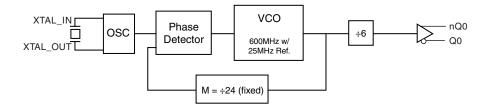
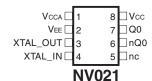


GENERAL DESCRIPTION

The NV021 is a Fibre Channel Clock Generator and a member of the HiPerClocks™ family of high performance devices from ICS. The NV021 can synthesize 98.304MHz, 100MHz, and 106.25MHz from a 24.576MHz, 25MHz, and 26.5625MHz crystals respectively. The NV021 is packaged in a small 8-pin SOIC, making it ideal for use in systems with limited board space.


FEATURES

- 1 differential 3.3V LVPECL output
- Crystal frequency range: 23.33MHz 28.33MHz
- Output frequencies: 98.304MHz, 100MHz. 106.25MHz
- VCO range: 560MHz 680MHz
- · Low RMS phase jitter
- 3.3V operating supply
- Available in both, Standard and RoHS/Lead-Free compliant packages
- -30°C to 85°C ambient operating temperature


FREQUENCY TABLE

Crystal (MHz)	Output Frequency (MHz)
24.576	98.304
25	100
26.5625	106.25

BLOCK DIAGRAM

PIN ASSIGNMENT

8-Lead SOIC 3.90mm x 4.90mm x 1.37mm package body M Package Top View

FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1	V_{CCA}	Power		Analog supply pin.
2	$V_{\sf EE}$	Power		Negative supply pin.
3, 4	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	nc	Unused		No connect.
6, 7	nQ0, Q0	Output		Differential clock outputs. LVPECL interface levels.
8	V _{cc}	Power		Core supply pin.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF

FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} 4.6V

Inputs, V_i -0.5V to V_{CC} + 0.5V

Outputs, I_O

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, θ_{JA}

 8 Lead SOIC
 112.7°C/W (0 lfpm)

 8 Lead TSSOP
 101.7°C/W (0 mps)

 Storage Temperature, T_{STG}
 -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, Ta = -30°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	٧
V _{CCA}	Analog Supply Voltage		3.135	3.3	3.465	٧
I _{EE}	Power Supply Current				90	mA

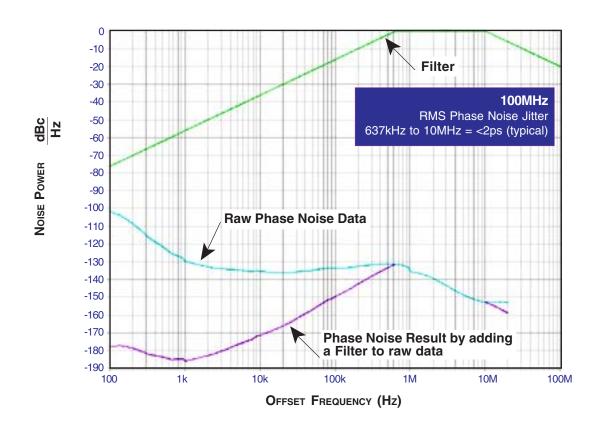
Table 3B. LVPECL DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, Ta = -30°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 1.4		V _{cc} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 Ω to $\rm V_{cc}$ - 2V.

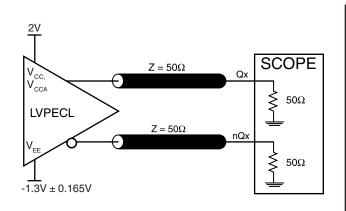
TABLE 4. CRYSTAL CHARACTERISTICS

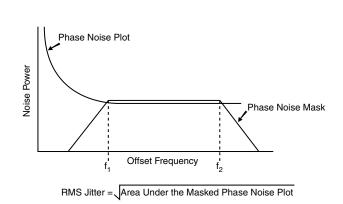
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		F	undamenta	I	
Frequency		23.33		28.33	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW


Table 5. AC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 5\%$, $T_A = -30^{\circ}C$ to $85^{\circ}C$

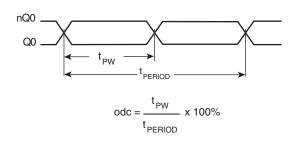
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
F _{out}	Output Frequency		93.33		113.33	MHz
		98.304MHz; Integration Range: 12kHz - 20MHz		<1		ps
<i>t</i> jit(Ø)	RMS Phase Jitter (Random); NOTE 1	100MHz; Integration Range: 637kHz - 10MHz		<1		ps
		106.25MHz; Integration Range: 637kHz - 5MHz		<1		ps
t_R/t_F	Output Rise/Fall Time	20% to 80%	300		600	ps
odc	Output Duty Cycle		48		52	%

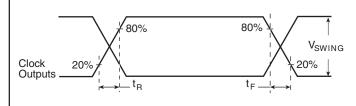
NOTE 1: Please refer to the Phase Noise Plot.


Typical Phase Noise at 100MHz



FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR


PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

3.3V LVPECL CLOCK GENERATOR

APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The NV021 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm CC}$ and $V_{\rm CCA}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10 Ω resistor along with a 10 μF and a .01 μF bypass capacitor should be connected to each V_{CCA} pin.

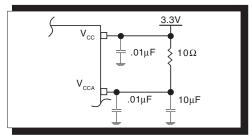
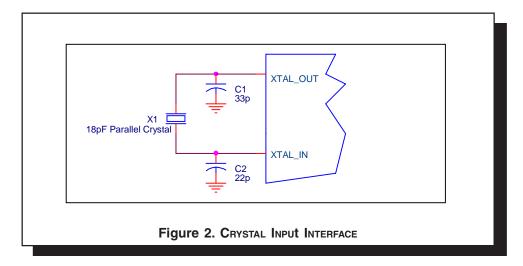



FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The NV021 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

FEMTOCLOCKSTMCRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CRYSTAL INPUT:

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1 \mbox{k}\Omega$ resistor can be tied from XTAL_IN to ground.

OUTPUTS:

LVPECL OUTPUT

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

TERMINATION FOR 3.3V LVPECL OUTPUT

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

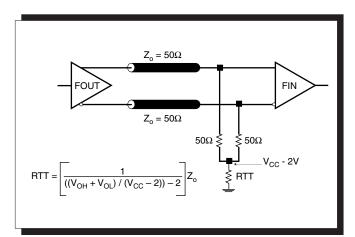


FIGURE 3A. LVPECL OUTPUT TERMINATION

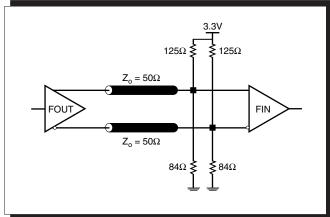


FIGURE 3B. LVPECL OUTPUT TERMINATION

NVU21

FEMTOCLOCKSTMCRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the NV021. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the NV021 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 90mA = 311.85mW
- Power (outputs)_{MAY} = 30mW/Loaded Output pair

Total Power $_{MAX}$ (3.465V, with all outputs switching) = 311.85mW + 30mW = 341.85mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS $^{\text{TM}}$ devices is 125 $^{\circ}$ C.

The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_total + T_A$

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 $T_A = Ambient Temperature$

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\rm JA}$ must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 6A below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

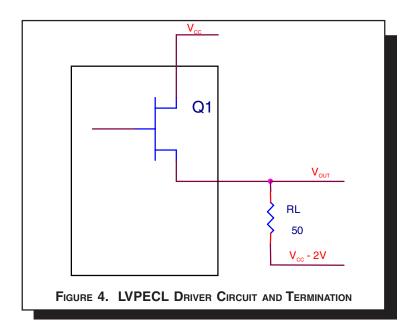
 $85^{\circ}\text{C} + 0.342\text{W} * 103.3^{\circ}\text{C/W} = 120.3^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6A. Thermal Resistance θ_{ia} for 8-pin SOIC, Forced Convection

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	153.3°C/W	128.5°C/W	115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	112.7°C/W	103.3°C/W	97.1°C/W

Table 6B. Thermal Resistance θ_{ia} for 8-pin TSSOP, Forced Convection


θ _{JA} by Velocity	(Meters per Sec	ond)		
	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5°C/W	89.8°C/W	

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 4.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$$

$$(V_{CCO\ MAX} - V_{OH\ MAX}) = 0.9V$$

• For logic low,
$$V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.7V$$

$$(V_{CCO\ MAX} - V_{OL\ MAX}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_{L}] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = \textbf{19.8mW}$$

$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_{_L}] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_{_L}] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

FEMTOCLOCKSTMCRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

RELIABILITY INFORMATION

Table 7A. $\theta_{\rm JA} {\rm vs.}$ Air Flow Table for 8 Lead SOIC

θ_{IA} by Velocity (Linear Feet per Minute)

 0
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 153.3°C/W
 128.5°C/W
 115.5°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 112.7°C/W
 103.3°C/W
 97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Table 7B. $\theta_{\text{JA}} \text{vs. Air Flow Table for 8 Lead TSSOP}$

θ_{AA} by Velocity (Meters per Second)

 0
 1
 2.5

 Multi-Layer PCB, JEDEC Standard Test Boards
 101.7°C/W
 90.5°C/W
 89.8°C/W

TRANSISTOR COUNT

The transistor count for NV021 is: 1839

PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

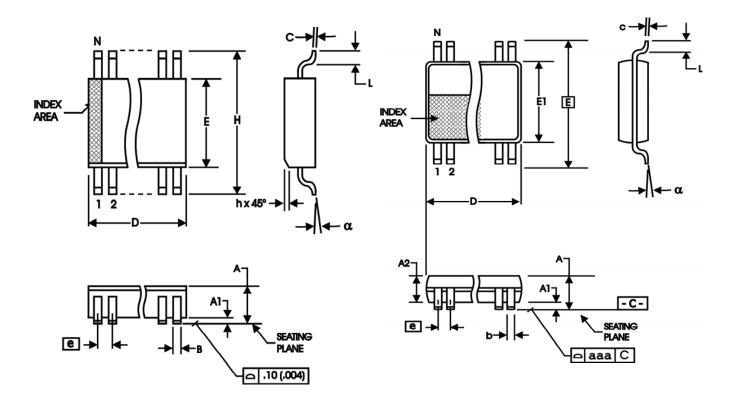


TABLE 8A. PACKAGE DIMENSIONS

SYMBOL	Millin	neters
STWBOL	MINIMUN	MAXIMUM
N	8	8
А	1.35	1.75
A1	0.10	0.25
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
E	3.80	4.00
е	1.27 [BASIC
Н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

TABLE 8B. PACKAGE DIMENSIONS

SYMBOL	Millin	neters
STWBOL	Minimum	Maximum
N	8	3
А		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
С	0.09	0.20
D	2.90	3.10
E	6.40 E	BASIC
E1	4.30	4.50
е	0.65 E	BASIC
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
NV021AMLF	NV021AML	8 lead "Lead-Free" SOIC	tube	-30°C to 85°C
NV021AMLFT	NV021AML	8 lead "Lead-Free" SOIC	2500 tape & reel	-30°C to 85°C

Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
В	T4 T5	1 3 3 7	Features section and Frequency Table - added 98.304MHz and 106.25MHz output frequencies, and added 24.576MHz and 26.5625MHz crystal frequencies. Crystal Characteristics - added Drive Level. AC Characteristics - added 98.304MHz and 106.25MHz to RMS Phase Jitter. Added Recommendations for Unused Input and Output Pins.	7/26/05
В	Т8	1 12	Updated datasheet format to IDT. Removed TSSOP package information. Table 8, Ordering Information - removed leaded and TSSOP devices.	4/2/14

FEMTOCLOCKSTMCRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

We've Got Your Timing Solution.

6024 Silver Creek Valley Road

Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA)

Fax: 408-284-2775

Tech Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2014. All rights reserved.