOP, PITCH 0.65MM			R: 948E-03	09 MAR 2005
				STANDARD: JE	EDEC	

PAGE 3 OF 3

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

IDT™ 3.3 V ECL/PECL/HSTL/LVDS ÷2/4, ÷4/5/6 Clock Generation Chip

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200

Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA