Intel® Intel386™ DX MICROPROCESSOR
32-BIT CHMOS MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

m Flexible 32-Bit Microprocessor m Optimized for System Performance
— 8, 16, 32-Bit Data Types — Pipelined Instruction Execution
— 8 General Purpose 32-Bit Registers — On-Chip Address Translation Caches

m Very Large Address Space —20, 25 and 33 MHz Clock
— 4 Gigabyte Physical —40, 50 r_:md 66 Megabytes/Sec Bus
— 64 Ierabyte Virtual Bandwidth
— 4 Gigabyte Maximum Segment Size m Numerics Support via Intel387™ DX

m Integrated Memory Management Unit Math Coprocessor
— Virtual Memory Support m Complete System Development
— Optional On-Chip Paging Support
— 4 Levels of Protection — Software: C, PL/M, Assembler
— Fully Compatible with 80286 System Generation Tools

m Object Code Compatible with All 8086 — Debuggers: PSCOPE, ICET-386
Family Microprocessors m High Speed CHMOS IV Technology

m Virtual 8086 Mode Allows Running of . .
8086 Software in a Protected and 132 Pin Grid Array Package
Paged System m 132 Pin Plastic Quad Flat Package

(See Packaging Specification, Order #231369)

m Hardware Debugging Support

The Intel386 DX Microprocessor is an entry-level 32-bit microprocessor designed for single-user applications
and operating systems such as MS-DOS and Windows. The 32-bit registers and data paths support 32-bit
addresses and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes
(2**46) of virtual memory. The integrated memory management and protection architecture includes address
translation registers, multitasking hardware and a protection mechanism to support operating systems. Instruc-
tion pipelining, on-chip address translation, ensure short average instruction execution times and maximum
system throughput.

The Intel386 DX CPU offers new testability and debugging features. Testability features include a self-test and
direct access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code
execution or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the
Intel386 DX offers immediate access to the world’s largest microprocessor software base.

SEGMENTATION UNIT PAGING UNIT BUS CONTROL
HOLD, INTR, NMI
EFFECTIVE ADDRESS BUS > St K 5 aooer R ERROR, BUSY
32 IORITIZE! RESET, HLDA

32

DESCRIPTOR PAGE
REGISTERS CACHE

EFFECTIVE ADDRESS BUS

LIMIT AND
ATTRIBUTE

CONTROL AND
ATTRIBUTE

ADDRESS BEO# - BE3#.
oRiveR [az= A3t
M/10#,D/C4,
PIPELINE/ Y
W/RE, LOCKE,
> BUS SIZE |y ey

ConTROL 8516, READY#

TRANS- H 00-D31

2V | cavers

PROTECTION
TEST UNIT

i

PREFETCHER/
LIMIT

BARREL
SHIFTER,
ADDER | sTATUS

CODE FETCH / PAGE TABLE FETCH

DECODE AND

SEQUENCING DECODER
MuLTIPLY /| FLAGS CHECKER
DIVIDE
cone
16 BYTE
REGISTER conTROL s-pecopen | , sTREAM [T8 ST
FILE QUEUE
ALU QUEUE
CONTROL 32-81m
ALY CONTROL INSTRUCTION INSTRUCTION
PREDECODE PREFETCH 32
DEDICATED ALU BUS

231630-49
Intel386™ DX Pipelined 32-Bit Microarchitecture

Intel386™ DX and Intel387™ DX are Trademarks of Intel Corporation.
MS-DOS and Windows are Trademarks of MICROSOFT Corporation.

*Other brands and names are the property of their respective owners.

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

COPYRIGHT © INTEL CORPORATION, 1995 December 1995 Order Number: 231630-011

wqdwqd s wdwd

Intel386™ DX MICROPROCESSOR
32-BIT CHMOS MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

CONTENTS PAGE
1. PIN ASSIGNMENT ... 5
1.1 Pin Description Table 6

. BASE ARCHITECTURE e 8
2.1 INtrodUCHION 8
2.2 Register OVEIVIEWttt e 8
2.3 Register Descriplions i 9
2.4 InStruCtion Set 15
2.5 Addressing MOdes 18
2.6 Data TYPeS ..ot 20
2.7 Memory Organizationc.oonouiuiin ittt 22
2.8 1/O SPACE ...ttt 23
2.0 INEITUPES .. 24
2.10 Resetand Initialization 27
211 Testabilityo 28
2.12 Debugging SUpport 28

. REAL MODE ARCHITECTURE e 32
3.1 Real Mode Introduction e 32
3.2 Memory AdAresSiNgttt 33
3.3 Reserved LOoCationst 34
B4 I EITUD S .ot e 34
3.5 Shutdown and Halt e 34

. PROTECTED MODE ARCHITECTURE e 34
4.1 INtrodUCHION ..o 34
4.2 Addressing Mechanism ... 35
4.3 Segmentation 36
4.4 ProteCtion i 46
A5 Paging ..ot e 52
4.6 Virtual 8086 Environment 56

. FUNCTIONAL DA T A e e e 61
5.1 INtrOdUCHION 61
5.2 Signal DesCripliont e 61
B5.2.1 INtrodUCHION 61
B5.2.2 CloCK (CLK2) ...t e e 62
5.2.3 DataBus (DOthrough D31) ... e 62
5.2.4 Address Bus (BEO# through BE3#, A2 through A31), 62
5.2.5 Bus Cycle Definition Signals (W/R#, D/C#, M/IO, LOCK#) 63
5.2.6 Bus Control Signals (ADS#, READY #, NA#,BS16#)c.ccoviviinn.. 64
5.2.7 Bus Arbitration Signals (HOLD, HLDA) ...t 65
5.2.8 Coprocessor Interface Signals (PEREQ, BUSY #, ERROR#) 65
5.2.9 Interrupt Signals (INTR, NMI, RESET)ot 66
5.2.10 Signal SUMMArYttt e e 67

CONTENTS PAGE
5. FUNCTIONAL DATA (Continued)

5.3. Bus Transfer Mechanism 67

B5.3.1 IntroducCtion 67

5.83.2 Memory and [/O SPaCESuitt et et 68

5.3.3 Memory and I/0 Organizationc.oooiiiiiiiiiii i 69

5.3.4 Dynamic Data BuS Sizingc.ouiiniuiiiii e 69

5.3.5 Interfacing with 32- and 16-bit Memories i 70

5.3.6 Operand AligNmentt 71

5.4 Bus Functional DescCriptiono i e 71

5.4 IntrodUCtion 71

5.4.2 Address Pipeliningot 74

5.4.3 Read and Write CyCles ..ot 76

5.4.4 Interrupt Acknowledge (INTA) CycClesooiuiiiiiiii i 87

5.4.5 HaltIndication CyClet 88

5.4.6 Shutdown Indication CycCleo i 89

5.5 Other Functional Descriptionst 90

5.5.1 Entering and Exiting Hold Acknowledge i 90

5.56.2 Resetduring Hold Acknowledge 90

5.5.3 Bus Activity During and Following Reset 90

5.6 Self-test Signature i 92

5.7 Component and Revision Identifiers 92

5.8 Coprocessor INterface 94

5.8.1 Software Testing for Coprocessor Presencec.ciiiiiiiiiiiiininin. 94

6. INSTRUCTION SET ...t 95

6.1 Instruction Encoding and Clock Count Summary ..., 95

6.2 Instruction Encoding Details 110

7. DESIGNING FOR ICE™-386 DX EMULATORUSEttt 117

8. MECHANIC AL DAT A .. e e 119

8.1 INtrodUCHION 119

8.2 Package Dimensions and Mounting i 119

8.3 Package Thermal Specificationo 122

9. ELECTRICAL DAT A e 123

9.1 Introduction 123

9.2 Power and Groundingoniiiuini e 123

9.3 Maximum Ratings 124

9.4 D.C. SPeCifiCationSttt 124

9.5 A.C.Specificationst 125

10. REVISION HISTORY e 137
NOTE:

This is revision 011; This supercedes all previous revisions.

intgl.

1. PIN ASSIGNMENT

The Intel386 DX pinout as viewed from the top side
of the component is shown by Figure 1-1. Its pinout
as viewed from the Pin side of the component is
Figure 1-2.

Intel386™ DX MICROPROCESSOR

Vce and GND connections must be made to multi-
ple Voo and Vgg (GND) pins. Each Vg and Vsg
must be connected to the appropriate voltage level.
The circuit board should include Voo and GND
planes for power distribution and all Vgg and Vgg

pins must be connected to the appropriate plane.

Pins identified as “N.C.” should remain completely
unconnected.

P N M L K J H G F E D [B A A B c D E F G H J K L M N P

1l ccccococ oo O ! 1 0 0 0 O 0O 0 0 O o 0 o |+
A30 A27 A26 A23 A21 A20 A17 A16 AIS A14 AN AB VSS VCC VCC VSS A8 A1l A4 A1S AI6 A17 A20 A21 A23 A26 A27 A30

2 c c c c c c cCc c cCc ccccCccC 2 2 o O O O O O O [e] O O O 2
VCc K31 A9 A4 AZ2 VRS ATB VCC VSS ATS Ao A7 A ves VS A5 A7 ATD AT3 VS VGO AIB VRS AZ2 A24 AZ9 A1 VCC

3 c 2 2 2 2 C C 2 2 T T C 3 3 O O 0O 0O OO0 OO0 0O O 0O O O O 3
D30 VSS VCC A28 A25 VSS A19 VCC VSS A2 A9 AB A4 A3 A3 A4 A6 Ag A12 VSS VCC A19 VSS A25 A28 VCC VSS D30

4| ¢ c ¢ o 4 +| o o o 0 0 0 |«
D29 vec ves P NN R vis voc 029

5 c T C Z T C 5 5 O O O O O O 5
D26 D27 D31 veCe VSS vee VCC VSS vee METAL LID D31 D27 D26

3 s ¢ C c ¢ C 3 6 O 0O O O O O 6
VSS D25 D28 NC NC VsS VSS NC NC D28 D25 VSS

7 c C L c T C 7 7 O O O o O O 7
D24 vCC VCC NC INTR VCC VCC INTR NC vCcC VvCC D24

8 c T C c C C 8 8 O O O O O O 8
YCC D23 VSS PEREQ NMI ERROR# ERROR# NMI PEREQ VSS D23 vCC

9| C ¢ ¢ c c < | B o 0 0 0 0 |-
D22 D21 D20 RESETBUSY# VSS VSS BUSY# RESET D20 D21 D22

w|l ¢ ¢ ¢ c oz | |l o 0 0 0 |
D19 D17 VSS LOCK# W/R# VCC VCC W /Rf LOCK# vss D17 D19

1" Z T C c C C 1 1" (e} O O O 11
D18 D16 D15 VSS VSS D/C# D/C# VSS VSS Di5S D16 D18

12 ¢ g cCcCccCccCc e 12 12 O 0O OO0 0O 0O 0 0 O o O 12
D14 D12 DIO VCC D7 VSS DO VCC CLK2 BEO# VCC VCC NC M/I0# M/I0# NC VCC VCC BEO# CLK2 VCC DO VSS D7 VCC D10 D12 D14

13 Z 2 c c cc cc c cCccCccCccCccC 13 13 O O O O O O 0 OO0 O O 0O © 13
DI3 D11 VCC D8 DS VSS DI READY§ NC NC NA§ BEI# BE2§ BE3# BE3# BE2# BE1# NA# NC NC READY# DI VSS DS D8 VCC D11 D13

sl o ¢ cccc oo | 14 o o 0O 0 0 0 O o o |
\VSS D3 HLDA D& D4 D3 D2 VCC VSS ADSy§ HOLD BS16# VSS VCC VCC VSS BS16# HOLD ADS# VSS VCC D2 D3 D4 D6 HLDA D9 VSS
P N M L K J H G F E D [B A A B < D E F G H J K L M N P

231630-33 231630-34

Figure 1-1. Intel386™ DX PGA
Pinout—View from Top Side

Figure 1-2. Intel386™ DX PGA
Pinout—View from Pin Side

Table 1-1. Intel386™ DX PGA Pinout—Functional Grouping

Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin
A2 C4 A24 L2 D6 L14 D28 M6 Voo C12 Vss F2
A3 A3 A25 K3 D7 K12 D29 P4 D12 F3
A4 B3 A26 M1 D8 L13 D30 P3 G2 F14
A5 B2 A27 N1 D9 N14 D31 M5 G3 J2
A6 C3 A28 L3 D10 M12 D/C# A1 G12 J3
A7 c2 A29 M2 D11 N13 ERROR # A8 G14 J12
A8 C1 A30 P1 D12 N12 HLDA M14 L12 J13
A9 D3 A31 N2 D13 P13 HOLD D14 M3 M4
A10 D2 ADS # E14 D14 P12 INTR B7 M7 M8
Al D1 BEO # E12 D15 M11 LOCK # Cc10 M13 M10
A12 E3 BE1# C13 D16 N11 M/IO# A12 N4 N3
A13 E2 BE2# B13 D17 N10 NA# D13 N7 P6
Al4 E1 BE3# A13 D18 P11 NMI B8 P2 P14
A15 F1 BS16# C14 D19 P10 PEREQ c8 P8 W/R# B10
A16 G1 BUSY # B9 D20 M9 READY # G13 Vss A2 N.C. A4
A17 H1 CLK2 F12 D21 N9 RESET Cc9 A6 B4
A18 H2 DO H12 D22 P9 Veo Al A9 B6
A19 H3 D1 H13 D23 N8 A5 B1 B12
A20 J1 D2 H14 D24 P7 A7 B5 Cé
A21 K1 D3 J14 D25 N6 A10 B11 Cc7
A22 K2 D4 K14 D26 P5 A4 B14 E13
A23 L1 D5 K13 D27 N5 C5 C11 F13

n
Intel386™ DX MICROPROCESSOR |n‘te| .

1.1 PIN DESCRIPTION TABLE

The following table lists a brief description of each pin on the Intel386 DX. The following definitions are used in
these descriptions:

The named signal is active LOW.

| Input signal.

(0] Output signal.

170 Input and Output signal.

— No electrical connection.

For a more complete description refer to Section 5.2 Signal Description.

Symbol Type Name and Function

CLK2 | CLK2 provides the fundamental timing for the Intel386 DX.

D31-Dg 1/0 DATA BUS inputs data during memory, 1/0 and interrupt acknowledge
read cycles and outputs data during memory and I/O write cycles.

Agz1-As o} ADDRESS BUS outputs physical memory or port I/0 addresses.

BEO # -BE3 # (0] BYTE ENABLES indicate which data bytes of the data bus take part in
a bus cycle.

W/R# (0] WRITE/READ is a bus cycle definition pin that distinguishes write
cycles from read cycles.

D/C# (0] DATA/CONTROL is a bus cycle definition pin that distinguishes data
cycles, either memory or I/0, from control cycles which are: interrupt
acknowledge, halt, and instruction fetching.

M/IO # (0] MEMORY 1/0 is a bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

LOCK # O BUS LOCK is a bus cycle definition pin that indicates that other
system bus masters are denied access to the system bus while it is
active.

ADS # (0] ADDRESS STATUS indicates that a valid bus cycle definition and
address (W/R#, D/C#, M/IO#, BEO#, BE1#, BE2#, BE3# and
Ag1-Ay) are being driven at the Intel386 DX pins.

NA # | NEXT ADDRESS is used to request address pipelining.

READY # | BUS READY terminates the bus cycle.

BS16# | BUS SIZE 16 input allows direct connection of 32-bit and 16-bit data
buses.

HOLD | BUS HOLD REQUEST input allows another bus master to request
control of the local bus.

u
|n'te| . Intel386™ DX MICROPROCESSOR

1.1 PIN DESCRIPTION TABLE (Continued)

Symbol Type Name and Function

HLDA (0] BUS HOLD ACKNOWLEDGE output indicates that the Intel386 DX
has surrendered control of its local bus to another bus master.

BUSY # | BUSY signals a busy condition from a processor extension.

ERROR # | ERROR signals an error condition from a processor extension.

PEREQ | PROCESSOR EXTENSION REQUEST indicates that the processor
extension has data to be transferred by the Intel386 DX.

INTR INTERRUPT REQUEST is a maskable input that signals the Intel386

DX to suspend execution of the current program and execute an
interrupt acknowledge function.

NMI NON-MASKABLE INTERRUPT REQUEST is a non-maskable input
that signals the Intel386 DX to suspend execution of the current
program and execute an interrupt acknowledge function.

RESET RESET suspends any operation in progress and places the Intel386
DX in a known reset state. See Interrupt Signals for additional
information.

N/C — NO CONNECT should always remain unconnected. Connection of a

N/C pin may cause the processor to malfunction or be incompatible
with future steppings of the Intel386 DX.

Vee | SYSTEM POWER provides the + 5V nominal D.C. supply input.

Vss | SYSTEM GROUND provides 0V connection from which all inputs and
outputs are measured.

Intel386™ DX MICROPROCESSOR

2. BASE ARCHITECTURE

2.1 INTRODUCTION

The Intel386 DX consists of a central processing
unit, a memory management unit and a bus inter-
face.

The central processing unit consists of the execu-
tion unit and instruction unit. The execution unit con-
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo-
rithm. The multiply algorithm stops the iteration
when the most significant bits of the multiplier are all
zero. This allows typical 32-bit multiplies to be exe-
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement a virtual memory system,
the Intel386 DX supports full restartability for all
page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an Intel386 DX can have a maximum of 16,381
segments of up to four gigabytes each, thus provid-
ing 64 terabytes (trillion bytes) of virtual memory to
each task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel386 DX has two modes of operation: Real
Address Mode (Real Mode), and Protected Virtual
Address Mode (Protected Mode). In Real Mode the
Intel386 DX operates as a very fast 8086, but with

intgl.

32-bit extensions if desired. Real Mode is required
primarily to setup the processor for Protected Mode
operation. Protected Mode provides access to the
sophisticated memory management, paging and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect-
ed from one another and the host Intel386 DX oper-
ating system, by the use of paging, and the 1/0 Per-
mission Bitmap.

Finally, to facilitate high performance system hard-
ware designs, the Intel386 DX bus interface offers
address pipelining, dynamic data bus sizing, and di-
rect Byte Enable signals for each byte of the data
bus. These hardware features are described fully be-
ginning in Section 5.

2.2 REGISTER OVERVIEW

The Intel386 DX has 32 register resources in the
following categories:

e General Purpose Registers
e Segment Registers

® |nstruction Pointer and Flags
e Control Registers

e System Address Registers

® Debug Registers

® Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit In-
tel386 DX.

Figure 2-1 shows all of Intel386 DX base architec-
ture registers, which include the general address
and data registers, the instruction pointer, and the
flags register. The contents of these registers are
task-specific, so these registers are automatically
loaded with a new context upon a task switch opera-
tion.

The base architecture also includes six directly ac-
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in Intel386 DX segment registers of Figure
2-1. Various selector values can be loaded as a pro-
gram executes, if desired.

intgl.

GENERAL DATA AND ADDRESS REGISTERS
31 16 15 0
AX EAX
BX EBX
cX ECX
DX EDX
si ES
DI EDI
BP EBP
P ESP
SEGMENT SELECTOR REGISTERS
15 0
cs CODE
ss STACK
DS '
ES DATA
Fs
GS
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0
P EIP
FLAGS | EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad-
dress, Debug, and Test, are primarily used by sys-
tem software.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers

General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI,

Intel386™ DX MICROPROCESSOR

BP, and SP. When accessed as a 16-bit operand,
the upper 16 bits of the register are neither used nor
changed.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0
AH AlX AL EAX
BH B|X BL EBX
CH ox cL ECX
DH D|X DL EDX
S| ESl
DI EDI
BP EBP
SP ESP
31 16 15 0
| | er
-
P

Figure 2-2. General Registers
and Instruction Pointer

2.3.2 Instruction Pointer

The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next in-
struction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the Intel386 DX. The
lower 16 bits (bit 0-15) of EFLAGS contain the
16-bit flag register named FLAGS, which is most
useful when executing 8086 and 80286 code.

Intel386™ DX MICROPROCESSOR

NOTE:
0 indicates Intel reserved: do not define; see section 2.3.10.

FLAGS

3322222222221111111111
10987654321098765432109876543210

VIR NpIOP |OJDLI1}T|S)Z A P [

EFLAGS RESERVED FOR INTEL MEN RN EGEEEEE G E N E

f A A A AAAAA ﬂ‘ A 4
VIRTUAL MODE CARRY FLAG
RESUME FLAG PARITY FLAG
NESTED TASK FLAG AUXILIARY CARRY
1/0 PRIVILEGE LEVEL ZERO FLAG
OVERFLOW SIGN FLAG
DIRECTION FLAG TRAP FLAG
INTERRUPT ENABLE

231630-50

Figure 2-3. Flags Register

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel386 DX
is in Protected Mode, the Intel386 DX will
switch to Virtual 8086 operation, handling
segment loads as the 8086 does, but gener- NT
ating exception 13 faults on privileged op-
codes. The VM bit can be set only in Protect-
ed Mode, by the IRET instruction (if current
privilege level = 0) and by task switches at
any privilege level. The VM bit is unaffected
by POPF. PUSHF always pushes a 0 in this
bit, even if executing in virtual 8086 Mode.
The EFLAGS image pushed during interrupt
processing or saved during task switches will
contain a 1 in this bit if the interrupted code
was executing as a Virtual 8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at IOPL
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of
the breakpoint service routine, the IRET

10

instruction can pop an EFLAG image having
the RF bit set and resume the program’s exe-
cution at the breakpoint address without gen-
erating another breakpoint fault on the same
location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task’s Task State
Segment (TSS) has a valid back link to the
previous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maxi-
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAG register. POPF and
IRET instruction can alter the IOPL field when
executed at CPL = 0. Task switches can al-
ways alter the IOPL field, when the new flag
image is loaded from the incoming task’s
TSS.

In

tel.

Intel386™ DX MICROPROCESSOR

OF (Overflow Flag, bit 11) ZF (Zero Flag, bit 6)
OF is set if the operation resulted in a signed ZF is set if all bits of the result are 0. Other-
overflow. Signed overflow occurs when the wise it is reset.
operation resulted in carry/borrow into the i ;
sign bit (high-order bit) of the result but did AF (Auxmar)./.Carry Fla.tg, bit 4) o .
not result in a carry/borrow out of the high- The Auxiliary Flag is used to simplify the addi-
order bit, or vice-versa. For 8/16/32 bit oper- tion and subtraction of packed BCD quanti-
ations, OF is set according to overflow at bit ties. AF is set if the operation resulted in a
7/15/31, respectively. carry out of bit 3 (addlthn) ora .borrow into b}t
L . 3 (subtraction). Otherwise AF is reset. AF is
DF (Direction Flag, bit 10) affected by carry out of, or borrow into bit 3
DF defines whether ESI and/or EDI registers only, regardless of overall operand length: 8,
postdecrement or postincrement during the 16 or 32 bits.
string instructions. Postincrement occurs if PF (Parity Flags, bit 2)
DF is reset. Postdecrement occurs if DF is))) .
set. PF is set if the low-order eight bits of the op-
. eration contains an even number of “1’s”
IF (INTR Enable Flag, bit 9) (even parity). PF is reset if the low-order eight
The IF flag, when set, allows recognition of bits have odd parity. PF is a function of only
external interrupts signalled on the INTR pin. the low-order eight bits, regardless of oper-
When [F is reset, external interrupts signalled and size.
on the INTR are not recognized. IOPL indi- CF (Carry Flag, bit 0)
cates the maximum CPL value allowing alter- .) . .
ation of the IF bit when new values are CF is set |_f _the operation re_sulted in a carry
popped into EFLAGS or FLAGS. out of_ (addltlon),_or a borro_w into (_subtract|on)
] the high-order bit. Otherwise CF is reset. For
TF (Trap Enable Flag, bit 8) 8-, 16- or 32-bit operations, CF is set accord-
TF controls the generation of exception 1 ing to carry/borrow at bit 7, 15 or 31, respec-
trap when single-stepping through code. tively.
When TF is set, the Intel386 DX generates an
exception 1 trap after the next instruction is Note in these descriptions, “set” means “set to 1,”
executed. When TF is reset, exception 1 and “reset” means ‘“reset to 0.”
traps occur only as a function of the break-
point addresses loaded into debug registers
DRO-DR3. 2.3.4 Segment Registers
SF (S|g.n Flag., bit 7)))) Six 16-bit segment registers hold segment selector
SF is set if the high-order bit of the result s yalyes identifying the currently addressable memory
set, it is reset otherwise. For 8-, 16-, 32-bit gegments. Segment registers are shown in Figure 2-
operations, SF reflects the state of bit 7, 15, 4 In Protected Mode, each segment may range in
31 respectively. size from one byte up to the entire linear and physi-
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N . Other N
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- — —
Selector DS- —|—|—
Selector ES- —|—|—
Selector FS- —|—|—
Selector GS- —|—|—

Figure 2-4. Intel386™ DX Segment Registers, and Associated Descriptor Registers

11

Intel386™ DX MICROPROCESSOR

cal space of the machine, 4 Gbytes (232 bytes). If a
maximum sized segment is used (limit
FFFFFFFFH) it should be Dword aligned (i.e., the
least two significant bits of the segment base should
be zero). This will avoid a segment limit violation (ex-
ception 13) caused by the wrap around. In Real Ad-
dress Mode, the maximum segment size is fixed at
64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the segment registers CS, SS, DS,
ES, FS and GS. The selector in CS indicates the
current code segment; the selector in SS indicates
the current stack segment; the selectors in DS, ES,
FS and GS indicate the current data segments.

2.3.5 Segment Descriptor Registers

The segment descriptor registers are not program-
mer visible, yet it is very useful to understand their
content. Inside the Intel386 DX, a descriptor register
(programmer invisible) is associated with each pro-
grammer-visible segment register, as shown by Fig-
ure 2-4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be-
ing used is automatically involved with the memory
reference. The 32-bit segment base address be-
comes a component of the linear address calcula-

intgl.

tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type
of memory reference requested.

2.3.6 Control Registers

The Intel386 DX has three control registers of 32
bits, CRO, CR2 and CR3, to hold machine state of a
global nature (not specific to an individual task).
These registers, along with System Address Regis-
ters described in the next section, hold machine
state that affects all tasks in the system. To access
the Control Registers, load and store instructions
are defined.

CRO: Machine Control Register (includes 80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the In-
tel386 DX LMSW instructions work in an identical
fashion to the LMSW instruction on the 802886. (i.e. It
only operates on the low-order 16-bits of CRO and it
ignores the new bits in CR0O.) New Intel386 DX oper-
ating systems should use the MOV CRO, Reg in-
struction.

The defined CRO bits are described below.

PG (Paging Enable, bit 31)
the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

R (reserved, bit 4)

This bit is reserved by Intel. When loading CRO
care should be taken to not alter the value of

this bit,

31 24|23 16|15 8|7 0

aloolofo]olofolo]ofofo]o]ofo|o]ofo|o]ofo|o|olofo|o]o|r|L|5|Y E|cRo
N J

NOTE: IIIindicates Intel reserved: Do not define; SEE SECTION 2.3.10

MSwW

Figure 2-5. Control Register 0

12

intgl.

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces-
sor ESCape opcode will cause a Coprocessor
Not Available trap (exception 7). The trap han-
dler typically saves the Intel387 DX coproces-
sor context belonging to a previous task, loads
the Intel387 DX coprocessor state belonging to
the current task, and clears the TS bit before
returning to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual Intel387 DX coprocessor (this is
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.
MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.
PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tran-
sition from Protected Mode to Real Mode. Note
that for strict 80286 compatibility, PE cannot be
reset by the LMSW instruction.

CR1: reserved
CR1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The

Intel386™ DX MICROPROCESSOR

error code pushed onto the page fault handler’s
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The In-
tel386 DX page directory table is always page-
aligned (4 Kbyte-aligned). Therefore the lowest
twelve bits of CR3 are ignored when written and
they store as undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does not change during the task switch, the cached
page table entries are not flushed.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU
and Intel386 DX protection model. These tables or
segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Table),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respectively. Section 4 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 24|23

16|15

8|7 0

PAGE FAULT LINEAR ADDRESS REGISTER CR2

PAGE DIRECTORY BASE REGISTER

lo]o]o]o]o[o]o]o|o]o]o]0]|cRs

NOTE: E’ indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2 and 3

13

Intel386™ DX MICROPROCESSOR

SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
A A
q5 @ 4 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES

~

TR SELECTOR

LDTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Registers DR0-3 specify the four linear
breakpoints. The Debug Control Register DR7 is
used to set the breakpoints and the Debug Status
Register DR6, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in section 2.12 Debugging support.

DEBUG REGISTERS
31 0

LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3

Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
TEST REGISTERS (FOR PAGE CACHE)

31 0

TEST CONTROL TR6
TEST STATUS TR7

Figure 2-8. Debug and Test Registers

14

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the Intel386 DX. TR6 is the command test
register, and TR7 is the data register which contains
the data of the Translation Lookaside buffer test.
Their use is discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.9 Register Accessibility

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.10 Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Intel386 DX register bits are Intel reserved.
When reserved bits are called out, treat them as
fully undefined. This is essential for your soft-
ware compatibility with future processors! Fol-
low the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

intgl.

Intel386™ DX MICROPROCESSOR

Table 2-1. Register Usage

Usein Usein Usein

Register Real Mode Protected Mode Virtual 8086 Mode
Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Register Yes Yes Yes Yes IOPL* IOPL*
Control Registers Yes Yes PL=0 PL=10 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=10 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 8086 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel386 DX handling of these
bits. Depending on undefined values risks mak-
ing your software incompatible with future proc-
essors that define usages for the Intel386 DX-
undefined bits. AVOID ANY SOFTWARE DEPEN-
DENCE UPON THE STATE OF UNDEFINED In-
tel386 DX REGISTER BITS.

2.4 INSTRUCTION SET

241

The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control

Instruction Set Overview

These Intel386 DX instructions are listed in Table
2-2.

All Intel386 DX instructions operate on either 0, 1, 2,
or 3 operands; where an operand resides in a regis-
ter, in the instruction itself, or in memory. Most zero
operand instructions (e.g. CLI, STI) take only one
byte. One operand instructions generally are two
bytes long. The average instruction is 3.2 bytes long.
Since the Intel386 DX has a 16-byte instruction
queue, an average of 5 instructions will be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel386 DX (32-bit code), operands are 8 or 32 bits;
when executing existing 80286 or 8086 code (16-bit
code), operands are 8 or 16 bits. Prefixes can be
added to all instructions which override the default
length of the operands, (i.e. use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

For a more elaborate description of the instruction

set, refer to the Intel386 DX Programmer’s Refer-
ence Manual.

15

n
Intel386™ DX MICROPROCESSOR |n'te| .

2.4.2 Intel386™ DX Instructions Table 2-2b. Arithmetic Instructions
Table 2-2a. Data Transfer ADDITION
GENERAL PURPOSE ADD Add operands
MOV Move operand ADC Add with carry
PUSH Push operand onto stack INC Increment operand by 1
POP Pop operand off stack AAA ASCII adjust for addition
PUSHA Push all registers on stack DAA Decimal adjust for addition
POPA Pop all registers off stack SUBTRACTION
XCHG Exchange Operand, Register SUB Subtract operands
XLAT Translate SBB Subtract with borrow
CONVERSION DEC Decrement operand by 1
MOVZX |Move byte or Word, Dword, with zero NEG Negate operand
extension CMP Compare operands
MOVSX |Move byte or Word, Dword, sign DAS Decimal adjust for subtraction
extended AAS ASCII Adjust for subtraction
CBW Convert byte to Word, or Word to Dword MULTIPLICATION
CWD Convert Word to DWORD MUL Multiply Double/Single Precision
CWDE Convert Word to DWORD extended IMUL Integer multiply
cDhQ Convert DWORD to QWORD AAM ASCII adjust after multiply
INPUT/OUTPUT DIVISION
IN Input operand from |/O space DIV Divide unsigned
ouT Output operand to 1/0 space DIV Integer Divide
ADDRESS OBJECT AAD ASCII adjust before division
LEA Load effective address - N
LDS Load pointer into D segment register Table 2-2c. String Instructions
- - - MOVS Move byte or Word, Dword string
LES Load pointer into E segment register -
LFS Load pointer into F segment register INS Input St””;" from I/O space
LGS Load pointer into G segment register ouTsS Output string to I/0 space .
LSS Load pointer into S (Stack) segment CMPS Compare byte or Word, Dworc.i string
register SCAS Scan Byte or Word, Dword string
FLAG MANIPULATION LODS Load byte or Word, Dword string
LAHF Load A register from Flags STOS Store byte or Word, Dword string
SAHF Store A register in Flags REP Repeat
PUSHF |Push flags onto stack REPE/)
POPF Pop flags off stack 2E;ZE/ Repeat while equal/zero
PUSHFD _|Push EFlags onto stack REPNZ Repeat while not equal/not zero
POPFD Pop EFlags off stack Table 2-2d. Logical Instructions
CLC Clear Carry Flag LOGICALS
CLD Clear Direction Flag NOT “NOT” operands
CMC Complement Carry Flag AND “AND” operands
STC Set Carry Flag OR “Inclusive OR” operands
STD Set Direction Flag XOR “Exclusive OR” operands
TEST “Test” operands

16

u
|n'te| . Intel386™ DX MICROPROCESSOR

Table 2-2d. Logical Instructions (Continued) Table 2-2f. Program Control Instructions
SHIFTS (Continued)
SHL/SHR |Shift logical left or right UNCONDITIONAL TRANSFERS
SAL/SAR |Shift arithmetic left or right CALL Call procedure/task
SHLD/ RET Return from procedure
SHRD Double shift left or right JMP Jump
ROTATES ITERATION CONTROLS

ROL/ROR | Rotate left/right LOOP Loop
RCL/RCR | Rotate through carry left/right LOOPE/

Table 2-2e. Bit Manipulation Instructions LOOPZ _ |Loop if equal/zero

SINGLE BIT INSTRUCTIONS LOOPNE/ _
- LOOPNZ |Loop if not equal/not zero
BT Bit Test - - —
BTS Bit Test and Set JoXz | JUMP 'If';_elfl’_:':t::f:;_; 0
BTR Bit Test and Reset
BTC Bit Test and Complement INT Interrupt -
BSF Bit Scan Forward INTO Interrupt if overflow
BSA Bit Scan Reverse IRET Returr_1 from Interrupt/Task
- CLI Clear interrupt Enable
Table 2-2f. Program Control Instructions STI Set Interrupt Enable
CONDITIONAL TRANSFERS

Table 2-2g. High Level Language Instructions
BOUND | Check Array Bounds

ENTER Setup Parameter Block for Entering
Procedure

SETCC Set byte equal to condition code
JA/JNBE |Jump if above/not below nor equal
JAE/JNB |Jump if above or equal/not below

JB/JNAE |Jump if below/not above nor equal LEAVE Leave Procedure

JBE/JNA |[Jump if below or equal/not above Table 2-2h. Protection Model

JC Jump ?f carry SGDT Store Global Descriptor Table
JE/JZ Jump if equal/zero SIDT Store Interrupt Descriptor Table
JG/JNLE |Jump if greater/not less nor equal STR Store Task Register

JGE/JNL |Jump if greater or equal/not less SLDT Store Local Descriptor Table
JL/INGE |Jump if less/not greater nor equal LGDT Load Global Descriptor Table
JLE/JNG |Jump if less or equal/not greater LIDT Load Interrupt Descriptor Table
JNC Jump !f not carry LTR Load Task Register
JNE/JNZ_|Jump if not equal/not zero LLDT Load Local Descriptor Table

JNO Jump if not overflow ARPL Adjust Requested Privilege Level
JNP/JPO |Jump if not parity/parity odd LAR Load Access Rights

JNS Jump if not sign LSL Load Segment Limit

JO Jump if overflow VERR/

JP/JPE _ |Jump if parity/parity even VERW | Verify Segment for Reading or Writing
JS Jump if Sign LMSW Load Machine Status Word (lower

16 bits of CRO0)
SMSW Store Machine Status Word
Table 2-2i. Processor Control Instructions

HLT Halt
WAIT Wait until BUSY # negated
ESC Escape

LOCK Lock Bus

17

Intel386™ DX MICROPROCESSOR

2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview

The Intel386 DX provides a total of 11 addressing
modes for instructions to specify operands. The ad-
dressing modes are optimized to allow the efficient
execution of high level languages such as C and
FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located
in one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

2.5.3 32-Bit Memory Addressing
Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.

18

intgl.

The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register’s con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80]

Intel386™ DX MICROPROCESSOR

SEGMENT REGISTER

SELECTOR

EFFECTIVE
ADDRESS

A picuTs ES
ACCESS RIGHTS DS
ACCESS RIGHTS €S

LIMIT
Pl BASE ADDRESS

> G_) ¢ DISPLACEMENT
(IN INSTRUCTION)

LINEAR

DESCRIPTOR REGISTERS Ly ADDRESS TARGET ADDRESS
< + >—>

SCALE

1,2,4,0R 8
SEGMENT
LIMIT
SELECTED
SEGMENT

> /
SEGMENT BASE ADDRESS
231630-51

I BASE REGISTER I
INDEX REGISTER

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the Intel386 DX can execute
16-bit instructions in Real and Protected Modes. The
processor determines the size of the instructions it is
executing by examining the D bit in the CS segment
Descriptor. If the D bit is 0 then all operand lengths
and effective addresses are assumed to be 16 bits
long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode the
default size for operands and addresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Intel386 DX is able to execute ei-
ther 16 or 32-bit instructions. This is specified via the
use of override prefixes. Two prefixes, the Operand
Size Prefix and the Address Length Prefix, over-
ride the value of the D bit on an individual instruction
basis. These prefixes are automatically added by In-
tel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM386 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

19

Intel386™ DX MICROPROCESSOR

intgl.

Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SI,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel386 DX addressing modes.

When executing 32-bit code, the Intel386 DX uses
either 8-, or 32-bit displacements, and any register
can be used as base or index registers. When exe-
cuting 16-bit code, the displacements are either 8, or
16 bits, and the base and index register conform to
the 80286 model. Table 2-3 illustrates the differenc-
es.

2.6 DATA TYPES

The Intel386 DX supports all of the data types com-
monly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the Intel386
DX bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2’s complement rep-

resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

20

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quanti-
ty.

Offset: A 16- or 32-bit offset only quantity which
indirectly references another memory location.

Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one digit in each
nibble.

When the Intel386 DX is coupled with an Intel387
DX Numerics Coprocessor then the following com-
mon Floating Point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real
number representation. Floating point numbers
are supported by the Intel387 DX numerics co-
processor.

Figure 2-10 illustrates the data types supported by
the Intel386 DX and the Intel387 DX numerics co-
processor.

|n Intel386™ DX MICROPROCESSOR

+N +1 0
7 0 7 0 7 07 0
SIGNED BINARY
el] 0 (M 400 [T
SIGN BIT| | DECIMAL — Bcp BCD 30D
MAGNITUDE (BCD) piGIT N DIGIT 1 DIGIT O
+N +1 0
7 0 7 0 7 07 0
UNSIGNED ASClI
BYTEm | | Ioo.l |'”|'”|”'|
| I AsCll ASCIl ASCII
MAGNITUDE CHARACTERy CHARACTER; CHARACTER,

+1 0
1514 87 0

+N +1 0
7 0 7 07 0

SIGNED PACKED

s ses [T+ e+ [T
J |

sioN BT IEMSB)

MOST LEAST
MAGNITUDE SIGNIFICANT DIGIT SIGNIFICANT DIGIT
+1 0 +N +1 0
15 0 7/15 0 7/15 07/15 0
UNSIGNED BYTE
wors [T e] oo
I
MAGNITUDE
+3 +2 +1 0 =2 GIGABITS
31 1615 0 +2 GIGABITS 210
SIGNED DOUBLE BIT”||| ” ‘Lg L,§ ””I
WORD” | | | I STRING
SIGN BIT--MsB) BITO
MAGNITUDE
+3 +2 +1 0 +3 +2 +1 0
31 0 31 0
UNSIGNED DOUBLE SHORT
WORD 32-BIT
POINTER
[] 1)
MAGNITUDE OFFSET
+7 +6 45 45 +3 +2 +1 O +5 +4 +3 +2 +1 0
63 4847 3231 1615 0 47 0
SIGNED QUAD LONG
WORD 48-BIT
b POINTER
SIGN BIT - MsB |) | |
MAGNITUDE SELECTOR OFFSET
+9 48 47 +6 45 44 +3 +2 +1 O
79 0
Mool | | [T T T 1T 11
POINT*
SIGN BIT) | |
EXPONENT MAGNITUDE
+5 +4 +3 +2 +1 0

32—BIT|”|||”||”I”'l”||l”|”||”||”'l'”l”'lllll
BIT FIELD *SUPPORTED BY 80387

NUMERIC DATA
COPROCESSOR

|«——BIT FIELD ——]
1 70 32 BITS
231630-52

Figure 2-10. Intel386™ DX Supported Data Types

21

Intel386™ DX MICROPROCESSOR

2.7 MEMORY ORGANIZATION

2.7.1 Introduction

Memory on the Intel386 DX is divided up into 8-bit
quantities (bytes), 16-bit quantities (words), and
32-bit quantities (dwords). Words are stored in two
consecutive bytes in memory with the low-order byte
at the lowest address, the high order byte at the high
address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest ad-
dress. The address of a word or dword is the byte
address of the low-order byte.

In addition to these basic data types, the Intel386
DX supports two larger units of memory: pages and
segments. Memory can be divided up into one or
more variable length segments, which can be
swapped to disk or shared between programs. Mem-
ory can also be organized into one or more 4K byte
pages. Finally, both segmentation and paging can
be combined, gaining the advantages of both sys-
tems. The Intel386 DX supports both pages and
segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organiz-
ing memory in logical modules, and as such is a tool
for the application programmer, while pages are use-
ful for the system programmer for managing the
physical memory of a system.

2.7.2 Address Spaces

The Intel386 DX has three distinct address spaces:
logical, linear, and physical. A logical address

intgl.

(also known as a virtual address) consists of a se-
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS-
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on Intel386 DX has a maximum of 16K
(214 —1) selectors, and offsets can be 4 gigabytes,
(232 bits) this gives a total of 246 bits or 64 terabytes
of logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE %} DISPLACEMENT
32 o
SCALE
1,2,4,8
PHYSICAL
v MEMORY
—>®<— BE3 - BEO
A31=A2
32, EFFECTIVE _
ADDRESS 52 52
15 2 0 LOGICAL OR SEGMENTATION »| PAGING UNIT >
R | 14 VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE) |7 PHYSICAL
SELECTOR | P R ADDRESS ADDRESS
L DESCRIPTOR
INDEX
SEGMENT
REGISTER
231630-53

Figure 2-11. Address Translation

22

intgl.

2.7.3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the Intel386 DX, segments are vari-
able sized blocks of linear addresses which have
certain attributes associated with them. There are
two main types of segments: code and data, the
segments are of variable size and can be as small
as 1 byte or as large as 4 gigabytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provides the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2-4. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

Intel386™ DX MICROPROCESSOR

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 4.1.

2.8 1/0 SPACE

The Intel386 DX has two distinct physical address
spaces: Memory and 1/0. Generally, peripherals are
placed in I/0 space although the Intel386 DX also
supports memory-mapped peripherals. The /0
space consists of 64K bytes, it can be divided into
64K 8-bit ports, 32K 16-bit ports, or 16K 32-bit ports,
or any combination of ports which add up to less
than 64K bytes. The 64K I/O address space refers
to physical memory rather than linear address since
170 instructions do not go through the segmentation
or paging hardware. The M/IO # pin acts as an addi-
tional address line thus allowing the system designer
to easily determine which address space the proces-
sor is accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch Cs None

Destination of PUSH, PUSHF, INT, SS None

CALL, PUSHA Instructions

Source of POP, POPA, POPF, SS None

IRET, RET instructions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS Instructions

(Dl is Base Register)

Other Data References, with

Effective Address Using Base

Register of:
[EAX] DS DS,CS,SS,ES,FS,GS
[EBX] DS DS,CS,SS,ES,FS,GS
[ECX] DS DS,CS,SS,ES,FS,GS
[EDX] DS DS,CS,SS,ES,FS,GS
[ESI] DS DS,CS,SS,ES,FS,GS
[EDI] DS DS,CS,SS,ES,FS,GS
[EBP] SS DS,CS,SS,ES,FS,GS
[ESP] SS DS,CS,SS,ES,FS,GS

23

Intel386™ DX MICROPROCESSOR

The |/0 ports are accessed via the IN and OUT I/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/10# pin to be driven low.

1/0 port addresses 00F8H through OOFFH are re-
served for use by Intel.

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Intel386 DX would restart the in-
struction. Traps are exceptions that are reported im-
mediately after the execution of the instruction
which caused the problem. User defined interrupts
are examples of traps. Aborts are exceptions which
do not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction

24

intgl.

immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the Intel386 DX and shows where
the return address points.

The Intel386 DX has the ability to handle up to 256
different interrupts/exceptions. In order to service
the interrupts, a table with up to 256 interrupt vec-
tors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service rou-
tine. In Real Mode (see section 3.1), the vectors are
4 byte quantities, a Code Segment plus a 16-bit off-
set; in Protected Mode, the interrupt vectors are 8
byte quantities, which are put in an Interrupt Descrip-
tor Table (see section 4.1). Of the 256 possible inter-
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Intel386 DX which identifies the appro-
priate entry in the interrupt table. The table contains
the starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-
gram execution resumes at the appropriate instruc-
tion.

The 8-bit interrupt vector is supplied to the Intel386
DX in several different ways: exceptions supply the
interrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware in-
terrupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the Intel386 DX to respond to asynchronous ex-
ternal hardware events. A hardware interrupt occurs
when the INTR is pulled high and the Interrupt Flag
bit (IF) is enabled. The processor only responds to
interrupts between instructions, (REPeat String in-
structions, have an “interrupt window”, between
memory moves, which allows interrupts during long

intgl.

Intel386™ DX MICROPROCESSOR

Table 2-5. Interrupt Vector Assignments

. Interrupt Instruction Which Ret:ro?n?: ?oress
Function Number Can Cau..lse Faulting Type
Exception Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Coprocessor Segment Overrun 9 ESC NO ABORT
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Intel Reserved 15
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
Intel Reserved 17-31
Two Byte Interrupt 0-255 |INTn NO TRAP

* Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

string moves). When an interrupt occurs the proces-
sor reads an 8-bit vector supplied by the hardware
which identifies the source of the interrupt, (one of
224 user defined interrupts). The exact nature of the
interrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.9.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI

input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the In-
tel386 DX will not service further NMI requests, until
an interrupt return (IRET) instruction is executed or
the processor is reset. If NMI occurs while currently
servicing an NMI, its presence will be saved for serv-
icing after executing the first IRET instruction. The IF
bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

2.9.5 Software Interrupts

A third type of interrupt/exception for the Intel386
DX is the software interrupt. An INT n instruction
causes the processor to execute the interrupt serv-
ice routine pointed to by the nth vector in the inter-
rupt table.

25

Intel386™ DX MICROPROCESSOR

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. It is discussed in section 2.12.

2.9.6 Interrupt and Exception
Priorities

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel386 DX invokes the NMI service
routine first. If, after the NMI service routine has
been invoked, maskable interrupts are still enabled,
then the Intel386 DX will invoke the appropriate in-
terrupt service routine.

Table 2-6a. Intel386™ DX Priority for
Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel386 DX if, in the
course of executing an instruction, the Intel386 DX
detects a problematic condition. The Intel386 DX
then immediately invokes the appropriate exception
service routine. The state of the Intel386 DX is such
that the instruction causing the exception can be re-
started. If the exception service routine has taken
care of the problematic condition, the instruction will
execute without causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Intel386 DX executes instructions, it follows a

consistent cycle in checking for exceptions, as
shown in Table 2-6b. This cycle is repeated

26

]
Intel .
as each instruction is executed, and occurs in paral-

lel with instruction decoding and execution.

Table 2-6b. Sequence of Exception Checking

Consider the case of the Intel386 DX having just
completed an instruction. It then performs the
following checks before reaching the point where
the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc-
tion).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see 4.6.4); or exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e. not at IOPL or
at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If ESCAPE opcode for numeric coprocessor,
check if EM=1 or TS=1 (exception 7 if either
are 1).

9. If WAIT opcode or ESCAPE opcode for nu-
meric coprocessor, check ERROR # input sig-
nal (exception 16 if ERROR# input is assert-
ed).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (excep-
tion 14).

Note that the order stated supports the concept
of the paging mechanism being “underneath”
the segmentation mechanism. Therefore, for any
given code or data reference in memory, seg-
mentation exceptions are generated before pag-
ing exceptions are generated.

intgl.

2.9.7 Instruction Restart

The Intel386 DX fully supports restarting all instruc-
tions after faults. If an exception is detected in the
instruction to be executed (exception categories 4
through 10 in Table 2-6b), the Intel386 DX invokes
the appropriate exception service routine. The In-
tel386 DX is in a state that permits restart of the
instruction, for all cases but those in Table 2-6c.
Note that all such cases are easily avoided by prop-
er design of the operating system.

Table 2-6¢. Conditions Preventing
Instruction Restart

A. An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “not present” TSS is re-
startable.) Partially present TSS’s can be
avoided either by keeping the TSS'’s of such
tasks present in memory, or by aligning TSS
segments to reside entirely within a single 4K
page (for TSS segments of 4K bytes or less).

B. A coprocessor operand wraps around the top
of a 64K-byte segment or a 4G-byte segment,
and spans three pages, and the page holding
the middle portion of the operand is “‘not pres-
ent.” This condition can be avoided by starting
at a page boundary any segments containing
coprocessor operands if the segments are ap-
proximately 64K-200 bytes or larger (i.e. large
enough for wraparound of the coprocessor
operand to possibly occur).

Note that these conditions are avoided by using
the operating system designs mentioned in this
table.

2.9.8 Double Fault

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

Double page faults however do not raise the double
fault exception. If a second page fault occurs while
the processor is attempting to enter the service rou-
tine for the first time, then the processor will invoke

Intel386™ DX MICROPROCESSOR

the page fault (exception 14) handler a second time,
rather than the double fault (exception 8) handler. A
subsequent fault, though, will lead to shutdown.

When a Double Fault occurs, the Intel386 DX in-
vokes the exception service routine for exception 8.

2.10 RESET AND INITIALIZATION

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2-7. The In-
tel386 DX will then start executing instructions near
the top of physical memory, at location FFFFFFFOH.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-31 will drop low for CS-rela-
tive memory cycles, and the Intel386 DX will only
execute instructions in the lower one megabyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of Resets.

RESET forces the Intel386 DX to terminate all exe-
cution and local bus activity. No instruction execu-
tion or bus activity will occur as long as Reset is
active. Between 350 and 450 CLK2 periods after
Reset becomes inactive the Intel386 DX will start
executing instructions at the top of physical memory.

Table 2-7. Register Values after Reset

Flag Word UUUUO002H Note 1

Machine Status Word (CR0O) | UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX register component and
stepping ID Note 5

All other registers undefined Note 4

NOTES:

1. EFLAG Register. The upper 14 bits of the EFLAGS reg-
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE Bit 0).

3. The Code Segment Register (CS) will have its Base Ad-
dress set to FFFFOO0OH and Limit set to OFFFFH.

4. All undefined bits are Intel Reserved and should not be
used.

5. DX register always holds component and stepping iden-
tifier (see 5.7). EAX register holds self-test signature if self-
test was requested (see 5.6).

27

Intel386™ DX MICROPROCESSOR

2.11 TESTABILITY

2.11.1 Self-Test

The Intel386 DX has the capability to perform a self-
test. The self-test checks the function of all of the
Control ROM and most of the non-random logic of
the part. Approximately one-half of the Intel386 DX
can be tested during self-test.

Self-Test is initiated on the Intel386 DX when the
RESET pin transitions from HIGH to LOW, and the
BUSY # pin is low. The self-test takes about 2**19
clocks, or approximately 26 milliseconds with a
20 MHz Intel386 DX. At the completion of self-test
the processor performs reset and begins normal op-
eration. The part has successfully passed self-test if
the contents of the EAX register are zero (0). If the
results of EAX are not zero then the self-test has
detected a flaw in the part.

2.11.2 TLB Testing

The Intel386 DX provides a mechanism for testing
the Translation Lookaside Buffer (TLB) if desired.
This particular mechanism is unique to the Intel386
DX and may not be continued in the same way in
future processors. When testing the TLB paging
must be turned off (PG = 0 in CRO) to enable the
TLB testing hardware and avoid interference with
the test data being written to the TLB.

There are two TLB testing operations: 1) write en-
tries into the TLB, and, 2) perform TLB lookups. Two
Test Registers, shown in Figure 2-12, are provided
for the purpose of testing. TR6 is the “test command
register”, and TR7 is the “test data register”. The
fields within these registers are defined below.

C: This is the command bit. For a write into TR6 to
cause an immediate write into the TLB entry, write a
0 to this bit. For a write into TR6 to cause an immedi-
ate TLB lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB. On
a TLB write, a TLB entry is allocated to this linear
address and the rest of that TLB entry is set per the
value of TR7 and the value just written into TR6. On
a TLB lookup, the TLB is interrogated per this value
and if one and only one TLB entry matches, the rest
of the fields of TR6 and TR7 are set from the match-
ing TLB entry.

Physical Address: This is the data field of the TLB.
On a write to the TLB, the TLB entry allocated to the
linear address in TR6 is set to this value. On a TLB
lookup, the data field (physical address) from the
TLB is read out to here.

28

intgl.

PL: On a TLB write, PL=1 causes the REP field of
TR7 to select which of four associative blocks of the
TLB is to be written, but PL=0 allows the internal
pointer in the paging unit to select which TLB block
is written. On a TLB lookup, the PL bit indicates
whether the lookup was a hit (PL gets set to 1) or a
miss (PL gets reset to 0).

V: The valid bit for this TLB entry. All valid bits can
also be cleared by writing to CR3.

D, D#: The dirty bit for/from the TLB entry.

U, U#: The user bit for/from the TLB entry.

W, W#: The writable bit for/from the TLB entry.
For D, U and W, both the attribute and its comple-
ment are provided as tag bits, to permit the option of

a “don’t care” on TLB lookups. The meaning of
these pairs of bits is given in the following table:

X | x# Effect During Value of Bit
TLB Lookup X after TLB Write
0| O Miss All Bit X Becomes Undefined
0| 1 [MatchifX=0 Bit X Becomes 0
1] 0 |Matchif X =1 Bit X Becomes 1
1] 1 Match all Bit X Becomes Undefined

For writing a TLB entry:

1. Write TR7 for the desired physical address, PL
and REP values.

2. Write TR6 with the appropriate linear address,
etc. (be sure to write C = 0 for “write” com-
mand).

For looking up (reading) a TLB entry:
1. Write TR6 with the appropriate linear address (be
sure to write C=1 for “lookup” command).

2. Read TR7 and TR6. If the PL bit in TR7 indicates
a hit, then the other values reveal the TLB con-
tents. If PL indicates a miss, then the other values
in TR7 and TR6 are indeterminate.

2.12 DEBUGGING SUPPORT

The Intel386 DX provides several features which
simplify the debugging process. The three catego-
ries of on-chip debugging aids are:

1) the code execution breakpoint opcode (0CCH),
2) the single-step capability provided by the TF bit in
the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0-3, DR6, and DR7.

intgl.

Intel386™ DX MICROPROCESSOR

31 12|11 0
LINEAR ADDRESS VIpDupupwiw 0[(0|0|0|C|TRe6
#
PHYSICAL ADDRESS o(ofojofof0O|oO E REP | 0 [O [TR7

NOTE: E indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-12, Test Registers

2.12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCh, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (OCCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

2.12.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger’s stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger’s stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

2.12.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Intel386 DX. They allow data access
breakpoints as well as code execution breakpoints.
Since the breakpoints are indicated by on-chip regis-
ters, an instruction execution breakpoint can be

placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT3
breakpoint opcode.

The Intel386 DX contains six Debug Registers, pro-
viding the ability to specify up to four distinct break-
points addresses, breakpoint control options, and
read breakpoint status. Initially after reset, break-
points are in the disabled state. Therefore, no break-
points will occur unless the debug registers are pro-
grammed. Breakpoints set up in the Debug Regis-
ters are autovectored to exception number 1.

2.12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 2-13. The breakpoint addresses specified are
32-bit linear addresses. Intel386 DX hardware con-
tinuously compares the linear breakpoint addresses
in DRO-DR3 with the linear addresses generated by
executing software (a linear address is the result of
computing the effective address and adding the
32-bit segment base address). Note that if paging is
not enabled the linear address equals the physical
address. If paging is enabled, the linear address is
translated to a physical 32-bit address by the on-
chip paging unit. Regardless of whether paging is
enabled or not, however, the breakpoint registers
hold linear addresses.

2.12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure
2-13, allows several debug control functions such as
enabling the breakpoints and setting up other con-
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)
A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated

breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-

29

Intel386™ DX MICROPROCESSOR

31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5

0 32300000000022?2 DR6
o Tl o e e e el ool Slololole s sls sl s 515 on

31 16 15 0

NOTE:|_0_]indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-13. Debug Registers

tion breakpoints must have a length of 1 (LENi
00). Encoding of the LEN:i field is as follows:

Usage of Least
Significant Bits in
Breakpoint Address
Register i, (i=0—3)

LENi
Encoding

Breakpoint
Field Width

00 All 32-bits used to
specify a single-byte

breakpoint field.

1 byte

01 A1-A31 usedto
specify a two-byte,
word-aligned
breakpoint field. A0 in
Breakpoint Address

Register is not used.

2 bytes

10 Undefined—
do not use

this encoding

11 A2-A31 used to
specify a four-byte,
dword-aligned
breakpoint field. AO
and A1 in Breakpoint

Address Register are

4 bytes

not used.

The LENi field controls the size of breakpoint field i
by controlling whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

30

The following is an example of various size break-
point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the following
illustration indicates the region of the breakpoint
field for lengths of 1, 2, or 4 bytes.

DR2=00000005H; LEN2 = 00B
31 0
00000008H
bkpt ld2 00000004H
00000000H
DR2=00000005H; LEN2 = 01B
31 0
00000008H
< bkpt fid2 — [00000004H
00000000H
DR2=00000005H; LEN2 = 11B
31 0
00000008H
«— bkptfld2 —> 00000004H
| | | 00000000H

intgl.

RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

RW Usage
Encoding Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that instruction execution breakpoints are
taken as faults (i.e. before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e. after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The

Intel386™ DX MICROPROCESSOR

GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger (or ICET™M-386) can have full con-
trol over the Debug Register resources when re-
quired. The GD bit, when set, causes an exception 1
fault if an instruction attempts to read or write any
Debug Register. The GD bit is then automatically
cleared when the exception 1 handler is invoked,
allowing the exception 1 handler free access to the
debug registers.

GE and LE (Exact data breakpoint match, global and
local)

If either GE or LE is set, any data breakpoint trap will
be reported exactly after completion of the instruc-
tion that caused the operand transfer. Exact report-
ing is provided by forcing the Intel386 DX execution
unit to wait for completion of data operand transfers
before beginning execution of the next instruction.

If exact data breakpoint match is not selected, data
breakpoints may not be reported until several in-
structions later or may not be reported at all. When
enabling a data breakpoint, it is therefore recom-
mended to enable the exact data breakpoint match.

When the Intel386 DX performs a task switch, the
LE bit is cleared. Thus, the LE bit supports fast task
switching out of tasks, that have enabled the exact
data breakpoint match for their task-local break-
points. The LE bit is cleared by the processor during
a task switch, to avoid having exact data breakpoint
match enabled in the new task. Note that exact data
breakpoint match must be re-enabled under soft-
ware control.

The Intel386 DX GE bit is unaffected during a task
switch. The GE bit supports exact data breakpoint
match that is to remain enabled during all tasks exe-
cuting in the system.

Note that instruction execution breakpoints are al-
ways reported exactly, whether or not exact data
breakpoint match is selected.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRI, the length
in LENi and the usage criteria in RWi) is enabled. If
either Gi or Li is set, and the Intel386 DX detects the
ith breakpoint condition, then the exception 1 han-
dler is invoked.

When the Intel386 DX performs a task switch to a
new Task State Segment (TSS), all Li bits are
cleared. Thus, the Li bits support fast task switching
out of tasks that use some task-local breakpoint

31

Intel386™ DX MICROPROCESSOR

registers. The Li bits are cleared by the processor
during a task switch, to avoid spurious exceptions in
the new task. Note that the breakpoints must be re-
enabled under software control.

All Intel386 DX Gi bits are unaffected during a task
switch. The Gi bits support breakpoints that are ac-
tive in all tasks executing in the system.

2.12.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 2-13,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DR3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO-
DR3. A flag Bi is set when the condition described
by DRI, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handled as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-

32

intgl.

diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping). See section 2.12.2.

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having an
Intel386 DX TSS with the T bit set. (See Figure
4-15a). Note the task switch into the new task oc-
curs normally, but before the first instruction of the
task is executed, the exception 1 handler is invoked.
With respect to the task switch operation, the opera-
tion is considered to be a trap.

2.12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint. See section 2.3.3.

3. REAL MODE ARCHITECTURE

3.1 REAL MODE INTRODUCTION

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Intel386 DX. The address-
ing mechanism, memory size, interrupt handling, are
all identical to the Real Mode on the 80286.

Intel386™ DX MICROPROCESSOR

15 0

OFFSET

19 0

SEGMENT

seLecToR | | 900

—>®—> MEMORY OPERAND

MAX LIMIT
FIXED AT 64K IN
REAL MODE
SELECTED
TK SEGMENT

SEGMENT BASE

231630-54

Figure 3-1. Real Address Mode Addressing

All of the Intel386 DX instructions are available in
Real Mode (except those instructions listed in 4.6.4).
The default operand size in Real Mode is 16-bits,
just like the 8086. In order to use the 32-bit registers
and addressing modes, override prefixes must be
used. In addition, the segment size on the Intel386
DX in Real Mode is 64K bytes so 32-bit effective
addresses must have a value less the 0000FFFFH.
The primary purpose of Real Mode is to set up the
processor for Protected Mode Operation.

The LOCK prefix on the Intel386 DX, even in Real
Mode, is more restrictive than on the 80286. This is
due to the addition of paging on the Intel386 DX in
Protected Mode and Virtual 8086 Mode. Paging
makes it impossible to guarantee that repeated
string instructions can be LOCKed. The Intel386 DX
can’t require that all pages holding the string be
physically present in memory. Hence, a Page Fault
(exception 14) might have to be taken during the
repeated string instruction. Therefore the LOCK pre-
fix can’t be supported during repeated string instruc-
tions.

These are the only instruction forms where the
LOCK prefix is legal on the Intel386 DX:

Operands
Opcode (Dest, Source)
BIT Test and .
SET/RESET/COMPLEMENT | Mem- Reg/immed
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible

read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Intel386 DX, repeated string instruc-
tions are not LOCKable, it is not possible to LOCK
the bus for a long period of time. Therefore, the
LOCK prefix is not IOPL-sensitive on the Intel386
DX. The LOCK prefix can be used at any privilege
level, but only on the instruction forms listed above.

3.2 MEMORY ADDRESSING

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, the high address lines A20—A31
are high during CS-relative memory cycles until an
intersegment jump or call is executed (see section
2.10)).

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits this implies that Real Mode seg-
ments always start on 16 byte boundaries.

All segments in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
Intel386 DX will generate an exception 13 if a data
operand or instruction fetch occurs past the end of a
segment. (i.e. if an operand has an offset greater
than FFFFH, for example a word with a low byte at
FFFFH and the high byte at 0000H.)

33

Intel386™ DX MICROPROCESSOR

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64K bytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 RESERVED LOCATIONS

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.4 INTERRUPTS

Many of the exceptions shown in Table 2-5 and dis-
cussed in section 2.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3-1 identifies these exceptions.

3.5 SHUTDOWN AND HALT

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the Intel386 DX out of
halt. If interrupted, the saved CS:IP will point to the
next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the

intgl.

Interrupt Descriptor Table (i.e. There is not an in-
terrupt handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting in a stack segment greater than
FFFFH)

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater
than 0005H). Otherwise shutdown can only be exit-
ed via the RESET input.

4. PROTECTED MODE
ARCHITECTURE

4.1 INTRODUCTION

The complete capabilities of the Intel386 DX are un-
locked when the processor operates in Protected
Virtual Address Mode (Protected Mode). Protected
Mode vastly increases the linear address space to
four gigabytes (232 bytes) and allows the running of
virtual memory programs of almost unlimited size
(64 terabytes or 246 bytes). In addition Protected
Mode allows the Intel386 DX to run all of the existing
8086 and 80286 software, while providing a sophisti-
cated memory management and a hardware-assist-
ed protection mechanism. Protected Mode allows
the use of additional instructions especially opti-
mized for supporting multitasking operating systems.
The base architecture of the Intel386 DX remains
the same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer’s view is
the increased address space, and a different ad-
dressing mechanism.

Table 3-1
Function Interrupt Related Return
Number Instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

34

intgl.

4.2 ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating

Intel386™ DX MICROPROCESSOR

system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel386 DX. As such, paging oper-
ates beneath segmentation. The paging mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure 4-2 shows the complete Intel386 DX address-
ing mechanism with paging enabled.

48/32 BIT POINTER

SELECTOR OFFSET

SEGMENT LIMIT

47/31 31/15 0

——(D)—>

MEMORY OPERAND

ACCESS RIGHTS
LIMIT
BASE ADDRESS

UP TO SELECTED
4GB SEGMENT

SEGMENT BASE

SEGMENT ADDRESS
DESCRIPTOR
231630-55
Figure 4-1. Protected Mode Addressing
48 BIT POINTER
PHYSICAL ADDRESS
SEGMENT I OFFSET 4K BYTES
15 31
4K BYTES
Intel386™

DX CPU PAGING 4K BYTES

ACCESS RIGHTS MECHANISM PHYSICAL

LIMIT ADDRESS

»| MEMORY OPERAND PHYSICAL PAGE:
BASE ADDRESS 4K BYTES
32 TINEAR PAGE FRAME

SEGMENT ADDRESS ADDRESS
DESCRIPTOR AKBYTES
4K BYTES
4K BYTES

231630-56

Figure 4-2. Paging and Segmentation

35

Intel386™ DX MICROPROCESSOR

4.3 SEGMENTATION

4.3.1 Segmentation Introduction

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 Terminology

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

36

intgl.

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION

4.3.3 Descriptor Tables

The descriptor tables define all of the segments
which are used in an Intel386 DX system. There are
three types of tables on the Intel386 DX which hold
descriptors: the Global Descriptor Table, Local De-
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays.
They can range in size between 8 bytes and 64K
bytes. Each table can hold up to 8192 8 byte de-
scriptors. The upper 13 bits of a selector are used as
an index into the descriptor table. The tables have
registers associated with them which hold the 32-bit
linear base address, and the 16-bit limit of each ta-
ble.

Each of the tables has a register associated with it
the GDTR, LDTR, and the IDTR (see Figure 4-3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT instructions
store the base and limit values. These tables are
manipulated by the operating system. Therefore, the
load descriptor table instructions are privileged in-
structions.

4.3.3.2 GLOBAL DESCRIPTOR TABLE

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e. interrupt and trap
descriptors). Every Intel386 DX system contains a

32

+ PROGRAM INVISIBLE

+ AUTOMATICALLY LOADED §
« FROM LDT DESCRIPTOR

[]
teeeccncaccaaana .

. .

15 o! 15 o !
.)

LDT DESCR | § | '
LDTR | SELECTOR | ! LDT LIMIT !
. .

¢+ | Lo BASE '

+ | LNEAR ADDRESS |}

15 o) '
. .

.

IDT LIMIT

IDT BASE

IDTR | LINEAR ADDRESS

31 0

GDT LIMIT

GDT BASE
LINEAR ADDRESS

31 0

GDTR

231630-57

Figure 4-3. Descriptor Table Registers

intgl.

GDT. Generally the GDT contains code and data
segments used by the operating systems and task
state segments, and descriptors for the LDTs in a
system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 LOCAL DESCRIPTOR TABLE

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 INTERRUPT DESCRIPTOR TABLE

The third table needed for Intel386 DX systems is
the Interrupt Descriptor Table. (See Figure 4-4.) The
IDT contains the descriptors which point to the loca-
tion of up to 256 interrupt service routines. The IDT

Intel386™ DX MICROPROCESSOR

may contain only task gates, interrupt gates, and
trap gates. The IDT should be at least 256 bytes in
size in order to hold the descriptors for the 32 Intel
Reserved Interrupts. Every interrupt used by a sys-
tem must have an entry in the IDT. The IDT entries
are referenced via INT instructions, external inter-
rupt vectors, and exceptions. (See 2.9 Interrupts).

~o a
A~ MEMORY A
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
. INTERRUPT
. DESCRIPTOR
CPU . TABLE
(IoT)
GATE FOR
INTERRUPT #1 S w
2 w
GATE FOR Gz @
INTERRUPT #0 3 g g
[
S&
i 2z a
~
X X
231630-58

Figure 4-4. Interrupt Descriptor
Table Register Use

4.3.4 Descriptors
4.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e. a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or

31 0 BYTE
ADDRESS
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 | G | D | 0 | AVL P DPL S TYPE A +4
19...16 | | 23...16

BASE Base Address of the segment

LIMIT The length of the segment

P Present Bit 1=Present 0=Not Present

DPL Descriptor Privilege Level 0-3

S Segment Descriptor 0= System Descriptor 1= Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1=Segment length is page granular 0= Segment length is byte granular

D Default Operation Size (recognized in code segment descriptors only) 1=32-bit segment 0= 16-bit segment

0 Bit must be zero (0) for compatibility with future processors

AVL Available field for user or OS
NOTE:

In a maximum-size segment (ie. a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000=

000H).

Figure 4-5. Segment Descriptors

37

Intel386™ DX MICROPROCESSOR

32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen-
eral format of a descriptor. All segments on the In-
tel386 DX have three attribute fields in common: the
P bit, the DPL bit, and the S bit. The Present P bit is
1 if the segment is loaded in physical memory, if
P =0 then any attempt to access this segment caus-
es a not present exception (exception 11). The De-
scriptor Privilege Level DPL is a two-bit field which
specifies the protection level 0-3 associated with a
segment.

The Intel386 DX has two main categories of seg-
ments system segments and non-system segments

intgl.

(for code and data). The segment S bit in the seg-
ment descriptor determines if a given segment is a
system segment or a code or data segment. If the S
bit is 1 then the segment is either a code or data
segment, if it is 0 then the segment is a system seg-
ment.

4.3.4.2 Intel386™ DX CODE, DATA
DESCRIPTORS (S=1)

Figure 4-6 shows the general format of a code and
data descriptor and Table 4-1 illustrates how the bits
in the Access Rights Byte are interpreted.

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 | G| D/B | 0 | AVL RIGHTS +4
19...16 BYTE 23...16

D/B 1=Default Instructions Attributes are 32-Bits
0=Default Instruction Attributes are 16-Bits
AVL Available field for user or OS

NOTE:

G Granularity Bit 1=Segment length is page granular
0=_Segment length is byte granular

0 Bit must be zero (0) for compatibility with future processors

In a maximum-size segment (ie. a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000=000H).

Figure 4-6. Segment Descriptors

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions

B.It. Name Function
Position
7 Present (P) P=1 Segment is mapped into physical memory.
P =0 No mapping to physical memory exits, base and limit are not
used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- | S = Code or Data (includes stacks) segment descriptor
tor (S) S = System Segment Descriptor or Gate Descriptor
3 Executable (E) E= Descriptor type is data segment: 1 If
2 Expansion Direc- EDO Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W = Data segment may not be written into. (S =1,
Type W = Data segment may be written into. E=0)
F'el_d_ . 3 Executable (E) E= Descriptor type is code segment: A
Definition 2 Conforming (C) C= Code segment may only be executed when Code
CPL = DPL and CPL remains unchanged. Segment
1 Readable (R) R Code segment may not be read. S =1,
R =1 Code segment may be read. E=1)
0 Accessed (A) A =0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register or
used by selector test instructions.

38

intgl.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel386 DX segments can be one
megabyte long with byte granularity (G=0) or four
gigabytes with page granularity (G=1), (i.e., 220
pages each page is 4K bytes in length). The granu-
larity is totally unrelated to paging. An Intel386 DX
system can consist of segments with byte granulari-
ty, and page granularity, whether or not paging is
enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel386 DX as-
suming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See section 4.4 Protection.)

Intel386™ DX MICROPROCESSOR

Segments identified as data segments (E=0, S=1)
are used for two types of Intel386 DX segments:
stack and data segments. The expansion direction
(ED) bit specifies if a segment expands downward
(stack) or upward (data). If a segment is a stack seg-
ment all offsets must be greater than the segment
limit. On a data segment all offsets must be less
than or equal to the limit. In other words, stack seg-
ments start at the base linear address plus the maxi-
mum segment limit and grow down to the base linear
address plus the limit. On the other hand, data seg-
ments start at the base linear address and expand to
the base linear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4-7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel386 DX system descriptors contain a 32-bit
base linear address and a 20-bit segment limit.
80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment limit. 80286 system de-
scriptors are identified by the upper 16 bits being all
zero.

31 16 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 [G| O[O | O P DPL 0 TYPE +4
19...16 23...16

Type Defines Type Defines

0 Invalid 8 Invalid

1 Available 80286 TSS 9 Available Intel386™ DX TSS

2 LDT A Undefined (Intel Reserved)

3 Busy 80286 TSS B Busy Intel386™ DX TSS

4 80286 Call Gate C Intel386™ DX Call Gate

5 Task Gate (for 80286 or Intel386™ DX Task) D Undefined (Intel Reserved)

6 80286 Interrupt Gate E Intel386™ DX Interrupt Gate

7 80286 Trap Gate F Intel386™ DX Trap Gate
NOTE:

In a maximum-size segment (ie. a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (ie. segment base 11...000 =000H).

Figure 4-7. System Segments Descriptors

39

Intel386™ DX MICROPROCESSOR

4.3.4.4 LDT DESCRIPTORS (S=0, TYPE=2)

LDT descriptors (S=0 TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS DESCRIPTORS (S=0,
TYPE=1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel386 DX TSS. The Task Register
(TR) contains the selector which points to the cur-
rent Task State Segment.

4.3.4.6 GATE DESCRIPTORS (S=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of

intgl.

gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see section 4.4 Protection),
task gates are used to perform a task switch, and
interrupt and trap gates are used to specify interrupt
service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

DESTINATION 16-bit

SELECTOR selector or

DESTINATION offset
OFFSET 16-bit 80286
32-bit Intel386™ DX

31 24 16 8 5 0
SELECTOR OFFSET15...0 0
WORD
OFFSET 31...16 P| DPL | O TYPE 0|0 | O|COUNT|+4
1 1 1 1 4...0
Gate Descriptor Fields
Name Value Description
Type 4 80286 call gate
5 Task gate (for 80286 or Intel386™ DX task)
6 80286 interrupt gate
7 80286 trap gate
C Intel386™ DX call gate
E Intel386™ DX interrupt gate
F Intel386™ DX trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack
to the called procedure’s stack. The parameters are 32-bit quantities for Intel386™ DX gates, and 16-bit quantities for 80286 gates.

Selector to the target code segment
Selector to the target task state segment for task gate

Entry point within the target code segment

Figure 4-8. Gate Descriptor Formats

40

intgl.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see section 4.4 Pro-
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4-8.

4.3.4.7 DIFFERENCES BETWEEN Intel386™ DX
AND 80286 DESCRIPTORS

In order to provide operating system compatibility
between the 80286 and Intel386 DX, the Intel386
DX supports all of the 80286 segment descriptors.
Figure 4-9 shows the general format of an 80286
system segment descriptor. The only differences be-
tween 80286 and Intel386 DX descriptor formats are
that the values of the type fields, and the limit and
base address fields have been expanded for the In-
tel386 DX. The 80286 system segment descriptors
contained a 24-bit base address and 16-bit limit,
while the Intel386 DX system segment descriptors
have a 32-bit base address, a 20-bit limit field, and a
granularity bit.

By supporting 80286 system segments the Intel386
DX is able to execute 80286 application programs
on an Intel386 DX operating system. This is possible
because the processor automatically understands
which descriptors are 80286-style descriptors and

Intel386™ DX MICROPROCESSOR

which descriptors are Intel386 DX-style descriptors.
In particular, if the upper word of a descriptor is zero,
then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel386 DX descriptors is the interpre-
tation of the word count field of call gates and the B
bit. The word count field specifies the number of
16-bit quantities to copy for 80286 call gates and
32-bit quantities for Intel386 DX call gates. The B bit
controls the size of PUSHes when using a call gate;
if B=0 PUSHes are 16 bits, if B=1 PUSHes are 32
bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (Tl), Descriptor
Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4-10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s
value.

31 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
Intel Reserved BASE

Setto 0 P| DPL S | TYPE 23...16 |4
BASE Base Address of the segment DPL Descriptor Privilege Level 0-3
LIMIT The length of the segment S System Descriptor 0=System 1=User
P Present Bit 1=Present 0=Not Present TYPE Type of Segment

Figure 4-9. 80286 Code and Data Segment Descriptors

41

Intel386™ DX MICROPROCESSOR

42

SELECTOR
15 43210
SEGMENT TI| RPL
REGISTER JoJ o ———=o0]oJ1|1]1] |
TABLE
INDEX INDICATOR
TI=1 TI=0l
N N
A DESCRIPTOR A
A NUMBER A
6 6
5 5
4 4
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE
231630-59
Figure 4-10. Example Descriptor Selection

intgl.

4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the Intel386 DX is operating
in. When operating in Real Address Mode, the seg-
ment base, limit, and other attributes within the seg-
ment cache registers are defined as shown in Figure
4-11.

Intel386™ DX MICROPROCESSOR

For compatiblity with the 8086 architecture, the base
is set to sixteen times the current selector value, the
limit is fixed at 0000FFFFH, and the attributes are
fixed so as to indicate the segment is present and
fully usable. In Real Address Mode, the internal
“privilege level” is always fixed to the highest level,
level 0, so I/0 and other privileged opcodes may be
executed.

SEGMENT

32=BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32 = BIT LIMIT
(FIXED)

OTHER ATTRIBUTES
(FIXED)

intersegment JMP, or INT). (See Figure 4-13 Example.)

Key: Y =yes
N = no
0 = privilege level 0
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LIMIT } i
cs 16X CURRENT CS SELECTOR* 0000FFFFH [Y[O|Y[B|U|Y|Y|Y|=|N
sS 16X CURRENT SS SELECTOR 000OFFFFH (Y[O|Y|B|U|Y[Y|N|W|=
DS 16X CURRENT DS SELECTOR 0000FFFFH |Y|O|Y|B|U|Y|Y|N| =] -
ES 16X CURRENT ES SELECTOR 0000FFFFH |Y|O|Y|B|U|Y|Y|N| =] =
FS 16X CURRENT FS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y|N| =] -
s 16X CURRENT GS SELECTOR 0000FFFFH |Y|O|Y|B|U|Y|Y[N|=] -

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL, or

231630-60

expand down

byte granularity

page granularity

push/pop 16-bit words

push/pop 32-bit dwords

does not apply to that segment cache register

I TS TWO

Figure 4-11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

43

Intel386™ DX MICROPROCESSOR

intgl.

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-12.
In Protected Mode, each of these fields are defined

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32 = BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32 =BIT LIMIT
(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES
(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACK SIZE

EXECUTABLE

WRITEABLE

READABLE
EXPANSION DIRECTION

GRANULARITY

ACCESSED

PRIVILEGE LEVEL

PRESENT

cs BASE PER SEG DESCR

LIMIT PER SEG DESCR

SS BASE PER SEG DESCR

LIMIT PER SEG DESCR

DS BASE PER SEG DESCR

LIMIT PER SEG DESCR

ES BASE PER SEG DESCR

LIMIT PER SEG DESCR

FS BASE PER SEG DESCR

LIMIT PER SEG DESCR

GS BASE PER SEG DESCR

LIMIT PER SEG DESCR

231630-61

Key: Y = fixed yes

N = fixed no

d = per segment descriptor

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11
(exception 12 in case of SS)

r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13
(special case for SS)

w = per segment descriptor, but descriptor must indicate “writable” to avoid exception 13
(special case for SS)

- = does not apply to that segment cache register

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

44

intgl.

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

Intel386™ DX MICROPROCESSOR

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

SEGMENT
32 = BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32 = BIT LIMIT
(FIXED)

OTHER ATTRIBUTES
(FIXED)

no

privilege level 0
privilege level 1
privilege level 2
privilege level 3
expand up

cwnp=2OozZ<

STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LIMIT ¥ l 3
cs 16X CURRENT CS SELECTOR OOCOFFFFH Y|3|Y|B|U|Y|Y]|Y]|=]|N
SS 16X CURRENT SS SELECTOR OOOOFFFFH Y[3[Y|B|U[Y|Y[N|W]|=
DS 16X CURRENT DS SELECTOR 0000FFFFH Y [3[Y[B[U[Y[Y[N]=-]-
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y[3|Y|B|U[Y|[Y|N|=]=
FS 16X CURRENT FS SELECTOR OO0OOFFFFH Y|[3|Y|B|U[Y[Y|N]|=] -
6S 16X CURRENT GS SELECTOR 0000FFFFH (Y [3[Y[BlU[Y[YINI=]=
“““““““““““““““““““““““““ 231630-62

Key: yes = expand down

byte granularity

page granularity

push/pop 16-bit words

push/pop 32-bit dwords

does not apply to that segment cache register

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

45

Intel386™ DX MICROPROCESSOR

4.4 PROTECTION

4.4.1 Protection Concepts

APPLICATIONS
CPU

ENFORCED
SOFTWARE

INTERFACES 0S EXTENSIONS

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

231630-63

Figure 4-14. Four-Level Hierachical Protection

The Intel386 DX has four levels of protection which
are optimized to support the needs of a multi-tasking
operating system to isolate and protect user pro-
grams from each other and the operating system.
The privilege levels control the use of privileged in-
structions, 1/0 instructions, and access to segments
and segment descriptors. Unlike traditional micro-
processor-based systems where this protection is
achieved only through the use of complex external
hardware and software the Intel386 DX provides the
protection as part of its integrated Memory Manage-
ment Unit. The Intel386 DX offers an additional type
of protection on a page basis, when paging is en-
abled (See section 4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Intel386 DX paging mecha-
nism. The privilege levels (PL) are numbered 0
through 3. Level 0 is the most privileged or trusted
level.

4.4.2 Rules of Privilege

The Intel386 DX controls access to both data and
procedures between levels of a task, according to
the following rules.

¢ Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

® A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

46

intgl.

4.4.3 Privilege Levels

4.4.3.1 TASK PRIVILEGE

At any point in time, a task on the Intel386 DX al-
ways executes at one of the four privilege levels.
The Current Privilege Level (CPL) specifies the
task’s privilege level. A task’s CPL may only be
changed by control transfers through gate descrip-
tors to a code segment with a different privilege lev-
el. (See section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 SELECTOR PRIVILEGE (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’'s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor’s RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator’'s CPL.

4.4.3.3 1/0 PRIVILEGE AND 1/0 PERMISSION
BITMAP

The 1/0 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > IOPL, and the current task is associat-
ed with a 286 TSS, attempted I/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an Intel386 DX TSS,
the 1/0 Permission Bitmap (part of an Intel386 DX
TSS) is consulted on whether 1/0 to the port is al-
lowed, or an exception 13 fault is to be generated

intgl.

instead. For diagrams of the 1/0 Permission Bitmap,
refer to Figures 4-15a and 4-15b. For further infor-
mation on how the I/0 Permission Bitmap is used in
Protected Mode or in Virtual 8086 Mode, refer to
section 4.6.4 Protection and 1/0 Permission Bitmap.

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the Intel386 DX.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP’ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

Table 4-2. Pointer Test Instructions

Instruction| Operands Function

ARPL Selector,

Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector | VERIfy for Read: sets the
zero flag if the segment
referred to by the selector

can be read.

VERW |Selector |VERIify for Write: sets the
zero flag if the segment
referred to by the selector

can be written.

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register,
Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set

zero flag if successful.

Intel386™ DX MICROPROCESSOR

4.4.3.4 PRIVILEGE VALIDATION

The Intel386 DX provides several instructions to
speed pointer testing and help maintain system in-
tegrity by verifying that the selector value refers to
an appropriate segment. Table 4-2 summarizes the
selector validation procedures available for the In-
tel386 DX.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Intel386 DX makes protection
validation checks. Selectors loaded in the DS, ES,
FS, GS registers must refer only to data segments or
readable code segments. The data access rules are
specified in section 4.2.2 Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privi-
lege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 Privilege Level Transfers
Inter-segment control transfers occur when a selec-

tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call

47

Intel386™ DX MICROPROCESSOR

Table 4-3. Descriptor Types Used for Control Transfer

intgl.

. Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or IDT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register) = 1

or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL

48

must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who’s DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

Intel386™ DX MICROPROCESSOR

NOTE:
BIT_MAP_OFFSET
must be < DFFFH

Type =
Type =

ACCESS TSS

RIGHTS LIMIT

BASE

'
31 PROGRAM o,
INVISIBLE '

9: Available Intel386™ DX TSS,
B: Busy Intel386™ DX TSS

31 16 15 <J
0000000000000000 | BACK LINK ° TS5 BASE
ESPO 4)
0000000000000000 | S50 8
ESP1 ¢ STACKS
0000000000000000 I ss1 10 ;gf 01,2
ESP2 14
0000000000000000 | s52]
CR3 1c)
EIP 20
EFLAGS 24
TAX 28
ECX 2
EDX 30
EBX 34
ESP 38
EBP 3
Es| 40 %@EENT
- 44 | STATE
0000000000000000 ES 48
0000000000000000 cs 4c
0000000000000000 ss 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 s 5¢
0000000000000000 LDT 8o |
BIT_MAP_OFFSET(15:0) 0000000000000000 | T {
AVAILABLE 8™ pepus
h SYSTEM STATUS, ETC. 4 TRAP BIT
1T IN Inte1386™ DX CPU TSS Y
31 2423 16] 15 s|7 [)
63 5655 48|47 40] 39 32| BIT_MAP_OFFSET
35 8s| 87 80|79 72|71 64
96| OFFSET + ¢
OFFSET + 10
N h
T 1/0 PERMISSION BITMAP B
65407 (ONE BIT PER BYTE 1/0 QFFSET + 1FEC
85439 thuNGATED USING 755 LhIT) OFFSET + 17F0
65471 OFFSET + 1FF4
65503 65472 | OFFSET + 1FF8
65535 65504 | OFFSET + 1FFC
FFH” OFFSET + 2000
TSS LIMIT = OFFSET + 2000H
Intel386™ DX CPU TSS DESCRIPTOR (IN GDT) [}
SEGMENT BASE 15...0 SEGMENT LIMIT 15..0
BASE 31..24 |G|1|0|0| 1";“'12 P|DI:L|O| JIPES | ZE;?‘ES

231630-64

Figure 4-15a. Intel386™ DX TSS and TSS Registers

49

Intel386™ DX MICROPROCESSOR

intgl.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
31 t1T10110(00001111]01001100|000O0CO0CO0I11
63lo o1t o001 1|1T1001010f11111100|1 1111001
L1 T T T T 1 T e e T I T T T A A O A IO A N |
127 |0 0 0 0O 0 0 0O 0O|0OOCO0OCOOOODOO|OOO0OOOOOIOOOOOOCOO
T1 1111 11

T etc. Y

170 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

231630-71

Figure 4-15b. Sample 1/0 Permission Bit Map

4.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’'s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel386 DX call gate is ac-
tivated, the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 Task Switching

A very important attribute of any multi-tasking/multi-
user operating systems is its ability to rapidly switch
between tasks or processes. The Intel386 DX direct-
ly supports this operation by providing a task switch
instruction in hardware. The Intel386 DX task switch
operation saves the entire state of the machine

50

(all of the registers, address space, and a link to the
previous task), loads a new execution state, per-
forms protection checks, and commences execution
in the new task, in about 17 microseconds. Like
transfer of control via gates, the task switch opera-
tion is invoked by executing an inter-segment JMP
or CALL instruction which refers to a Task State
Segment (TSS), or a task gate descriptor in the GDT
or LDT. An INT n instruction, exception, trap, or ex-
ternal interrupt may also invoke the task switch op-
eration if there is a task gate descriptor in the asso-
ciated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire Intel386 DX execution
state while a task gate descriptor contains a TSS
selector. The Intel386 DX supports both 80286 and
Intel386 DX style TSSs. Figure 4-16 shows a 80286
TSS. The limit of an Intel386 DX TSS must be great-
er than 0064H (002BH for a 80286 TSS), and can be
as large as 4 Gigabytes. In the additional TSS
space, the operating system is free to store addition-
al information such as the reason the task is inac-
tive, time the task has spent running, and open files
belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel386 DX called the Task State Segment Register
(TR). This register contains a selector referring to
the task state segment descriptor that defines the
current TSS. A hidden base and limit register associ-
ated with TR are loaded whenever TR is loaded with
a new selector. Returning from a task is accom-
plished by the IRET instruction. When IRET is exe-
cuted, control is returned to the task which was in-
terrupted. The current executing task’s state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

intgl.

15 0
BACK LINK SELECTOR TO TSS 0
SP FOR CPL O 2)
SS FOR CPL 0O 4
SP FOR CPL 1 6 | INITIAL
SS FOR CPL 1 8 Eg;cgpsL 01,2
SP FOR CPL 2 A
SS FOR CPL 2 c)
IP (ENTRY POINT) E)
FLAGS 10
AX 12
CX 14
DX 16
BX "8 | CURRENT
SP 1A } TASK
P ic | STATE
sl IE
DI 20
ES SELECTOR 22
CS SELECTOR 24
SS SELECTOR 26
DS SELECTOR 28
TASK'S LDT SELECTOR on”
J, AVAILABLE AN
el)
231630-65

Figure 4-16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel386 DX task state segment is marked busy
by changing the descriptor type field from TYPE 9H
to TYPE BH. An 80286 TSS is marked busy by
changing the descriptor type field from TYPE 1 to
TYPE 3. Use of a selector that references a busy
task state segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

The coprocessor’s state is not automatically saved
when a task switch occurs, because the incoming
task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with
the coprocessor’s state in a multi-tasking environ-

Intel386™ DX MICROPROCESSOR

ment. Whenever the Intel386 DX switches tasks, it
sets the TS bit. The Intel386 DX detects the first use
of a processor extension instruction after a task
switch and causes the processor extension not
available exception 7. The exception handler for ex-
ception 7 may then decide whether to save the state
of the coprocessor. A processor extension not pres-
ent exception (7) will occur when attempting to exe-
cute an ESC or WAIT instruction if the Task
Switched and Monitor coprocessor extension bits
are both set (i.e. TS = 1 and MP = 1).

The T bit in the Intel386 DX TSS indicates that the
processor should generate a debug exception when
switching to a task. If T = 1 then upon entry to a
new task a debug exception 1 will be generated.

4.4.7 Initialization and Transition to
Protected Mode

Since the Intel386 DX begins executing in Real
Mode immediately after RESET it is necessary to
initialize the system tables and registers with the ap-
propriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode Intel386 DX system. It has a
single code and single data/stack segment each
four gigabytes long and a single privilege level PL =
0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Intel386 DX in Protected
Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

51

Intel386™ DX MICROPROCESSOR

31

15 0

0
RESET ROUTINES | L rrre
FFFFFFFO
INITIALIZATION
ROUTINES

6s [oo10]
Fs [oo10]
es [o010]

“USER MEMORY -

GDTR 0017 | LIMIT R
00000118
00000100 DATA DESCRIPTOR
BASE ADDRESS CODE DESCRIPTOR 00000110
ooooo10s [%07
NULL SELECTOR
IDTR | OOFF | LIMIT 00000100
00000000 INTERRUPT BT
BASE ADDRESS DESCRIPTORS (32)
00000000

231630-66

Figure 4-17. Simple Protected System

DATA SEGMENT BASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR | 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
0(0 19.16 110 0(1|0 0 1(0
00 (H 1)1 00 (H
(H) F) | Ny (H)
CODE SEGMENT BASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR | 0118 (H) FFFF (H)
LIMIT
BASE 31...24 BASE23...16
0|0 19.16 1{0 0|1|1 0 1|0
00 (H 1)1 00 (H
(H) F) | - (H)
NULL | DESCRIPTOR
31 24 16 15 8 0

Figure 4-18. GDT Descriptors for Simple System

4.4.8 Tools for Building Protected
Systems

In order to simplify the design of a protected multi-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
Intel386 DX system. This tool is the builder BLD-386.
BLD-386 lets the operating system writer specify all
of the segment descriptors discussed in the previous
sections (LDTs, IDTs, GDTs, Gates, and TSSs) in a
high-level language.

52

4.5 PAGING

4.5.1 Paging Concepts

Paging is another type of memory management use-
ful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments,
paging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical

intgl.

structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 Paging Organization

4.5.2.1 PAGE MECHANISM

The Intel386 DX uses two levels of tables to trans-
late the linear address (from the segmentation unit)
into a physical address. There are three compo-
nents to the paging mechanism of the Intel386 DX:
the page directory, the page tables, and the page
itself (page frame). All memory-resident elements of
the Intel386 DX paging mechanism are the same
size, namely, 4K bytes. A uniform size for all of the
elements simplifies memory allocation and realloca-
tion schemes, since there is no problem with memo-
ry fragmentation. Figure 4-19 shows how the paging
mechanism works.

Intel386™ DX MICROPROCESSOR

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR83, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.4 Translation
Lookaside Buffer).

4.5.2.3 PAGE DIRECTORY

The Page Directory is 4K bytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

Intel386™ DX CPU
31

31 22 12 0
——>| owecrory | TasLe | orrser | USER
LINEAR MEMORY
ADDRESS 12
10 10 l
31 0
®—> ADDRESS

31 0
CRO |
\ 4
CR1) >
CR2 T
CR3 ROOT >
DIRECTORY

CONTROL REGISTERS

PAGE TABLE

231630-67
Figure 4-19. Paging Mechanism
31 12 11 10 9 8 7 6 5 4 3 2 1 0
(O] U | R
PAGE TABLE ADDRESS 31..12 RESERVED o|oO|D|A|JO|O|—]|—]|P
S | W

Figure 4-20. Page Directory Entry (Points to Page Table)

53

Intel386™ DX MICROPROCESSOR

31 12 1 10 9 8 7 6 5 4 3 2 1 0
(ON] U|R

PAGE FRAME ADDRESS 31..12 RESERVED Oo|O0O|D|A|O|O|—|—]|P
S| W

Figure 4-21. Page Table Entry (Points to Page)

4.5.2.4 PAGE TABLES

Each Page Table is 4K bytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation;
if P = 0 the entry can not be used for translation.
Note that the present bit of the page table entry that
points to the page where code is currently being ex-
ecuted should always be set. Code that marks its
own page not present should not be written. All of
the other bits are available for use by the software.
For example the remaining 31 bits could be used to
indicate where on the disk the page is stored.

The A (Accessed) bit 5, is set by the Intel386 DX for
both types of entries before a read or write access
occurs to an address covered by the entry. The D
(Dirty) bit 6 is set to 1 before a write to an address
covered by that page table entry occurs. The D bit is
undefined for Page Directory Entries. When the P, A
and D bits are updated by the Intel386 DX, the proc-
essor generates a Read-Modify-Write cycle which
locks the bus and prevents conflicts with other proc-
essors or perpherials. Software which modifies
these bits should use the LOCK prefix to ensure the
integrity of the page tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4-20 and
Figure 4-21 (bits 9—11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

54

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

4.5.3 Page Level Protection
(R/W, U/S Bits)

The Intel386 DX provides a set of protection attri-
butes for paging systems. The paging mechanism
distinguishes between two levels of protection: User
which corresponds to level 3 of the segmentation
based protection, and supervisor which encompass-
es all of the other protection levels (0, 1, 2). Pro-
grams executing at Level 0, 1 or 2 bypass the page
protection, although segmentation based protection
is still enforced by the hardware.

The U/S and R/W bits are used to provide
User/Supervisor and Read/Write protection for indi-
vidual pages or for all pages covered by a Page Ta-
ble Directory Entry. The U/S and R/W bits in the first
level Page Directory Table apply to all pages de-
scribed by the page table pointed to by that directory
entry. The U/S and R/W bits in the second level
Page Table Entry apply only to the page described
by that entry. The U/S and R/W bits for a given
page are obtained by taking the most restrictive of
the U/S and R/W from the Page Directory Table
Entries and the Page Table Entries and using these
bits to address the page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 and the U/S and R/W bits for
the Page Table Entry were 01, the access rights for
the page would be 01, the numerically smaller of the
two. Table 4-4 shows the affect of the U/S and R/W
bits on accessing memory.

Table 4-4. Protection Provided by R/W and U/S

Permitted | Permitted Access
uss | R/W Level 3 Levels 0,1, or 2
0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented
protection mechanisms. (Section 4.4 Protection).

intgl.

4.5.4 Translation Lookaside Buffer

The Intel386 DX paging hardware is designed to
support demand paged virtual memory systems.
However, performance would degrade substantially
if the processor was required to access two levels of
tables for every memory reference. To solve this
problem, the Intel386 DX keeps a cache of the most
recently accessed pages, this cache is called the
Translation Lookaside Buffer (TLB). The TLB is a
four-way set associative 32-entry page table cache.
It automatically keeps the most commonly used
Page Table Entries in the processor. The 32-entry
TLB coupled with a 4K page size, results in cover-
age of 128K bytes of memory addresses. For many
common multi-tasking systems, the TLB will have a
hit rate of about 98%. This means that the proces-
sor will only have to access the two-level page struc-
ture on 2% of all memory references. Figure 4-22
illustrates how the TLB complements the Intel386
DX’s paging mechanism.

4.5.5 Paging Operation

32 ENTRIES

PHYSICAL
MEMORY
TRANSLATION
Aobress —»— Lookasioe e
BUFFER HIT
Miss
31 9
<
(+ ’_ >
PAGE PAGE
DIRECTORY TABLE
© 98% HIT RATE
231630-68

Intel386™ DX MICROPROCESSOR

try and set the Access bit. If P = 1 on the Page
Table Entry indicating that the page is in memory,
the Intel386 DX will update the Access and Dirty bits
as needed and fetch the operand. The upper 20 bits
of the linear address, read from the page table, will
be stored in the TLB for future accesses. However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14,
page fault, if the memory reference violated the
page protection attributes (i.e. U/S or R/W) (e.g. try-
ing to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec-
ond page fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep-
tion 14) handler a second time, rather than the dou-
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc-
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault Fig-
ure 4-23A shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4-23B indicates
what type of access caused the page fault.

Figure 4-22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 32-bit phys-
ical address is calculated and will be placed on the
address bus.

However, if the page table entry is not in the TLB,
the Intel386 DX will read the appropriate Page Direc-
tory Entry. If P = 1 on the Page Directory Entry indi-
cating that the page table is in memory, then the
Intel386 DX will read the appropriate Page Table En-

15 3210
U

ujujujujujujujujujujujujuju| wj|p
S|R

Figure 4-23A. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U: UNDEFINED

55

Intel386™ DX MICROPROCESSOR

u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.

Figure 4-23B. Type of Access
Causing Page Fault

4.5.6 Operating System
Responsibilities

The Intel386 DX takes care of the page address
translation process, relieving the burden from an op-
erating system in a demand-paged system. The op-
erating system is responsible for setting up the initial
page tables, and handling any page faults. The oper-
ating system also is required to invalidate (i.e. flush)
the TLB when any changes are made to any of the
page table entries. The operating system must re-
load CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 VIRTUAL 8086 ENVIRONMENT

4.6.1 Executing 8086 Programs

The Intel386 DX allows the execution of 8086 appli-
cation programs in both Real Mode and in the Virtual
8086 Mode (Virtual Mode). Of the two methods, Vir-
tual 8086 Mode offers the system designer the most
flexibility. The Virtual 8086 Mode allows the execu-
tion of 8086 applications, while still allowing the sys-
tem designer to take full advantage of the Intel386
DX protection mechanism. In particular, the Intel386
DX allows the simultaneous execution of 8086 oper-
ating systems and its applications, and an Intel386
DX operating system and both 80286 and Intel386

56

intgl.

DX applications. Thus, in a multi-user Intel386 DX
computer, one person could be running an MS-DOS
spreadsheet, another person using MS-DOS, and a
third person could be running multiple Unix utilities
and applications. Each person in this scenario would
believe that he had the computer completely to him-
self. Figure 4-24 illustrates this concept.

4.6.2 Virtual 8086 Mode Addressing
Mechanism

One of the major differences between Intel386 DX
Real and Protected modes is how the segment se-
lectors are interpreted. When the processor is exe-
cuting in Virtual 8086 Mode the segment registers
are used in an identical fashion to Real Mode. The
contents of the segment register is shifted left 4 bits
and added to the offset to form the segment base
linear address.

The Intel386 DX allows the operating system to
specify which programs use the 8086 style address
mechanism, and which programs use Protected
Mode addressing, on a per task basis. Through the
use of paging, the one megabyte address space of
the Virtual Mode task can be mapped to anywhere in
the 4 gigabyte linear address space of the Intel386
DX. Like Real Mode, Virtual Mode effective address-
es (i.e., segment offsets) that exceed 64K byte will
cause an exception 13. However, these restrictions
should not prove to be important, because most
tasks running in Virtual 8086 Mode will simply be
existing 8086 application programs.

4.6.3 Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 giga-
byte physical address space of the Intel386 DX. In
addition, since CR3 (the Page Directory Base Regis-
ter) is loaded by a task switch, each Virtual Mode
task can use a different mapping scheme to map
pages to different physical locations. Finally, the
paging hardware allows the sharing of the 8086 op-

Intel386™ DX MICROPROCESSOR

PHYSICAL
MEMORY
02000000(H)
— _\\
8086 0S
: _\
EMPTY
TASK 2 PAGE
TABLE
VIRTUAL MODE PAGE DIRECTORY
@ss TASK TASK 2
//" AVAILABLE
PAGE N
|
PAGE 1 —
8086 0S >
EMPTY 00000000(H)
PAGE DIRECTORY TASK 1 PAGE TASK 1 8086 0S
ROOT »> TABLE MEMORY MEMORY
T™
VIRTUAL MODE PAGE DIRECTORY [777] TASK 2 < Intel386™ DX cPU 0S
TASK 1 MEMORY & MEMORY

\\E?ss TASK

231630-69

Figure 4-24. Virtual 8086 Environment Memory Management

erating system code between multiple 8086 applica-
tions. Figure 4-24 shows how the Intel386 DX paging
hardware enables multiple 8086 programs to run un-
der a virtual memory demand paged system.

4.6.4 Protection and 1/0 Permission
Bitmap

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at-
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > 0) causes an excep-
tion 13 fault:

LIDT;
LGDT;

MOV DRn,reg;
MOV TRn,reg;

MOV reg,DRn;
MOV reg,TRn;

LMSW ;
CLTS;
HLT ;

MOV CRn,reg; MOV reg,CRn.

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT ;
LAR; VERR ;
LSL; VERW ;
ARPL.

The instructions which are IOPL-sensitive in Protect-
ed Mode are:

IN;

OUT ;

INS;
OUTS;

REP INS;
REP OUTS;

STI;
CLI

57

Intel386™ DX MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF ; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode 0CCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the I/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be-
come automatically sensitive to the 1/0 Permission
Bitmap contained in the Intel386 DX Task State
Segment. The I/0O Permission Bitmap, automatically
used by the Intel386 DX in Virtual 8086 Mode, is
illustrated by Figures 4.15a and 4-15b.

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit__Map__Offset in the current TSS. Bit_Map__
Offset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets < FFFFH from the TSS base. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4-15a.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4-15a. If a bit is 0, 1/0 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 1/0 instruction causes an excep-
tion 13 fault. Since every byte-wide 1/0 port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide I/0 to be permitted. If all the referenced
bits are 0, the I/0 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/0
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general case if
desired.

58

intgl.

EXAMPLE OF BITMAP FOR 1I/0 PORTS 0-255:
Setting the TSS limit to {bit__Map__Offset + 31
+1**} [** see note below] will allow a 32-byte bit-
map for the I/O ports #0-255, plus a terminator
byte of all 1’s [** see note below]. This allows the
170 bitmap to control I/O Permission to 1/0 port 0—
255 while causing an exception 13 fault on attempt-
ed /0 to any I/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the 1/0
Permission Bitmap must be a byte containing all 1’s.
The byte of all 1’s must be within the limit of the
Intel386 DX TSS segment (see Figure 4-15a).

4.6.5 Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel386 DX operating
system. The Intel386 DX operating system deter-
mines if the interrupt comes from a Protected Mode
application or from a Virtual Mode program by exam-
ining the VM bit in the EFLAGS image stored on the
stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Intel386 DX operating system in turn handles
the exception or interrupt and then returns control to
the 8086 program. The Intel386 DX operating sys-
tem may choose to let the 8086 operating system
handle the interrupt or it may emulate the function of
the interrupt handler. For example, many 8086 oper-
ating system calls are accessed by PUSHing param-
eters on the stack, and then executing an INT n in-
struction. If the IOPL is set to 0 then all INT n instruc-
tions will be intercepted by the Intel386 DX Micro-
processor operating system. The Intel386 DX oper-
ating system could emulate the 8086 operating sys-
tem’s call. Figure 4-25 shows how the Intel386 DX
operating system could intercept an 8086 operating
system’s call to “Open a File”.

An Intel386 DX operating system can provide a Vir-
tual 8086 Environment which is totally transparent to
the application software via intercepting and then
emulating 8086 operating system’s calls, and inter-
cepting IN and OUT instructions.

intgl.

4.6.6 Entering and Leaving Virtual
8086 Mode

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to an Intel386 DX task whose Intel386 DX TSS has a
FLAGS image containing a 1 in the VM bit position
while the processor is executing in Protected Mode.
That is, one way to enter Virtual 8086 mode is to
switch to a task with an Intel386 DX TSS that has a
1 in the VM bit in the EFLAGS image. The other way
is to execute a 32-bit IRET instruction at privilege
level 0, where the stack has a 1 in the VM bit in the
EFLAGS image. POPF does not affect the VM bit,
even if the processor is in Protected Mode or level 0,
and so cannot be used to enter Virtual 8086 Mode.
PUSHF always pushes a 0 in the VM bit, even if the
processor is in Virtual 8086 Mode, so that a program
cannot tell if it is executing in REAL mode, or in Vir-
tual 8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level O, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM =1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Intel386
DX protected mode occurs only on receipt of an in-
terrupt or exception (such as due to a sensitive in-
struction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode IDT,
and enter an interrupt handler in protected Intel386
DX mode. That is, as part of interrupt processing,
the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 TASK SWITCHES TO/FROM VIRTUAL
8086 MODE

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new Intel386 DX
format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with an Intel386 DX TSS. All of the programmer
visible state, including the FLAGS register with the
VM bit set to 1, is stored in the TSS. The segment

Intel386™ DX MICROPROCESSOR

registers in the TSS will contain 8086 segment base
values rather than selectors.

A task switch into a task described by an Intel386
DX TSS will have an additional check to determine if
the incoming task should be resumed in virtual 8086
mode. Tasks described by 80286 format TSSs can-
not be resumed in virtual 8086 mode, so no check is
required there (the FLAGS image in 80286 format
TSS has only the low order 16 FLAGS bits). Before
loading the segment register images from an In-
tel386 DX TSS, the FLAGS image is loaded, so that
the segment registers are loaded from the TSS im-
age as 8086 segment base values. The task is now
ready to resume in virtual 8086 execution mode.

4.6.6.2 TRANSITIONS THROUGH TRAP AND
INTERRUPT GATES, AND IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The ftransition out must use an Intel386 DX Trap
Gate (Type 14), or Intel386 DX Interrupt Gate (Type
15), which must point to a non-conforming level 0
segment (DPL=0) in order to permit the trap han-
dler to IRET back to the Virtual 8086 program. The
Gate must point to a non-conforming level 0 seg-
ment to perform a level switch to level 0 so that the
matching IRET can change the VM bit. Intel386 DX
gates must be used, since 80286 gates save only
the low 16 bits of the FLAGS register, so that the VM
bit will not be saved on transitions through the
80286 gates. Also, the 16-bit IRET (presumably)
used to terminate the 80286 interrupt handler will
pop only the lower 16 bits from FLAGS, and will not
affect the VM bit. The action taken for an Intel386
DX Trap or Interrupt gate if an interrupt occurs while
the task is executing in virtual 8086 mode is given by
the following sequence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

59

Intel386™ DX MICROPROCESSOR

8086
OPERATING #3

8086 APPLICATION
PROGRAM

GP FAULT

VIRTUAL 8086
MODE MONITOR

i386™ DX CPU
APPLICATION
PROGRAM

#2

SYSTEM

i386™ DX CPU 0S
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 3
(LOWEST)

8086 Application makes “Open File Call” — causes
General Protection Fault (Arrow #1)

Intel386™ DX OS opens file returns control to 8086 OS (Arrow #3)
8086 OS returns control to application. (Arrow #4)
Transparent to Application

PRIVILEGE
LEVEL 0
(HIGHEST)

8086 APPLICATION
PROGRAM

Virtual 8086 Monitor intercepts call. Calls Intel386™ DX OS (Arrow #2)

231630-70

Figure 4-25. Virtual 8086 Environment Interrupt and Call Handling

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Intel386 DX mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don’t care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e. push all registers in
prolog, pop all in epilog) regardless of whether or not
a “native” mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto

60

the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Intel386 DXs
IRET instruction (operand size =32) can be used,
and must be executed at level 0 to change the VM
bit to 1.

(1) If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following sequence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM=0, this CS load is done as a protected
mode segment load. If VM =1, this will be done
as an 8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was “popped” in step 1.

(5) If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:[ESP + 8],
SS:[ESP+12], SS:[ESP +16], and
SS:[ESP +20], respectively, where the new val-

intgl.

ue of ESP stored in step 4 is used. Since VM =1,
these are done as 8086 segment register loads.

Else if VM=0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register load. If VM =1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual 8086
mode.

5. FUNCTIONAL DATA
5.1 INTRODUCTION

The Intel386 DX features a straightforward function-
al interface to the external hardware. The Intel386
DX has separate, parallel buses for data and ad-
dress. The data bus is 32-bits in width, and bidirec-
tional. The address bus outputs 32-bit address val-
ues in the most directly usable form for the high-
speed local bus: 4 individual byte enable signals,
and the 30 upper-order bits as a binary value. The
data and address buses are interpreted and con-
trolled with their associated control signals.

A dynamic data bus sizing feature allows the proc-
essor to handle a mix of 32- and 16-bit external bus-
es on a cycle-by-cycle basis (see 5.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the Intel386
DX automatically makes any adjustment needed,
even performing another 16-bit bus cycle to com-
plete the transfer if that is necessary. 8-bit peripheral
devices may be connected to 32-bit or 16-bit buses
with no loss of performance. A new address pipe-
lining option is provided and applies to 32-bit and
16-bit buses for substantially improved memory utili-
zation, especially for the most heavily used memory
resources.

The address pipelining option, when selected, typ-
ically allows a given memory interface to operate
with one less wait state than would otherwise be
required (see 5.4.2 Address Pipelining). The pipe-
lined bus is also well suited to interleaved memory
designs. When address pipelining is requested by
the external hardware, the Intel386 DX will output
the address and bus cycle definition of the next bus
cycle (if it is internally available) even while waiting
for the current cycle to be acknowledged.

Intel386™ DX MICROPROCESSOR

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cy-
cles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle
basis.

The processor’s bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. Intel386 DX bus
cycles perform data transfer in a minimum of only
two clock periods. On a 32-bit data bus, the maxi-
mum Intel386 DX transfer bandwidth at 20 MHz is
therefore 40 MBytes/sec, at 25 MHz bandwidth, is
50 Mbytes/sec, and at 33 MHz bandwidth, is
66 Mbytes/sec. Any bus cycle will be extended for
more than two clock periods, however, if external
hardware withholds acknowledgement of the cycle.
At the appropriate time, acknowledgement is sig-
nalled by asserting the Intel386 DX READY # input.

The Intel386 DX can relinquish control of its local
buses to allow mastership by other devices, such as
direct memory access channels. When relinquished,
HLDA is the only output pin driven by the Intel386
DX providing near-complete isolation of the proces-
sor from its system. The near-complete isolation
characteristic is ideal when driving the system from
test equipment, and in fault-tolerant applications.

Functional data covered in this chapter describes
the processor’s hardware interface. First, the set of
signals available at the processor pins is described
(see 5.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
5.3 Bus Transfer Mechanism, 5.4 Bus Functional
Description and 5.5 Other Functional Descrip-
tions).

5.2 SIGNAL DESCRIPTION

5.2.1 Introduction

Ahead is a brief description of the Intel386 DX input
and output signals arranged by functional groups.
Note the # symbol at the end of a signal name indi-
cates the active, or asserted, state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

Example signal: M/10 # — High voltage indicates
Memory selected

— Low voltage indicates

1/0 selected

61

Intel386™ DX MICROPROCESSOR

CLK2
2X CLOCK [—}

32-BIT| on_
DATA[vo-031 (| ETEE)

ADS#

ADDRESS BUS _) A2-A31

BE3# 3
—————»

BE2#

BE1#
BEQ#

32-BIT

BYTE ADDRESS

ENABLES

W/R#

BUS
CONTROL

ARBITRATION

NA#
BS16#

Intel386™ DX
Microprocessor

D/C#
M/10#

BUS{—>
«—

READY#

HOLD
HLDA

INTR

INTERRUPTS

NMI
RESET

LOCK#
PEREQ

BUSY#
ERROR#

GND

———

BUS CYCLE DEFINITION

COPROCESSOR SIGNALLING

} POWER CONNECTIONS

231630-1

Figure 5-1. Functional Signal Groups

CLK2 [2v ?

INTERNAL Intel386™ DX
MICROPROCESSOR CLOCK
(HALF THE FREQUENCY
OF CLK2)

PROCESSOR CLOCK

CLK2 PERIOD
f1

F\2y
[N\

15ns MIN
(33 MHz MAX)

40ns MIN
(25 MHz MAX)

50 ns MIN
(20 MHz MAX)

)
)

J

PERIOD
CLK2 PERIOD | CLK2 PERIOD

f2

2v

33 MHz
i386™ DX CPU
25 MHz

i386™ DX CPU

20 MHz
i386™ DX CPU

PROCESSOR CLOCK

f1

PERIOD

CLK2 PERIOD
f2

N\
N

231630-2

Figure 5-2. CLK2 Signal and Internal Processor Clock

The signal descriptions sometimes refer to AC tim-
ing parameters, such as “to5 Reset Setup Time” and
“tog Reset Hold Time.” The values of these parame-
ters can be found in Tables 7-4 and 7-5.

5.2.2 Clock (CLK2)

CLK2 provides the fundamental timing for the In-
tel386 DX. It is divided by two internally to generate
the internal processor clock used for instruction exe-
cution. The internal clock is comprised of two phas-
es, “phase one” and “phase two.” Each CLK2 peri-
od is a phase of the internal clock. Figure 5-2 illus-
trates the relationship. If desired, the phase of the
internal processor clock can be synchronized to a
known phase by ensuring the RESET signal falling
edge meets its applicable setup and hold times, to5
and tog.

5.2.3 Data Bus (DO through D31)

These three-state bidirectional signals provide the
general purpose data path between the Intel386 DX

62

and other devices. Data bus inputs and outputs indi-
cate “1” when HIGH. The data bus can transfer data
on 32- and 16-bit buses using a data bus sizing fea-
ture controlled by the BS16# input. See section
5.2.6 Bus Contol. Data bus reads require that read
data setup and hold times ty1 and tpo be met for
correct operation. In addition, the Intel386 DX re-
quires that all data bus pins be at a valid logic state
(high or low) at the end of each read cycle, when
READY # is asserted. During any write operation
(and during halt cycles and shutdown cycles), the
Intel386 DX always drives all 32 signals of the data
bus even if the current bus size is 16-bits.

5.2.4 Address Bus (BEO # through
BE3#, A2 through A31)

These three-state outputs provide physical memory
addresses or |/0 port addresses. The address bus
is capable of addressing 4 gigabytes of physical
memory space (00000000H through FFFFFFFFH),
and 64 kilobytes of I/0 address space (00000000H
through 0000FFFFH) for programmed /0. 1/0

intgl.

transfers automatically generated for Intel386 DX-to-
coprocessor communication use /O addresses
800000F8H through 800000FFH, so A31 HIGH in
conjunction with M/10# LOW allows simple genera-
tion of the coprocessor select signal.

The Byte Enable outputs, BEO# -BES3 #, directly in-
dicate which bytes of the 32-bit data bus are in-
volved with the current transfer. This is most conve-
nient for external hardware.

BEO# applies to DO-D7
BE1# applies to D8-D15
BE2# applies to D16-D23
BE3# applies to D24-D31

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to section 5.3.6 Operand Align-
ment.

When a memory write cycle or 1/0 write cycle is in
progress, and the operand being transferred occu-
pies only the upper 16 bits of the data bus (D16-
D31), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(DO0-D15). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En-
ables asserted during the write cycle. Table 5-1 lists
the write data present on D0-D31, as a function of
the asserted Byte Enable outputs BEO # —BE3 #.

Intel386™ DX MICROPROCESSOR

5.2.5 Bus Cycle Definition Signals
(W/R#,D/C#,M/10+#, LOCK#)

These three-state outputs define the type of bus cy-
cle being performed. W/R# distinguishes between
write and read cycles. D/C# distinguishes between
data and control cycles. M/IO# distinguishes be-
tween memory and I/O cycles. LOCK# distin-
guishes between locked and unlocked bus cycles.

The primary bus cycle definition signals are W/R#,
D/C# and M/IO#, since these are the signals driv-
en valid as the ADS# (Address Status output) is
driven asserted. The LOCK# is driven valid at the
same time as the first locked bus cycle begins,
which due to address pipelining, could be later than
ADS # is driven asserted. See 5.4.3.4 Pipelined Ad-
dress. The LOCK# is negated when the READY #
input terminates the last bus cycle which was
locked.

Exact bus cycle definitions, as a function of W/R#,
D/C#, and M/IO#, are given in Table 5-2. Note one
combination of W/R#, D/C# and M/IO# is never
given when ADS # is asserted (however, that combi-
nation, which is listed as “does not occur,” may oc-
cur during idle bus states when ADS # is not assert-
ed). If M/10#, D/C#, and W/R# are qualified by
ADS# asserted, then a decoding scheme may be
simplified by using this definition of the “does not
occur” combination.

Table 5-1. Write Data Duplication as a Function of BEO # -BE3 #

Intel386™ DX Byte Enables Intel386™ DX Write Data Automatic
BE3# BE2# BE1# BEO# | D24-D31 D16-D23 D8-D15 Do-D7 | Duplication?
High High High Low undef undef undef A No
High High Low High undef undef B undef No
High Low High High undef C undef] Yes
Low High High High D undef D undef Yes
High High Low Low undef undef B A No
High Low Low High undef C B undef No
Low Low High High D C D C Yes
High Low Low Low undef C B A No
Low Low Low High D C B undef No
Low Low Low Low D C B A No

Key:
D = logical write data d24-d31
C = logical write data d16-d23
B = logical write data d8-d15
A = logical write data d0-d7

63

Intel386™ DX MICROPROCESSOR

intgl.

Table 5-2. Bus Cycle Definition

M/10 # D/C# W/R# Bus Cycle Type Locked?
Low Low Low INTERRUPT ACKNOWLEDGE Yes
Low Low High does not occur —

Low High Low 1/0 DATA READ No
Low High High 1/0 DATA WRITE No
High Low Low MEMORY CODE READ No
High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0
(BEO# High (BEO# Low
BE1# High BE1# High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)
High High Low MEMORY DATA READ Some Cycles
High High High MEMORY DATA WRITE Some Cycles

5.2.6 Bus Control Signals (ADS #,
READY #, NA#,BS16 #)

5.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining, data bus
width and bus cycle termination.

5.2.6.2 ADDRESS STATUS (ADS #)

This three-state output indicates that a valid bus cy-
cle definition, and address (W/R#, D/C#, M/I0O#,
BEO#-BE3#, and A2-A31) is being driven at the
Intel386 DX pins. It is asserted during T1 and T2P
bus states (see 5.4.3.2 Non-pipelined Address and
5.4.3.4 Pipelined Address for additional information
on bus states).

5.2.6.3 TRANSFER ACKNOWLEDGE (READY #)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BEO# -
BE3# and BS16# are accepted or provided. When
READY # is sampled asserted during a read cycle or
interrupt acknowledge cycle, the Intel386 DX latches
the input data and terminates the cycle. When
READY # is sampled asserted during a write cycle,
the processor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica-
tion and Shutdown Indication bus cycles. When be-
ing sampled, READY must always meet setup and

64

hold times t1g and tyg for correct operation. See all
sections of 5.4 Bus Functional Description.

5.2.6.4 NEXT ADDRESS REQUEST (NA #)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BEO# -BE3#, A2-A31, W/R#, D/C# and
M/10# from the Intel386 DX even if the end of the
current cycle is not being acknowledged on
READY #. If this input is asserted when sampled,
the next address is driven onto the bus, provided the
next bus request is already pending internally. See
5.4.2 Address Pipelining and 5.4.3 Read and
Write Cycles. NA# must always meet setup and
hold times, t15 and t1g, for correct operation.

5.2.6.5 BUS SIZE 16 (BS16+#)

The BS16 # feature allows the Intel386 DX to direct-
ly connect to 32-bit and 16-bit data buses. Asserting
this input constrains the current bus cycle to use
only the lower-order half (DO-D15) of the data bus,
corresponding to BEO# and BE1#. Asserting
BS16# has no additional effect if only BEO# and/or
BE1# are asserted in the current cycle. However,
during bus cycles asserting BE2# or BE3#, assert-
ing BS16# will automatically cause the Intel386 DX
to make adjustments for correct transfer of the up-
per bytes(s) using only physical data signals DO-
D15.

If the operand spans both halves of the data bus
and BS16# is asserted, the Intel386 DX will auto-
matically perform another 16-bit bus cycle. BS16#
must always meet setup and hold times t17 and tqg
for correct operation.

intgl.

Intel386 DX 1/0 cycles are automatically generated
for coprocessor communication. Since the Intel386
DX must transfer 32-bit quantities between itself and
the Intel387 DX, BS16# must not be asserted dur-
ing Intel387 DX communication cycles.

5.2.7 Bus Arbitration Signals
(HOLD, HLDA)

5.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
5.5.1 Entering and Exiting Hold Acknowledge for
additional information.

5.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the In-
tel386 DX requires bus mastership.

HOLD must remain asserted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has priority and places
the bus into an idle state, rather than the hold ac-
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must always meet setup and hold
times tp3 and tp4 for correct operation.

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this output indicates the Intel386 DX
has relinquished control of its local bus in response
to HOLD asserted, and is in the bus Hold Acknowl-
edge state.

The Hold Acknowledge state offers near-complete
signal isolation. In the Hold Acknowledge state,
HLDA is the only signal being driven by the Intel386
DX. The other output signals or bidirectional signals
(D0-D31, BEO#-BE3#, A2-A31, W/R#, D/C#,
M/10#, LOCK# and ADS#) are in a high-imped-
ance state so the requesting bus master may control
them. Pullup resistors may be desired on several sig-
nals to avoid spurious activity when no bus master is
driving them. See 7.2.3 Resistor Recommenda-
tions. Also, one rising edge occuring on the NMI
input during Hold Acknowledge is remembered, for
processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowl-
edge with DMA controllers or master peripherals,

Intel386™ DX MICROPROCESSOR

the near-complete isolation has particular attractive-
ness during system test when test equipment drives
the system, and in hardware-fault-tolerant applica-
tions.

5.2.8 Coprocessor Interface Signals
(PEREQ, BUSY #, ERROR #)

5.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the Intel386 DX and its In-
tel387 DX processor extension.

5.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc-
essor request for a data operand to be transferred
to/from memory by the Intel386 DX. In response,
the Intel386 DX transfers information between the
coprocessor and memory. Because the Intel386 DX
has internally stored the coprocessor opcode being
executed, it performs the requested data transfer
with the correct direction and memory address.

PEREQ is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

5.2.8.3 COPROCESSOR BUSY (BUSY #)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the Intel386 DX encounters
any coprocessor instruction which operates on the
numeric stack (e.g. load, pop, or arithmetic opera-
tion), or the WAIT instruction, this input is first auto-
matically sampled until it is seen to be negated. This
sampling of the BUSY # input prevents overrunning
the execution of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY # is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY # is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

BUSY # serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the In-
tel386 DX performs an internal self-test (see 5.5.3
Bus Activity During and Following Reset). If
BUSY # is sampled HIGH, no self-test is performed.

65

Intel386™ DX MICROPROCESSOR

5.2.8.4 COPROCESSOR ERROR (ERROR #)

This input signal indicates that the previous coproc-
essor instruction generated a coprocessor error of a
type not masked by the coprocessor’s control regis-
ter. This input is automatically sampled by the In-
tel386 DX when a coprocessor instruction is en-
countered, and if asserted, the Intel386 DX gener-
ates exception 16 to access the error-handling soft-
ware.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the Intel386 DX generating exception 16 even if ER-
ROR# is asserted. These instructions are FNINIT,
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENYV,
FSAVE, FESTENV and FESAVE.

ERROR# is level-sensitive and is allowed to be
asynchronous to the CLK2 signal.

5.2.9 Interrupt Signals (INTR, NMI,
RESET)

5.2.9.1 INTRODUCTION

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the Intel386
DX Flag Register IF bit. When the Intel386 DX re-
sponds to the INTR input, it performs two interrupt
acknowledge bus cycles, and at the end of the sec-
ond, latches an 8-bit interrupt vector on D0-D7 to
identify the source of the interrupt.

INTR is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition
of an INTR request, INTR should remain asserted
until the first interrupt acknowledge bus cycle be-
gins.

5.2.9.3 NON-MASKABLE INTERRUPT REQUEST
(NMI)

This input indicates a request for interrupt service,
which cannot be masked by software. The non-

66

intgl.

maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog-
nition of NMI, it must be negated for at least eight
CLK2 periods, and then be asserted for at least
eight CLK2 periods.

Once NMI processing has begun, no additional
NMI's are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

5.2.9.4 RESET (RESET)

This input signal suspends any operation in progress
and places the Intel386 DX in a known reset state.
The Intel386 DX is reset by asserting RESET for 15
or more CLK2 periods (80 or more CLK2 periods
before requesting self test). When RESET is assert-
ed, all other input pins are ignored, and all other bus
pins are driven to an idle bus state as shown in Ta-
ble 5-3. If RESET and HOLD are both asserted at a
point in time, RESET takes priority even if the In-
tel386 DX was in a Hold Acknowledge state prior to
RESET asserted.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. If desired, the phase of the inter-
nal processor clock, and the entire Intel386 DX state
can be completely synchronized to external circuitry
by ensuring the RESET signal falling edge meets its
applicable setup and hold times, to5 and tog.

Table 5-3. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS # High
D0-D31 High Impedance
BEO#-BE3# Low
A2-A31 High
W/R# Low
D/C# High
M/10 # Low
LOCK # High
HLDA Low

intgl.

5.2.10 Signal Summary

Intel386™ DX MICROPROCESSOR

Table 5-4 summarizes the characteristics of all Intel386 DX signals.
Table 5-4. Intel386™ DX Signal Summary

Active Input/ S I::z:tor Output
Signal Name Signal Function State Ouptput Xsynch High_lmpedance
to CLK2 During HLDA?
CLK2 Clock — I — —
D0-D31 Data Bus High 1/0 S Yes
BEO# -BE3# Byte Enables Low (0] — Yes
A2-A31 Address Bus High o} — Yes
W/R# Write-Read Indication High 0} — Yes
D/C# Data-Control Indication High o} — Yes
M/10 # Memory-1/0 Indication High (0] — Yes
LOCK # Bus Lock Indication Low o} — Yes
ADS # Address Status Low o} — Yes
NA # Next Address Request Low | S —
BS16# Bus Size 16 Low | S —
READY # Transfer Acknowledge Low | S —
HOLD Bus Hold Request High | S —
HLDA Bus Hold Acknowledge High O — No
PEREQ Coprocessor Request High | A —
BUSY # Coprocessor Busy Low | A —
ERROR # Coprocessor Error Low | A —
INTR Maskable Interrupt Request High | A —
NMI Non-Maskable Intrpt Request High | A —
RESET Reset High | S —

5.3 BUS TRANSFER MECHANISM

5.3.1

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re-
strictions on physical address alignment. Any byte
boundary may be used, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 5.3.4 Dynamic
Data Bus Sizing and 5.3.6 Operand Alignment.

Introduction

The Intel386 DX address signals are designed to
simplify external system hardware. Higher-order ad-
dress bits are provided by A2-A31. Lower-order ad-
dress in the form of BEO# —-BE3# directly provides
linear selects for the four bytes of the 32-bit data
bus. Physical operand size information is thereby im-
plicitly provided each bus cycle in the most usable
form.

Byte Enable outputs BEO#-BE3# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5-5.
During a bus cycle, any possible pattern of contigu-
ous, asserted Byte Enable outputs can occur, but
never patterns having a negated Byte Enable sepa-
rating two or three asserted Enables.

67

Intel386™ DX MICROPROCESSOR

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary (for

intgl.

Table 5-6. Generating A0-A31 from
BEO#-BE3# and A2-A31

instance, for MULTIBUS | or MULTIBUS Il interface), -
as a function of the lowest-order asserted Byte En- Intel386™ DX Address Signals
able. This is shown by Table 5-6. Logic to generate A31 ... A2 BE3+# | BE2+# | BE1# | BEO #
AO and At is given by Figure 5-3.
Physical Base
Table 5-5. Byte Enables and Associated Address
Data and Operand Bytes
A31| ... A2[A1[A0
Byte Enable Signal Associated Data Bus Signals
A31| ...l A2[0 0| X X X Low
BEO # D0-D7 (byte O—least significant) -
A31| ... A2 0| 1 X X Low [High
BE1 # D8-D15 (byte 1) - -
A31| ..., A2[10| X | Low | High | High
BE2# D16-D23 (byte 2) X X X
A31| ..., A2| 1| 1| Low | High | High | High
BE3# D24-D31 (byte 3—most significant)
BEO#
L H
L Llxfrfr|L
BE24 L xfrfL H BES# SEo# Al
o w] L BE1#
x| x J:I/ x|L
L| H |L
BE1
231630-3
K - Map for A1 Signal
BEO#
L H
L L|x /ﬁ
BE2# = A
L|L H
H
X | X X
L| H |L
BE1
231630-4
K - Map for AO Signal

Figure 5-3. Logic to Generate A0, A1 from BEO # -BE3 #

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 5.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data
can be transferred between external devices and
the Intel386 DX at a maximum rate of one 4-byte
Dword every two processor clock periods, for a max-
imum bus bandwidth of 66 megabytes/second (In-
tel386 DX operating at 33 MHz processor clock
rate).

68

5.3.2 Memory and 1/0 Spaces

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5-4, physical memory addresses
range from 00000000H to FFFFFFFFH (4 gigabytes)
and 1/0 addresses from 00000000H to 0000FFFFH
(64 kilobytes) for programmed 1/0. Note the 1/0 ad-
dresses used by the automatic 1/0 cycles for co-
processor communication are 800000F8H to
800000FFH, beyond the address range of pro-
grammed 1/0, to allow easy generation of a coproc-
essor chip select signal using the A31 and M/IO#
signals.

Intel386™ DX MICROPROCESSOR

FFFFFFFFH

PHYSICAL
MEMORY

4 GBYTE

00000000H
Physical Memory Space
NOTE:

easily generate a coprocessor select signal.

53833323 E—COPROCESSOR
(NoTE 1) ¥ v (Intel387™ DX)
|/)
! 1
1 /|

0000FFFFH

00000000H

Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to

1ACCESSIBLE 1

v ;

64 kBYTE

PROGRAMMED
1/0 SPACE

] ACCESSIBLE

231630-5
1/0O Space

Figure 5-4. Physical Memory and 1/0 Spaces

5.3.3 Memory and I/0 Organization

The Intel386 DX datapath to memory and 1/0
spaces can be 32 bits wide or 16 bits wide. When
32-bits wide, memory and I/O spaces are organized
naturally as arrays of physical 32-bit Dwords. Each
memory or |/O Dword has four individually address-
able bytes at consecutive byte addresses. The low-
est-addressed byte is associated with data signals
D0-D7; the highest-addressed byte with D24-D31.

The Intel386 DX includes a bus control input,
BS16#, that also allows direct connection to 16-bit
memory or |/O spaces organized as a sequence of
16-bit words. Cycles to 32-bit and 16-bit memory or
1/0 devices may occur in any sequence, since the
BS16# control is sampled during each bus cycle.
See 5.3.4 Dynamic Data Bus Sizing. The Byte En-
able signals, BEO# -BE3#, allow byte granularity
when addressing any memory or 1/O structure,
whether 32 or 16 bits wide.

5.3.4 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
for memory or 1/0. A single processor may connect
to both size buses. Transfers to or from 32- or 16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. During each bus
cycle an address decoding circuit or the slave de-

vice itself may assert BS16# for 16-bit ports, or ne-
gate BS16# for 32-bit ports.

With BS16# asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans-
fers as required. All operand transfers physically oc-
cur on D0O-D15 when BS16# is asserted. There-
fore, 16-bit memories or I/O devices only connect
on data signals DO-D15. No extra transceivers are
required.

Asserting BS16# only affects the processor when
BE2# and/or BE3# are asserted during the current
cycle. If only DO-D15 are involved with the transfer,
asserting BS16# has no affect since the transfer
can proceed normally over a 16-bit bus whether
BS16# is asserted or not. In other words, asserting
BS16# has no effect when only the lower half of the
bus is involved with the current cycle.

There are two types of situations where the proces-
sor is affected by asserting BS16#, depending on
which Byte Enables are asserted during the current
bus cycle:

Upper Half Only:
Only BE2# and/or BE3# asserted.

Upper and Lower Half:

At least BE1#, BE2# asserted (and perhaps
also BEO# and/or BE3 #).

69

Intel386™ DX MICROPROCESSOR

Effect of asserting BS16# during “‘upper half only”

read cycles:
Asserting BS16# during “upper half only” reads
causes the Intel386 DX to read data on the lower
16 bits of the data bus and ignore data on the
upper 16 bits of the data bus. Data that would
have been read from D16-D31 (as indicated by
BE2# and BE3#) will instead be read from DO-
D15 respectively.

Effect of asserting BS16# during “‘upper half only”

write cycles:
Asserting BS16# during “upper half only” writes
does not affect the Intel386 DX. When only BE2 #
and/or BE3# are asserted during a write cycle
the Intel386 DX always duplicates data signals
D16-D31 onto DO-D15 (see Table 5-1). There-
fore, no further Intel386 DX action is required to
perform these writes on 32-bit or 16-bit buses.

intgl.

Effect of asserting BS16# during “upper and lower
half” write cycles:

Asserting BS16# during “upper and lower half”
writes causes the Intel386 DX to perform two
16-bit write cycles for complete physical operand
transfer. All bytes are available the first write cycle
allowing external hardware to receive Bytes 0 and
1 (as indicated by BEO# and BE1#) using DO-
D15. On the second cycle the Intel386 DX dupli-
cates Bytes 2 and 3 on DO-D15 and Bytes 2 and
3 (as indicated by BE2# and BE3#) are written
using DO-D15. BEO# and BE1# are always neg-
ated during the second 16-bit cycle. BS16# must
be asserted during the second 16-bit cycle. See
Figure 5-14, cycles 1 and 1a.

5.3.5 Interfacing with 32- and 16-Bit

Memories

Effect of asserting BS16# during “upper and lower

half” read cycles:

In 32-bit-wide physical memories such as Figure 5-5,

each physical Dword begins at a byte address that is

Asserting BS16# during “upper and lower half”
reads causes the processor to perform two 16-bit
read cycles for complete physical operand trans-
fer. Bytes 0 and 1 (as indicated by BEO# and
BE1 #) are read on the first cycle using DO-D15.
Bytes 2 and 3 (as indicated by BE2# and BE3 #)
are read during the second cycle, again using
D0-D15. D16-D31 are ignored during both 16-bit
cycles. BEO# and BE1# are always negated dur-
ing the second 16-bit cycle (See Figure 5-14, cy-
cles 2 and 2a).

a multiple of 4. A2-A31 are directly used as a Dword
select and BEO# -BE3# as byte selects. BS16# is
negated for all bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 5-6, each 16-bit physical word
begins at a address that is a multiple of 2. Note the
address is decoded, to assert BS16# only during
bus cycles involving the 16-bit array. (If desiring to

32 DATA BUS (D0-D31)

Intel386™

DX CPU | ADDRESS BUS (BEO#-BE3#,A2-A31)

v

TBS16#

v

32-BIT
MEMORY

HicH 231630-6
Figure 5-5. Intel386™ DX with 32-Bit Memory
. 32 DATA BUS (DO-D31) R
Intel386™ |~ 7| 32-8IT
DX CPU ADDRESS BUS _ | MEMORY
- (BEO#-BE3#, A2-A31)
y
BS16#
ADDRESS
DECODER 15/ DATA BUS (D0-D15) >
ADDRESS BUS (A2-A31) | 16-BIT
(BEO#—EES#)|_| (BHE#, BLE#, A1) ”| MEMORY
{Locic | >
231630-7

Figure 5-6. Intel386™ DX with 32-Bit and 16-Bit Memory

70

intgl.

use pipelined address with 16-bit memories then
BEO#-BE3# and W/R# are also decoded to de-
termine when BS16# should be asserted. See
5.4.3.6 Pipelined Address with Dynamic Data Bus
Sizing.)

A2-A31 are directly usable for addressing 32-bit
and 16-bit devices. To address 16-bit devices, A1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig-
nals for 16-bit access, BEO# -BE3# should be de-
coded as in Table 5-7. Note certain combinations of
BEO#-BE3# are never generated by the Intel386
DX, leading to “don’t care” conditions in the decod-
er. Any BEO# -BE3# decoder, such as Figure 5-7,
may use the non-occurring BEO#-BE3# combina-
tions to its best advantage.

5.3.6 Operand Alignment

With the flexibility of memory addressing on the In-
tel386 DX, it is possible to transfer a logical operand
that spans more than one physical Dword or word of
memory or |/O. Examples are 32-bit Dword

Intel386™ DX MICROPROCESSOR

operands beginning at addresses not evenly divisi-
ble by 4, or a 16-bit word operand split between two
physical Dwords of the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple bus cycles are required to trans-
fer a multi-byte logical operand, the highest-order
bytes are transferred first (but if BS16# asserted
requires two 16-bit cycles be performed, that part of
the transfer is low-order first).

5.4 BUS FUNCTIONAL DESCRIPTION

5.4.1

The Intel386 DX has separate, parallel buses for
data and address. The data bus is 32-bits in width,
and bidirectional. The address bus provides a 32-bit
value using 30 signals for the 30 upper-order ad-
dress bits and 4 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted
and controlled via several associated definition or
control signals.

Introduction

Table 5-7. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

Intel386™ DX Signals 16-Bit Bus Signals Comments
BE3# BE2# BE1# BEO # A1 BHE # BLE # (A0)

H* H* H* H* X X X x—~no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not continguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when DO-D7 of 16-bit bus is active.

A1 low for all even words; A1 high for all odd words.

BHE # asserted when D8-D15 of 16-bit bus is active.

Key:
x = don’t care
H = high voltage level
L = low voltage level
*

= a non-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes

71

Intel386™ DX MICROPROCESSOR

BEO#
L H
EE | L
Llx[ufL
BE2# -
LfcfxfL
H =
x| x] x|L
L] H |L
BE1#

BEO#
L H
el
BE2# ol 5.5 £l L3 I BE3#
Lt A x| L
x|x|L]x]|L
L v oL
BE1#

K-map for 16-bit BHE # signal

BEO4

H BE3# w

K-map for A1 signal (same as Figure 5-3)

BE14
BE34#

BHE

231630-8

231630-9

BEO#
L H BEO#
L BLE# (OR A0)
BE2 L1x
L|L
H -
X | x|\
L
BET# 231630-10
K-map for 16-bit BLE # signal (same as AO signal in Figure 5-3)
Figure 5-7. Logic to Generate A1, BHE # and BLE # for 16-Bit Buses
Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords
Byte-Length of Logical Operand
1 2

Physical Byte Address XX 00 01 10 11 00 01 10 11

in Memory (low-order bits)

Transfer Cycles over b w w w hb,* d hb hw, h3,

32-Bit Data Bus b 13 Iw Ib

Transfer Cycles over b w Ib, w hb, Iw, hb, hw, mw,

16-Bit Data Bus hb b o Ib, Iw hb,
mw Ib

b
w
|
m
X

byte transfer
word transfer
low-order portion
mid-order portion
don’t care

3 = 3-byte transfer
d = Dword transfer

h = high-order portion

BS16# asserted causes second bus cycle

*For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb.

72

intgl.

The definition of each bus cycle is given by three
definition signals: M/I0#, W/R# and D/C#. At the
same time, a valid address is present on the byte
enable signals BEO# —-BE3# and other address sig-
nals A2-A31. A status signal, ADS#, indicates
when the Intel386 DX issues a new bus cycle defini-
tion and address.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as “the
bus”.

When active, the bus performs one of the bus cycles
below:

1) read from memory space

2) locked read from memory space

3) write to memory space

4) locked write to memory space

5) read from |/O space (or coprocessor)
6) write to 1/0 space (or coprocessor)
7) interrupt acknowledge

8) indicate halt, or indicate shutdown

Intel386™ DX MICROPROCESSOR

Table 5-2 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See section 5.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support-
ing 32- and 16-bit bus size. Data bus size is indicated
to the Intel386 DX using its Bus Size 16 (BS16#)
input. All bus functions can be performed with either
data bus size.

When the Intel386 DX bus is not performing one of
the activities listed above, it is either Idle or in the
Hold Acknowledge state, which may be detected by
external circuitry. The idle state can be identified by
the Intel386 DX giving no further assertions on its
address strobe output (ADS#) since the beginning
of its most recent bus cycle, and the most recent
bus cycle has been terminated. The hold acknowl-
edge state is identified by the Intel386 DX asserting
its hold acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

CYCLE 1
NON=PIPELINED
(READ)

CLK2
(INPUT)

C

o1 92|01 o2

CYCLE 2 CYCLE 3
NON=PIPELINED | NON=-PIPELINED
(READ) (READ)

o1 o2 (o162

BEO#-BE3#, A2=A31,
M/10#,D/C#, W/R¢

VALID 2 VALID 3

(OUTPUTS)

ADS# [

(OUTPUT)

N

/ /

NA# I:

(INPUT)

READY#
(INPUT) [

/

LOCK# ID 1

X VAL

VALID 2 VAL

(OUTPUT)

DO-D31
(INPUT DURING READ)

E--.

Fastest non-pipelined bus cycles consist of T1 and T2

231630-11

Figure 5-8. Fastest Read Cycles with Non-Pipelined Address Timing

73

Intel386™ DX MICROPROCESSOR

The fastest Intel386 DX bus cycle requires only two
bus states. For example, three consecutive bus read
cycles, each consisting of two bus states, are shown
by Figure 5-8. The bus states in each cycle are
named T1 and T2. Any memory or I/O address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-band-
width, two-clock bus cycle realizes the full potential
of fast main memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Intel386
DX READY # input. Acknowledging the bus cycle at
the end of the first T2 results in the shortest bus
cycle, requiring only T1 and T2. If READY # is not
immediately asserted, however, T2 states are re-
peated indefinitely until the READY # input is sam-
pled asserted.

5.4.2 Address Pipelining

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA#) input.

intgl.

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining is selected, the address
(BEO#-BE3#, A2-A31) and definition (W/R#,
D/C# and M/IO#) of the next cycle are available
before the end of the current cycle. To signal their
availability, the Intel386 DX address status output
(ADS#) is also asserted. Figure 5-9 illustrates the
fastest read cycles with pipelined address timing.

Note from Figure 5-9 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe-
lined cycle.

By increasing the address-to-data access time, pipe-
lined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

ool S

BEO#=BE3#, A2=A31,

CYCLE 1 CYCLE 2 CYCLE 3
PIPELINED PIPELINED PIPELINED
(READ) (READ) (READ)

TP T2P TP T2P TP T2P
o162 (6162|801 |s2 162

M/10#,D/C#, W/R# VALID 1

VALID 2

VALID 3 VALID 4

(OUTPUTS)

ADS#
(outPUT) L —f

N \

NAZ [T
(INPUT)

READY#
(INPUT)

LOCK#

(OUTPUT) VALID 1

VALID 2 VALID 3

DO-D31
(INPUT DURING READ)

:D------

INT 3 ===l-=={ N2 }===---{IN3 }-

231630-12

Fastest pipelined bus cycles consist of T1P and T2P

Figure 5-9. Fastest Read Cycles with Pipelined Address Timing

74

intgl.

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, pipelined availability of
the next address allows decoding circuitry to gener-
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im-
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipelined address
timing potentially allows even more overlap of activi-
ty. This is true when the interleaved memory control-
ler is designed to allow the next memory operation

Intel386™ DX MICROPROCESSOR

to begin in one memory bank while the current bus
cycle is still activating another memory bank. Figure
5-10 shows the general structure of the Intel386 DX
with 2-bank and 4-bank interleaved memory. Note
each memory bank of the interleaved memory has
full data bus width (32-bit data width typically, unless
16-bit bus size is selected).

Further details of pipelined address timing are given
in 5.4.3.4 Pipelined Address, 5.4.3.5 Initiating and
Maintaining Pipelined Address, 5.4.3.6 Pipelined
Address with Dynamic Bus Sizing, and 5.4.3.7
Maximum Pipelined Address Usage with 16-Bit
Bus Size.

TWO-BANK INTERLEAVED MEMORY
a) Address signal A2 selects bank
b) 32-bit datapath to each bank
- 32, pATA BUS
Intel386
e ADDRESS BUS \
A2 A2
32 32
INTERLEAVE
CONTROLLER |—] DRAM |- DRAM
BANK 0 BANK 1
231630-13
FOUR-BANK INTERLEAVED MEMORY
a) Address signals A3 and A2 select bank
b) 32-bit datapath to each bank
- 32, DATA BUS
RS ADDRESS BUS N\ N N\ I)
A3 a2 |\ A3 N a3 A2\ A3 Az)
32 32 32 32
INTERLEAVE
CONTROLLER DRAM DRAM DRAM DRAM
BANK O BANK 1 BANK 2 BANK 3
231630-14

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure

75

wqdwqd s wdwd

wqdwqd s wdwd

wqdwqd s wdwd

Intel386™ DX MICROPROCESSOR

5.4.3 Read and Write Cycles

5.4.3.1 INTRODUCTION

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles data is transferred in the oth-
er direction, from the processor to an external de-
vice.

Two choices of address timing are dynamically se-
lectable: non-pipelined, or pipelined. After a bus idle
state, the processor always uses non-pipelined ad-
dress timing. However, the NA# (Next Address) in-
put may be asserted to select pipelined address
timing for the next bus cycle. When pipelining is se-
lected and the Intel386 DX has a bus request pend-
ing internally, the address and definition of the next
cycle is made available even before the current bus
cycle is acknowledged by READY #. Generally, the
NA# input is sampled each bus cycle to select the
desired address timing for the next bus cycle.

WO _Cholices Or D are aynami

BS 107 [Bus Sizeflo)jinput is s.

of the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16#
indicates a 32-bit size, and assertion indicates a
16-bit bus size.

If 16-bit bus size is indicated, the Intel386 DX auto-
matically responds as required to complete the
transfer on a 16-bit data bus. Depending on the size
and alignment of the operand, another 16-bit bus
cycle may be required. Table 5-7 provides all details.
When necessary, the Intel386 DX performs an addi-
tional 16-bit bus cycle, using DO-D15 in place of
D16-D31.

Terminating a read cycle or write cycle, like any bus
cycle, requires acknowledging the cycle by asserting
the READY # input. Until acknowledged, the proces-
sor inserts wait states into the bus cycle, to allow
adjustment for the speed of any external device. Ex-
ternal hardware, which has decoded the address
and bus cycle type asserts the READY # input at the
appropriate time.

IDLE CYCLE 1 CYCLE 2 CYCLE 3 IDLE CYCLE 4 IDLE
NON=PIPELINED | NON=PIPELINED | NON=PIPELINED NON=PIPELINED
(WRITE) (READ) (WRITE) (READ)
Ti T T2 T T T2 i T T2 T
eve [[T [[
(CLK) [_/_ _/_ _/_
BEO #-BE3 # ' ' + -
A2= A31, I: VALID 1 VALID 2 VALID 3 VALID 4
M/10 #,D/C #
w/rs [
ADS # [/
NA # [
32-BIT 32-BIT 32-BIT 32-BIT
BUS SIZE BUS SIZE BUS SIZE BUS SIZE
BS16 # [
READY # [
END CYCLE 1 END CYCLE 2 END CYCLE 3 END CYCLE 4
LOCK # [VALID 1 VA'LID 2 VALID 3 VALID 4
00-031[EE EE T --< out)-4---{ N Y- our] Y-g----- me= N y---
231630-15
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

Figure 5-11. Various Bus Cycles and Idle States with Non-Pipelined Address (zero wait states)

76

intgl.

At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig-
ure 5-11. If READY # is negated as in Figure 5-12,
the cycle continues another bus state (a wait state)
and READY # is sampled again at the end of that
state. This continues indefinitely until the cycle is ac-
knowledged by READY # asserted.

When the current cycle is acknowledged, the In-
tel386 DX terminates it. When a read cycle is ac-
knowledged, the Intel386 DX latches the information
present at its data pins. When a write cycle is ac-
knowledged, the Intel386 DX write data remains val-
id throughout phase one of the next bus state, to
provide write data hold time.

5.4.3.2 NON-PIPELINED ADDRESS

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5-11 shows the fastest possi-

Intel386™ DX MICROPROCESSOR

ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to
signal their availability, address status (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the Intel386 DX floats
its data signals to allow driving by the external de-
vice being addressed. The Intel386 DX requires
that all data bus pins be at a valid logic state
(high or low) at the end of each read cycle, when
READY # is asserted, even if all byte enables are
not asserted. The system MUST be designed to
meet this requirement. If the cycle is a write, data
signals are driven by the Intel386 DX beginning in
phase two of T1 until phase one of the bus state
following cycle acknowledgment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY # is sam-
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY # is sampled
asserted.

follow the write cycle.

IDLE CYCLE 1 CYCLE 2 IDLE CYCLE 3 IDLE
NON=PIPELINED NON=PIPELINED NON=PIPELINED
(READ) (WRITE) (READ)

Ti it T2 T T2 Ti T 2 2 Ti
eve [[T ULy
ol NS NN NSNS NSNS NSNS

BEO #-BE1 #
A2- A31, VALID 1 VALID 2 VALID 3
M/I0 #,D/C #
W/R# [
ADS # [/
NA # [
32-BIT 32-BIT 32=BIT
BUS SIZE BUS‘SIZE BUS SIZE
:
BS16 # [‘
reapy # [N N\
END CYCLE 1 END CYCLE 2 END CYCLE 3
LOCK # [VALID 1 VALID 2 VALID 3
00-031[B L T LRI ¢ ouT »-t---- meeqe N Ye--
f

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately

231630-16

Figure 5-12. Various Bus Cycles and Idle States with Non-Pipelined Address
(various number of wait states)

77

Intel386™ DX MICROPROCESSOR

RESET
ASSERTED

HOLD NEGATED
NO REQUEST

REQUEST PENDING »
HOLD NEGATED

Bus States:

Ti— idle state
Th—hold acknowledge state (Intel386 DX asserts HLDA)
The fastest bus cycle consists of two states: T1 and T2.

HOLD ASSERTED

T1—first clock of a non-pipelined bus cycle (Intel386 DX drives new address and asserts ADS #)
T2—subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle

Four basic bus states describe bus operation when not using pipelined address. These states do include BS16# usage for 32-bit and 16-bit
bus size. If asserting BS16# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

HOLD NEGATED »
REQUEST PENDING

'I

READY# ASSERTED ¢
HOLD NEGATED
REQUEST PENDING

READY# NEGATED
NA# NEGATED

231630-17

Figure 5-13. Intel386™ DX Bus States (not using pipelined address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces-
sary to negate NA# during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA# is sampled asserted during a T2 other than the
last one, the next state would be T2l (for pipelined
address) or T2P (for pipelined address) instead of
another T2 (for non-pipelined address).

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state
diagram is as shown in Figure 5-13. When the bus is

78

idle it is in state Ti. Bus cycles always begin with T1.
T1 always leads to T2. If a bus cycle is not acknowl-
edged during T2 and NA# is negated, T2 is repeat-
ed. When a cycle is acknowledged during T2, the
following state will be T1 of the next bus cycle if a
bus request is pending internally, or Ti if there is no
bus request pending, or Th if the HOLD input is be-
ing asserted.

The bus state diagram in Figure 5-13 also applies to
the use of BS16#. If the Intel386 DX makes internal
adjustments for 16-bit bus size, the adjustments do
not affect the external bus states. If an additional
16-bit bus cycle is required to complete a transfer on
a 16-bit bus, it also follows the state transitions
shown in Figure 5-13.

Use of pipelined address allows the Intel386 DX to
enter three additional bus states not shown in Figure
5-13. Figure 5-20 in 5.4.3.4 Pipelined Address is
the complete bus state diagram, including pipelined
address cycles.

intgl.

5.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus is 32-bits wide. When the bus cy-
cle is acknowledged, by asserting READY # at the
end of a T2 state, the most recent sampling of
BS16# determines the data bus size for the cycle
being acknowledged. If BS16# was most recently
negated, the physical data bus size is defined as

Intel386™ DX MICROPROCESSOR

32 bits. If BS16# was most recently asserted, the
size is defined as 16 bits.

When BS16# is asserted and two 16-bit bus cycles
are required to complete the transfer, BS16# must
be asserted during the second cycle; 16-bit bus size
is not assumed. Like any bus cycle, the second
16-bit cycle must be acknowledged by asserting
READY #.

When a second 16-bit bus cycle is required to com-
plete the transfer over a 16-bit bus, the addresses

A TRANSFER REQUIRING TWO
CYCLES ON 16=BIT DATA BUS

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

r

s)

Key: Dn = physical data pin n
dn = logical data bit n

IDLE CYCLE 1 CYCLE 1A CYCLE 2 CYCLE 2A IDLE
NON=PIPELINED | NON—PIPELINED | NON=PIPELINED | NON—PIPELINED
(WRITE ——= WRITE) (READ ——~ READ)
PART ONE PART TWO PART ONE PART TWO
Ti T T2 T1 T2 T1 T2 T T2 T
CLK2 [| | I |
w [N/
ALWAYS ALWAYS |
BEO #, BE1 [] NEGATED '\ NEGATED W
#,BET # VALID DURING PART TWO \vALID 2 /DURING PART TWO
BE2 #,BE3 #
A2 A1 [X VALID 1 X VALID 2)m
M/I0 #, D/C #
wrs [X
wosy [/N NV NV
i DON'T i
NA# [RN e CARE. e
BS164 I: X
16-BIT 16=BIT 16-BIT 16-BIT
BUS SIZE BUS SIZE BUS SIZE BUS SIZE
resovy [XOOOODOOC0N | A0 | A0 | AN | AX
LOCK # [VALID 1 VALID 2
d0=d15 d16-d31 d0-d15 d16-d31
DO=D15 |: cdemeeaee{ Tt [X ouT)...--@------
d16-d31 IGNORED IGNORED
D16-D31 [.--------(ouT).--@------@..--

231630-18

Figure 5-14. Asserting BS16 # (zero wait states, non-pipelined address)

79

Intel386™ DX MICROPROCESSOR

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

Key: Dn = physical data pin n
dn = logical data bit n

IDLE CYCLE 1 CYCLE 1A CYCLE 2
NON-PIPELINED NON=PIPELINED NON-PIPELINED
(READ +———» READ) (WRITE)
PART ONE PART TWO
Ti T1 T T2 T1 T2 T2 T1 T2 T2
CLK2 [J | | | | | |
e [N/ \/"|
BE1# NEGATED DURING
BEO #, BE1 |:>< VALID 1 ATED DUR VALID 2
1
BE2 #,BE3 #
A2-A31, |:>< VALID 1 X VALID 2
M/I0#, D/C#
W/R# [R
ADS # [/ /
NOTE: NA# MUST BE NEGATED
HERE TO ALLOW RECOGNITION
OF ASSERTED BS16# IN FINAL T2
.
DON'T DON'T
NA # [CARE CARE
NOTE: BS16# MUST BE STABLE DURING 32-8IT
THIS TIME (DEFINED BY T17 AND T18,
BS16 # SETUP AND HOLD TIMINGS)
BUS SIZE
ror [@A
16-BIT 16-BIT
BUS SIZE BUS SIZE
resor+ [OOOODXXXKXY LA TR AXX R\
LOCK # I: VALID 1 X VALID 2
d0-d15 d16-d31 d0-d15
DO-D15 [..-------- ----- --.@.-- _____ __.®..(ouT
IGNORED IGNORED d16-d31
D16-D31 [..-------- ----- - __.-_-.__.@.-(ouT

231630-19

Figure 5-15. Asserting BS16 # (one wait state, non-pipelined address)

generated for the two 16-bit bus cycles are closely
related to each other. The addresses are the same
except BEO# and BE1# are always negated for the
second cycle. This is because data on DO-D15 was
already transferred during the first 16-bit cycle.

Figures 5-14 and 5-15 show cases where assertion
of BS16# requires a second 16-bit cycle for com-
plete operand transfer. Figure 5-14 illustrates cycles
without wait states. Figure 5-15 illustrates cycles
with one wait state. In Figure 5-15 cycle 1, the bus

80

cycle during which BS16# is asserted, note that
NA# must be negated in the T2 state(s) prior to the
last T2 state. This is to allow the recognition of
BS16# asserted in the final T2 state. Also note that
during this state BS16# must be stable (defined by
t17 and t18, BS16 # setup and hold timings), in order
to prevent potential data corruption during split cycle
reads. The logic state of BS16# during this time is
not important. The relation of NA# and BS16# is
given fully in 5.4.3.4 Pipelined Address, but Figure
5-15 illustrates these precautions you need to know
when using BS16# with non-pipelined address.

intgl.

5.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting the
address and the bus cycle definition of the next, in-
ternally pending bus cycle before the current bus
cycle is acknowledged with READY # asserted.
ADS # is asserted by the Intel386 DX when the next
address is issued. The address pipelining option is
controlled on a cycle-by-cycle basis with the NA#
input signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles, therefore, NA# is
sampled at the end of phase one in every T2. An
example is Cycle 2 in Figure 5-16, during which NA #
is sampled at the end of phase one of every T2 (it
was asserted once during the first T2 and has no
further effect during that bus cycle).

Intel386™ DX MICROPROCESSOR

If NA# is sampled asserted, the Intel386 DX is free
to drive the address and bus cycle definition of the
next bus cycle, and assert ADS#, as soon as it has
a bus request internally pending. It may drive the
next address as early as the next bus state, whether
the current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the In-
tel386 DX has the following characteristics:

1) For NA# to be sampled asserted, BS16# must
be negated at that sampling window (see Figure
5-16 Cycles 2 through 4, and Figure 5-17 Cycles 1
through 4). If NA# and BS16# are both sampled
asserted during the last T2 period of a bus cycle,
BS16# asserted has priority. Therefore, if both
are asserted, the current bus size is taken to be
16 bits and the next address is not pipelined.

wry [X

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON-PIPELINED NON-PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
\ [
Ti iE 2 m T2 TP, TIP | T2P | TIP | T2I Ti
e [[T LU
@o[NS \VAVA
BEO # = BE3 #

A2=A31, VALID 1 VALID 2 VALID 3 VALID 4 OXOCK

M/I0 #, D/C# / /

/N

N /

Lo

N

TO ALLOW TO ALLOW TO ALLOW
RECOGNIZING | RECOGNIZING | RECOGNIZING
NA NA # NA#
ssts# [XOO000OCCRKN] XXX
resovs [XOOOQ0OOCN NN
LOCK # [VALID 1 VALID 2 VALID 3 VALID 4

ouT

»-

(Cycle 2 above).

-.-€r>--.

»-

231630-20

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state

Figure 5-16. Transitioning to Pipelined Address During Burst of Bus Cycles

81

Intel386™ DX MICROPROCESSOR

intgl.

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON=PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
| \ | |
Ti T1 T2 T2P T1P T2P T1P T2P TP T21 T2I Ti
e[| ULy
-
(CLK) I: \./_\./-_/-
BEO # - BE3 #,
A2 A3, VALID 1 VALID 2 VALID 3 VALID 4
M/10#, D/C# / /4 /4
wrs [X
- _ /AT
v Ly
NA # |:
T0 ALLOW T0 ALLOW T0 ALLOW TO ALLOW
RECOGNIZING | RECOGNIZING | RECOGNIZING | RECOGNIZING
NA # NA 4 NA NA
sres [XXEXARRN]
s [AXXEXXIRT T | AT
LOCK # |: VALID 1 VALID 2 VALID 3 VALID 4
DO- D31 [PO - -a ouT >----<IN>(ouT >.------<F>---

Following any idle bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

231630-21

Figure 5-17. Fastest Transition to Pipelined Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA# was sampled asserted (see Fig-
ures 5-16 or 5-17). In that case, state T2P is en-
tered immediately. However, when there is not an
internal bus request already pending, the next ad-
dress will not be available immediately after NA #
is asserted and T2l is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy-
cle isn’t yet acknowledged by READY # asserted,
T2P will be entered as soon as the Intel386 DX
does drive the next address. External hardware
should therefore observe the ADS# output as
confirmation the next address is actually being
driven on the bus.

3) Once NA# is sampled asserted, the Intel386 DX
commits itself to the highest priority bus request
that is pending internally. It can no longer perform
another 16-bit transfer to the same address should
BS16# be asserted externally, so thereafter

82

4)

5)

must assume the current bus size is 32 bits.
Therefore if NA# is sampled asserted within a
bus cycle, BS16# must be negated thereafter in
that bus cycle (see Figures 5-16, 5-17, 5-19).
Consequently, do not assert NA# during bus cy-
cles which must have BS16# driven asserted.
See 5.4.3.6 Dynamic Bus Sizing with Pipelined
Address.

Any address which is validated by a pulse on the
Intel386 DX ADS# output will remain stable on
the address pins for at least two processor clock
periods. The Intel386 DX cannot produce a new
address more frequently than every two proces-
sor clock periods (see Figures 5-16, 5-17, 5-19).

Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 5-19 Cycle 1).

intgl.

The complete bus state transition diagram, including
operation with pipelined address is given by 5-20.
Note it is a superset of the diagram for non-pipelined
address only, and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1P and T2P (recall for
non-pipelined address it is T1 and T2). T1P is the
first bus state of a pipelined cycle.

5.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast-
est path from an idle state to a bus cycle with pipe-
lined address is shown in bold below:

Ti, Ti, Ti, T1-T2-T2P, T1P-T2P,
-
idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es-
tablishes address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:

Th, Th, Th, T1-T2-T2P, T1P-T2P,
~——
hold non-pipelined pipelined
acknowledge cycle cycle

states

The transition to pipelined address is shown func-
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3
and 4.

Intel386™ DX MICROPROCESSOR

Once a bus cycle is in progress and the current ad-
dress has become valid, the NA# input is sampled
at the end of every phase one, beginning with the
next bus state, until the bus cycle is acknowledged.
During Figure 5-17 Cycle 1 therefore, sampling be-
gins in T2. Once NA# is sampled asserted during
the current cycle, the Intel386 DX is free to drive a
new address and bus cycle definition on the bus as
early as the next bus state. In Figure 5-16 Cycle 1 for
example, the next address is driven during state
T2P. Thus Cycle 1 makes the transition to pipelined
address timing, since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipelined
bus cycle, and it begins with T1P. Cycle 2 begins as
soon as READY # asserted terminates Cycle 1.

Example transition bus cycles are Figure 5-17 Cycle
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran-
sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5-16 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (you assert
NA# at that time), and T2P (provided the Intel386
DX has an internal bus request already pending,
which it almost always has). T2P states are repeated
if wait states are added to the cycle.

Note three states (T1, T2 and T2P) are only required
in a bus cycle performing a transition from non-
pipelined address into pipelined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA# and detecting that the Intel386 DX enters T2P
during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained
in the next cycle. T2P is identified by the assertion of
ADS #. Figures 5-16 and 5-17 however, each show
pipelining ending after Cycle 4 because Cycle 4
ends in T2l. This indicates the Intel386 DX didn’t
have an internal bus request prior to the acknowl-
edgement of Cycle 4. If a cycle ends with a T2 or
T2l, the next cycle will not be pipelined.

83

Intel386™ DX MICROPROCESSOR

intgl.

CYCLE 1

CYCLE 2 CYCLE 3 CYCLE 4
PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
TP T2P T2P T1P T2 T2 T2P TP
CLK2 [I | I |_
[NS\ \
BEO # - BE1#,
A2-A31, |: VALID 1 VALID 2 VALID 3 W VALID 4
M/10#, D/C#
ron - o ———
|— ADS# IS ASSERTED AS
SOON AS i386™ DX CPU HAS ANOTHER
BUS CYCLE TO PERFORM,
WHICH IS NOT ALWAYS
IMMEDIATELY AFTER NA#
IS ASSERTED
W/R# |:
T
wosw [/ N_V
VS — [E——
NOTE ADS# IS | AS LONG AS i386™ DX CPU ENTERS THE
ASSERTED IN T2P STATE DURING CYCLE 3,
EVERY T2P STATE ADDRESS PIPELINING IS
MAINTAINED IN CYCLE 4
NA # |: Y
<
vy

ASSERTING
THAN ONCE DURING

ANY CYCLE HAS NO
ADDITIONAL EFFECTS

NA# MORE

NA# COULD HAVE
BEEN ASSERTED
IN T1P IF DESIRED.
ASSERTION NOW 1S
| THE LATEST TIME

POSSIBLE TO ALLOW
i386™ DX CPU TO ENTER T2P
STATE TO MAINTAIN
PIPELINING IN CYCLE 3

BS16 # |: z

wors | W KT TR AR

LOCK # |: VALID 1 VALID 2 VALID 3 VALID 4
! |

DO- D31 |: our X out »----- ----<IN X4 ouT »---

231630-23

84

Figure 5-19. Details of Address Pipelining During Cycles with Wait States

Intel386™ DX MICROPROCESSOR

®
HOLD ASSERTED
READY# ASSERTED «
HOLD ASSERTED
o
4 HOLD NEGATED
9 REQUEST PENDING
RESET
ASSERTED
HOLD NEGATED »
NO REQUEST

ALWAYS

NA# NEGATED

REQUEST PENDING ¢
HOLD NEGATED

READY# ASSERTED «
HOLD NEGATED®
REQUEST PENDING

| —
READY# ASSERTED »
HOLD NEGATED »

REQUEST PENDING

)e

NA# ASSERTED »
READY# NEGATED.

(NO REQUEST +
HOLD ASSERTED,

READY# NEGATED«
NA# NEGATED

NA# ASSERTED

Bus States:
dress and asserts ADS #).

asserted in the current bus cycle.

pending (Intel386 DX will not drive new address or assert ADS #).

ing (Intel386 DX drives new address and asserts ADS #).
T1P—first clock of a pipelined bus cycle.

Ti—idle state.

Th—hold acknowledge state (Intel386 DX asserts HLDA).

states: T2l, T2P and T1P.
Using pipelined address, the fastest bus cycle consists of T1P and T2P.

READY# ASSERTED *
HOLD NEGATED ¢
NO REQUEST

T1—first clock of a non-pipelined bus cycle (Intel386 DX drives new ad-

T2—subsequent clocks of a bus cycle when NA# has not been sampled

T2l—subsequent clocks of a bus cycle when NA# has been sampled as-
serted in the current bus cycle but there is not yet an internal bus request

T2P—subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle and there is an internal bus request pend-

Asserting NA# for pipelined address gives access to three more bus

REQUEST PENDING
READY# ASSERTED

HOLD NEGATED ¢ REQUEST PENDING

READY# NEGATED+
(NO REQUEST +
HOLD ASSERTED)

HOLD NEGATED

READY# NEGATEDe
REQUEST PENDING*

READY# NEGATED

231630-24

Figure 5-20. Intel386™ DX Complete Bus

Realistically, address pipelining is almost always
maintained as long as NA# is sampled asserted.
This is so because in the absence of any other re-
quest, a code prefetch request is always internally
pending until the instruction decoder and code pre-
fetch queue are completely full. Therefore address
pipelining is maintained for long bursts of bus cycles,
if the bus is available (i.e., HOLD negated) and NA #
is sampled asserted in each of the bus cycles.

5.4.3.6 PIPELINED ADDRESS WITH DYNAMIC
DATA BUS SIZING

The BS16# feature allows easy interface to 16-bit
data buses. When asserted, the Intel386 DX bus

States (including pipelined address)

interface hardware performs appropriate action to
make the transfer using a 16-bit data bus connected
on DO-D15.

There is a degree of interaction, however, between
the use of Address Pipelining and the use of Bus
Size 16. The interaction results from the multiple bus
cycles required when transferring 32-bit operands
over a 16-bit bus. If the operand requires both 16-bit
halves of the 32-bit bus, the appropriate Intel386 DX
action is a second bus cycle to complete the oper-
and’s transfer. It is this necessity that conflicts with
NA# usage.

When NA# is sampled asserted, the Intel386 DX
commits itself to perform the next inter-

85

n
Intel386™ DX MICROPROCESSOR |n‘te| .

nally pending bus request, and is allowed to drive sampled asserted in the current cycle. If NA# is
the next internally pending address onto the bus. As- sampled asserted, the current data bus size is as-
serting NA# therefore makes it impossible for the sumed to be 32 bits.
next bus cycle to again access the current address 2) To also avoid conflict, if NA# and BS16# are
on A2-A31, such as may be required when BS16# both asserted during the same sampling window,
is asserted by the external hardware. BS16# asserted has priority and the Intel386 DX
acts as if NA# was negated at that time. Internal
To av_oid conflict, _the Intel386 DX is designed with Intel386 DX circuitry, s?]own conceptually in Fig-
following two provisions: ure 5-18, assures that BS16+# is sampled assert-
1) To avoid conflict, BS16# must be negated in the ed and NA# is sampled negated if both inputs
current bus cycle if NA# has already been are externally asserted at the same sampling win-
dow.

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT BUS

r \

PREVIOUS CYCLE 1 CYCLE 1A CYCLE 2
CYCLE PIPELINED NON-PIPELINED NON-PIPELINED
(WRITE ——————————— WRITE) (READ)
PART ONE PART TWO
T2P T1P T2 T2 T T2 T2 T1 T2 T2P

aal | [[[y
e[\va /"] /"]

_ ALWAYS
BEO#, BE1#I: VALID 1 NEGATED DURING VALID 2 VALID 3
- PART TWO | |

BE2#, BE3#, — e

A2, A31, VALID 1 VALID 2 VALID 3

M/I0#, D/C# — =

wer [_
ADS# []

C 1S E

NOTE: NA# MUST BE NEGATED IN THESE T'S TO ALLOW
RECOGNITION OF ASSERTED BS16# IN FINAL T2's.

I]
NA# |: VV v DON'T CARE : DON'T CARE
AVARV) kVa AVALV2 AVAKY]

v

32-BIT

BUSiIZE

BS1S#[

16-BIT 16-BIT
BUS SIZE BUS SIZE
READY#I: N\ N \&_
LoCK# |: VALID 1 VALID 2
d0-d15 d0-d15 d16-d31 d0-d15
00—015[------@--(ouT X ouT D EE BETE .-_@
d16-d31 d16-d31 d16-d31
D1s—031|: ------@-(ouT).-.----.---<IN
Key: Dn = physical data pin n 231630-25

dn = logical data bit n
Cycle 1 is pipelined. Cycle 1a cannot be pipelined, but its address can be inferred from that of Cycle 1, to externally simulate address pipelining
during Cycle 1a.

Figure 5-21. Using NA # and BS16 #

86

intgl.

Certain types of 16-bit or 8-bit operands require no
adjustment for correct transfer on a 16-bit bus.
Those are read or write operands using only the low-
er half of the data bus, and write operands using
only the upper half of the bus since the Intel386 DX
simultaneously duplicates the write data on the low-
er half of the data bus. For these patterns of Byte
Enables and the R/W # signals, BS16# need not be
asserted at the Intel386 DX allowing NA# to be as-
serted during the bus cycle if desired.

5.4.4 Interrupt Acknowledge (INTA)
Cycles

In response to an interrupt request on the INTR in-
put when interrupts are enabled, the Intel386 DX

Intel386™ DX MICROPROCESSOR

performs two interrupt acknowledge cycles. These
bus cycles are similar to read cycles in that bus defi-
nition signals define the type of bus activity taking
place, and each cycle continues until acknowledged
by READY # sampled asserted.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1# high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3# —-BE1# high, BEO# low).

which is simplest for your system hardware design.

INTERRUPT IDLE INTERRUPT IDLE
IDLE ACKNOWLEDGE (4 BUS STATES) ACKNOWLEDGE
CYCLE 1 CYCLE 2
Ti T T2 T2 Ti Ti Ti Ti T T2 T2 Ti
ee [LU U Uy ooy ooy
Y [_/—_/__/__/—_/__/_\/—_/__/__/—_/__/_
BE1#, BE2#, 353#[
L /—'
BEO#, A3-A31,
M/10#, D/C#, W/R# / /
AZ[
o
LOCK# I:
ADS# |: / /
NA#[
5515#[IGNORED,
READY#[“\ R\
IGNORED VECTOR
DO—D7|: m e ———— - ke e e L e = -—-
IGNORED IGNORED
Ds_w[R A P I R S P E S A bmm -
231630-26

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect. Choose the approach

Figure 5-22. Interrupt Acknowledge Cycles

87

Intel386™ DX MICROPROCESSOR

CYCLE 1 CYCLE 2 IDLE
NON-PIPELINED | NON-PIPELINED
(WRITE) (HALT)
T T2 T T2 Ti Ti Ti Ti
CLK2 |: J | I | | I |
o \YA\va
BEO#, BE1#, BE3#, : i386™ DX CPU REMAINS HALTED
M/10%, W/R# |: VALID 1 UNTIL INTR, NMI OR
I RESET IS ASSERTED.
BE2#, A2-A31 BE2# IS LOW
’ ; VALID 1 FOR HALT CYCLE
D/c# i386™ DX CPU RESPONDS TO
_ HOLD INPUT WHILE IN
ADS#[\ / N / THE HALT STATE.
NA# |:

BS16#[

IGNORED

e [_| /TR

NOTE: HALT CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

LOCK# |:

VALID 1

VALID 2

DO—D31|: our X | ouri

X UNDEFINED

Y- = (FLOATING) === = f == = =5

231630-27

Figure 5-23. Halt Indication Cycle

The LOCK# output is asserted from the beginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the Intel386 DX be-
tween the two interrupt acknowledge cycles, allow-
ing for compatibility with spec TRHRL of the 8259A
Interrupt Controller.

During both interrupt acknowledge cycles, DO-D31
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the Intel386 DX will read an
external interrupt vector from DO-D7 of the data
bus. The vector indicates the specific interrupt num-
ber (from 0-255) requiring service.

88

5.4.5 Halt Indication Cycle

The Intel386 DX halts as a result of executing a
HALT instruction. Signaling its entrance into the halt
state, a halt indication cycle is performed. The halt
indication cycle is identified by the state of the bus
definition signals shown in 5.2.5 Bus Cycle Defini-
tion and a byte address of 2. BEO# and BE2# are
the only signals distinguishing halt indication from
shutdown indication, which drives an address of 0.
During the halt cycle undefined data is driven on
D0-D31. The halt indication cycle must be acknowl-
edged by READY # asserted.

A halted Intel386 DX resumes execution when INTR
(if interrupts are enabled) or NMI or RESET is as-
serted.

intgl.

5.4.6 Shutdown Indication Cycle

The Intel386 DX shuts down as a result of a protec-
tion fault while attempting to process a double fault.
Signaling its entrance into the shutdown state, a
shutdown indication cycle is performed. The shut-
down indication cycle is identified by the state of the
bus definition signals shown in 5.2.5 Bus Cycle Def-
inition and a byte address of 0. BEO# and BE2#

Intel386™ DX MICROPROCESSOR

are the only signals distinguishing shutdown indica-
tion from halt indication, which drives an address of
2. During the shutdown cycle undefined data is driv-
en on DO-D31. The shutdown indication cycle must
be acknowledged by READY # asserted.

A shutdown Intel386 DX resumes execution when
NMI or RESET is asserted.

i386™ DX CPU REMAINS SHUTDOWN

CYCLE 1 CYCLE 2 IDLE
PIPELINED PIPELINED
(READ) (SHUTDOWN)
TIP . T2P | TIP | T2l Ti Ti
e[[T LML
cwo[TN/ N/ N/
BE1#, BE2#, BE3#,
/1%, W RE |: VALID 1 |

UNTIL NMI OR RESET

BEO# IS LOW FOR

IS ASSERTED.

BEO#, A2-A31,
D/C#

VALID 1 SHUTDOWN CYCLE

- i386™ DX CPU RESPONDS TO
HOLD INPUT WHILE IN

ADS# |: /

THE SHUTDOWN STATE.

NA# [

XX |

XXXXXXX XXX X XXX XX
AXXXXXXXXXXXXXX

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

DO—D31[< IN >'------ IN1 -'(_UNDEFINED >'--(FLOATING)----------'

231630-28

Figure 5-24. Shutdown Indication Cycle

89

Intel386™ DX MICROPROCESSOR

5.5 OTHER FUNCTIONAL
DESCRIPTIONS

5.5.1 Entering and Exiting Hold
Acknowledge

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the Intel386 DX floats
all output or bidirectional signals, except for HLDA.
HLDA is asserted as long as the Intel386 DX re-
mains in the bus hold acknowledge state. In the bus
hold acknowledge state, all inputs except HOLD,
RESET, BUSY#, ERROR#, and PEREQ are ig-
nored (also up to one rising edge on NMI is remem-
bered for processing when HOLD is no longer as-
serted).

‘ IDLE IDLE
Ti Th Ti

HOLD
ACKNOWLEDGE
Th Th
ece[[UL UL UL
@[NSNS NS NSNS
HOLD[_ﬂ R\
HLDAl:
Azaggc?&j/jg EEE LS '(FLCATITG) ceee m
ADS#I: feeee L(FLOATING) »===¢ |
NA# |:
BS1 s#[
READY#I:
LOCK#[«===1(FLOATING)* === (XXZ
Do- [,31[.-----------SFL-QA.“t'!,E

231630-29
NOTE:
For maximum design flexibility the Intel386 DX has no
internal pullup resistors on its outputs. Your design may
require an external pullup on ADS# and other Intel386
DX outputs to keep them negated during float periods.

Figure 5-25. Requesting Hold from Idle Bus

Th may be entered from a bus idle state as in Figure
5-25 or after the acknowledgement of the current
physical bus cycle if the LOCK# signal is not assert-
ed, as in Figures 5-26 and 5-27. If HOLD is asserted
during a locked bus cycle, the Intel386 DX may exe-

90

intgl.

cute one unlocked bus cycle before acknowledging
HOLD. If asserting BS16# requires a second 16-bit
bus cycle to complete a physical operand transfer, it
is performed before HOLD is acknowledged, al-
though the bus state diagrams in Figures 5-13 and
5-20 do not indicate that detail.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5-25 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5-26 and 5-27.

Th is also exited in response to RESET being assert-
ed.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exit-
ed, unless of course, the Intel386 DX is reset before
Th is exited.

5.5.2 Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD be-
ing asserted. Therefore, Th is exited in reponse to
the RESET input being asserted. If RESET is assert-
ed while HOLD remains asserted, the Intel386 DX
drives its pins to defined states during reset, as in
Table 5-3 Pin State During Reset, and performs
internal reset activity as usual.

If HOLD remains asserted when RESET is negated,
the Intel386 DX enters the hold acknowledge state
before performing its first bus cycle, provided HOLD
is still asserted when the Intel386 DX would other-
wise perform its first bus cycle. If HOLD remains as-
serted when RESET is negated, the BUSY # input is
still sampled as usual to determine whether a self
test is being requested, and ERROR # is still sam-
pled as usual to determine whether a Intel387 DX
coprocessor vs. an 80287 (or none) is present.

5.5.3 Bus Activity During and
Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the In-
tel386 DX, and at least 80 CLK2 periods if Intel386
DX self-test is going to be requested at the falling
edge. RESET asserted pulses less than 15 CLK2
periods may not be recognized. RESET pulses less
than 80 CLK2 periods followed by a self-test may

Intel386™ DX MICROPROCESSOR

CYCLE 1

(READ)

1L
/"

T

wal L
/]

(CLK)[]

HoLo [

NON=PIPELINED

HOLD CYCLE 2
ACKNOWLEDGE | NON-PIPELINED
(WRITE)

Th

Th

HLDA [

THAN READY# ASSERTED

BEO#=BE3#,A2~A31,

M/I0#,D/C#,W/R# VALID 1

(FLOATING) (

VALID 2

. (FLOATING)

X
el N/
nag [X

2=-BIT BUS SIZEi

5515#[

NOTE: IF ASSERTING BS164#
BUS
CYCLE TO BE PERFORMED,

REQUIRES A SECOND

THE SECOND CYCLE IS

PERFORMED BEFORE
HOLD ACKNOWLEDGE

READY# |:

RN

(NE(“ATED, OR LAST LOCKED CYGLE)

LOCK# [VALID 1

FLOATING
:,.(-----.)-- (VALID 2

|
(FLOATING)

DO-D31 [-4

NOTE:

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and tp4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

-

ouT

231630-30

Figure 5-26. Requesting Hold from Active Bus (NA # negated)

cause the self-test to report a failure when no true
failure exists. The additional RESET pulse width is
required to clear additional state prior to a valid self-
test.

Provided the RESET falling edge meets setup and
hold times to5 and tog, the internal processor clock
phase is defined at that time, as illustrated by Figure
5-28 and Figure 7-7.

A Intel386 DX self-test may be requested at the time
RESET is negated by having the BUSY # input at a
LOW level, as shown in Figure 5-28. The self-test
requires (220) + approximately 60 CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a prob-
lem, the Intel386 DX attempts to proceed with the
reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the Intel386 DX performs an in-
ternal initialization sequence for approximately 350
to 450 CLK2 periods.

The Intel386 DX samples its ERROR # input some
time after the falling edge of RESET and before exe-
cuting the first ESC instruction. During this sampling
period BUSY# must be HIGH. If ERROR# was
sampled active, the Intel386 DX employs the 32-bit
protocol of the Intel387 DX. Even though this proto-
col was selected, it is still necessary to use a soft-
ware recognition test to determine the presence or
identity of the coprocessor and to assure compatibil-
ity with future processors. (See Chapter 11 of the
Intel386 DX Programmer’s Reference Manual, Order
#230985-002).

91

Intel386™ DX MICROPROCESSOR

CYCLE 1
PIPELINED
(WRITE)

T21

CLK2 I: J

(CLK)I: I

HOLD CYCLE 2
ACKNOWLEDGE | NON=PIPELINED
(READ)

[
\va

=L

HOLD I:
HLDA [

A AN
HOLD ASSERTED IN SAME BUS
STATE AS NA# ASSERTED

BEO#-BE3#, A2-A31,
M/I0%, D/C#, W/R# I: VALID

(FLOATING)

VALID 2

-

ADS# [_/

. (FLOATING) !
e cmcecm—= . /

NA# [

BS1 G#I: X/ AV
READY# I: “_
(NEGATED, OR LAST LOCKED CYCLE)
(FLOATING)
Locky [VALID 1 cemcpeeed VAD 2
DO-D31 [our X ouT)- %F'.‘QA.T '149\) bee @
|

NOTE:

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (to3 and to4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

231630-31

Figure 5-27. Requesting Hold from Active Bus (NA # asserted)

5.6 SELF-TEST SIGNATURE

Upon completion of self-test, (if self-test was re-
quested by holding BUSY# LOW at least eight
CLK2 periods before and after the falling edge of
RESET), the EAX register will contain a signature of
00000000h indicating the Intel386 DX passed its
self-test of microcode and major PLA contents with
no problems detected. The passing signature in
EAX, 00000000h, applies to all Intel386 DX revision
levels. Any non-zero signature indicates the Intel386
DX unit is faulty.

5.7 COMPONENT AND REVISION
IDENTIFIERS

To assist Intel386 DX users, the Intel386 DX after
reset holds a component identifier and a revision

92

identifier in its DX register. The upper 8 bits of DX
hold 03h as identification of the Intel386 DX compo-
nent. The lower 8 bits of DX hold an 8-bit unsigned
binary number related to the component revision
level. The revision identifier begins chronologically
with a value zero and is subject to change (typically
it will be incremented) with component steppings in-
tended to have certain improvements or distinctions
from previous steppings.

These features are intended to assist Intel386 DX
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev-
ery stepping revision, or to follow a completely uni-
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re-
quired to be changed. Intel has sole discretion over
these characteristics of the component.

tel.

Intel386™ DX MICROPROCESSOR

CLK (INTERNAL) |: >< >OOOC

I INTERNAL

SELF-TEST.

SELF-TEST.

e[ML

RESET
> 15 CLK2 DURATION IF
NOT GOING TO REQUEST

280 CLK2 DURATION
BEFORE REQUESTING

INITIALIZATION

F SELF-TEST IS PERFORMED,
ADD (2°20)+60* TO THESE
1

NUMBERS
2 3

UL

RESET |: _/

\

CYCLE 1
NON~-PIPELINED
(READ)

T1 T2

* * * *
17 18 | 19]/395[396 397|398

* APPROXIMATELY

[o2(¢ 162

NO SELF-TEST

o1lo2]o1|[o2|01]¢2

NEGATED TO ALLOW
SENSING OF THE i387™ DX MATH COPROCESSOR

(NOTE 1)

BUSY# [
[—=% 5]

LOW TO BEGIN SELF-TEST (NOTE 2)

errors [XOXXXXXX

KX XXX XXX XXXXXXXX

XX/

ASSERT
i387™

ED TO INDICATE

XX

UP TO 30 CLK2—>

nas [OO
ss16# [YXOOOOKXXKXX)
reaovs [OO

BEO#-BE3#,
W/R#,M/10%, LOW |[DURING RESET m W VALID 1
HLDA }
UP TO 30 CLK2—>| |
A2-A31, Zﬁ
D/C#.LOCK#[HIGH |[DURING RESET w VALID 1
UP TO 30 CLK2—>
ADS# |: HIGH |[DURING RESET N\ /_

XXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXX XXX XXX XXXXXXX

DO-D31# |: YOO === b = (FLOATING) === === === == b= = = -=||=o====o ---
231630-32
NOTES:
1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.

2. If self-test is requested, the Intel386 DX outputs remain in their reset state as shown here and in Table 5-3.

DX MATH COPROCESSOR PROTOCOL

Figure 5-28. Bus Activity from Reset Until First Code Fetch

Table 5-10. Component and Revision Identifier History

Intel386™ DX . . Intel386 DX .
Steppin Component Revision Steppin Component Revision
pping Identifier Identifier pping Identifier Identifier
Name Name
BO 03 03 DO 03 05
B1 03 03 D1 03 08

93

Intel386™ DX MICROPROCESSOR

5.8 COPROCESSOR INTERFACING

The Intel386 DX provides an automatic interface for
the Intel Intel387 DX numeric floating-point coproc-
essor. The Intel387 DX coprocessor uses an |/0-
mapped interface driven automatically by the In-
tel386 DX and assisted by three dedicated signals:
BUSY #, ERROR #, and PEREQ.

As the Intel386 DX begins supporting a coprocessor
instruction, it tests the BUSY# and ERROR# sig-
nals to determine if the coprocessor can accept its
next instruction. Thus, the BUSY # and ERROR #
inputs eliminate the need for any “preamble” bus
cycles for communication between processor and
coprocessor. The Intel387 DX can be given its com-
mand opcode immediately. The dedicated signals
provide instruction synchronization, and eliminate
the need of using the Intel386 DX WAIT opcode
(9Bh) for Intel387 DX coprocessor instruction syn-
chronization (the WAIT opcode was required when
8086 or 8088 was used with the 8087 coprocessor).

Custom coprocessors can be included in Intel386
DX-based systems, via memory-mapped or |/O-
mapped interfaces. Such coprocessor interfaces al-
low a completely custom protocol, and are not limit-
ed to a set of coprocessor protocol “primitives”. In-
stead, memory-mapped or 1/O-mapped interfaces
may use all applicable Intel386 DX instructions for
high-speed coprocessor communication. The
BUSY# and ERROR# inputs of the Intel386 DX
may also be used for the custom coprocessor inter-
face, if such hardware assist is desired. These sig-
nals can be tested by the Intel386 DX WAIT opcode
(9Bh). The WAIT instruction will wait until the
BUSY # input is negated (interruptable by an NMI or
enabled INTR input), but generates an exception 16
fault if the ERROR# pin is in the asserted state
when the BUSY # goes (or is) negated. If the custom
coprocessor interface is memory-mapped, protec-
tion of the addresses used for the interface can be
provided with the Intel386 DX on-chip paging or

94

intgl.

segmentation mechanisms. If the custom interface
is 1/0-mapped, protection of the interface can be
provided with the Intel386 DX IOPL (I/O Privilege
Level) mechanism.

The Intel387 DX numeric coprocessor interface is
1/0 mapped as shown in Table 5-11. Note that the
Intel387 DX coprocessor interface addresses are
beyond the Oh-FFFFh range for programmed 1/0.
When the Intel386 DX supports the Intel387 DX co-
processor, the Intel386 DX automatically generates
bus cycles to the coprocessor interface addresses.

Table 5-11. Numeric Coprocessor
Port Addresses

Address in Intel387™™ DX
Intel386™ DX Coprocessor
1/0 Space Register
800000F8h Opcode Register
(32-bit port)
800000FCh Operand Register
(32-bit port)

To correctly map the Intel387 DX coprocessor regis-
ters to the appropriate I/0 addresses, connect the
Intel387 DX coprocessor CMDO # pin directly to the
A2 output of the Intel386 DX.

5.8.1 Software Testing for
Coprocessor Presence

When software is used to test for coprocessor (In-
tel387 DX) presence, it should use only the following
coprocessor opcodes: FINIT, FNINIT, FSTCW mem,
FSTSW mem, FSTSW AX. To use other coproces-
sor opcodes when a coprocessor is known to be not
present, first set EM = 1 in Intel386 DX CRO.

intgl.

6. INSTRUCTION SET

This section describes the Intel386 DX instruction
set. A table lists all instructions along with instruction
encoding diagrams and clock counts. Further details
of the instruction encoding are then provided in the
following sections, which completely describe the
encoding structure and the definition of all fields oc-
curring within Intel386 DX instructions.

6.1 Intel386™ DX INSTRUCTION
ENCODING AND CLOCK COUNT
SUMMARY

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 6-1
below, by the processor clock period (e.g. 50 ns for
a 20 MHz Intel386 DX, 40 ns for a 25 MHz Intel386
DX, and 30 ns for a 33 MHz Intel386 DX).

For more detailed information on the encodings of
instructions refer to section 6.2 Instruction Encod-
ings. Section 6.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

Intel386™ DX MICROPROCESSOR

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction ex-
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis-
ter, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
a register operand and the larger refers to a mem-
ory operand.

2. n = number of times repeated.

3. m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire imme-
diate data (if any) counts as one component, and
each of the other bytes of the instruction and pre-
fix(es) each count as one component.

Wait States

Add 1 clock per wait state to instruction execution
for each data access.

95

Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary

intgl.

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual

Virtual Address Virtual Address

8086 Mode 8086 Mode

Mode Mode
GENERAL DATA TRANSFER
MOV = Move:
Register to Register/Memory | 1000100w | mod reg r/m | 2/2 2/2 b h
Register/Memory to Register | 1000101w | mod reg r/m | 2/4 2/4 b h
Immediate to Register/Memory | 1100011w | mod000 r/m | immediate data 2/2 2/2 b h
Immediate to Register (short form) 1011w reg | immediate data 2 2
Memory to Accumulator (short form) 1010000w full displacement 4 4 b h
Accumulator to Memory (short form) 1010001w full displacement 2 2 b h
Register Memory to Segment Register | 10001110 | mod sreg3 r/m | 2/5 18/19 b h,i, j
Segment Register to Register/Memory | 10001100 | mod sreg3 r/m | 2/2 2/2 b h
MOVSX = Move With Sign Extension
Register From Register/Memory | 00001111 | 1011111w | mod reg r/ml 3/6 3/6 b h
MOVZX = Move With Zero Extension
Register From Register/Memory | 00001111 | 1011011w | mod reg r/ml 3/6 3/6 b h
PUSH = Push:
Register/Memory | 11111111 | mod110 r/ml 5 5 b h
Register (short form) 01010 reg 2 2 b h
Segment Register (ES, CS, SS or DS) 000sreg2110 2 > b h
Segment Register (FS or GS) [00001111 | 10sregs000 2 2 b h
Immediate 011010s0 immediate data 2 2 b h
PUSHA = Push All 01100000 18 18 b h
POP = Pop
Register/Memory | 10001111 | mod000 r/m 5 5 b h
Register (short form) 01011 reg 4 4 b h
Segment Register (ES, SS or DS) 000sreg211 1 7 21 b hi,j
Segment Register (S or GS) [00001111 [10sreg3001 7 21 b hij
POPA = Pop All 01100001 24 24 b h
XCHG = Exchange
Register/Memory With Register | 1000011w | mod reg r/m 3/5 3/5 b, f f,h
Register With Accumulator (short form) 10010 reg Clk Count 3 3

Virtual

IN = Input from: 8086 Mode
Fixed Port | 1110010w | port number 126 12 6%/26** m
Variable Port 1110110w 27 13 727 m
OUT = Output to:
Fixed Port | 1110011w | port number 24 10 4*/24** m
Variable Port 1110111w 725 11 5%/25** m
LEA = Load EA to Register | 10001101 | mod reg r/m 2 2

* If CPL < IOPL

96

**1f CPL > 10PL

In ®

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

Intel386™ DX MICROPROCESSOR

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
SEGMENT CONTROL
LDS = Load Pointer to DS | 11000101 | modreg r/m | 7 22 b h,i,j
LES = Load Pointer to ES | 11000100 | modreg r/m | 7 22 b h,i,j
LFS = Load Pointer to FS | 00001111 | 10110100 |modreg r/ml 7 25 b h,i,j
LGS = Load Pointer to GS | 00001111 | 10110101 |modreg r/ml 7 25 b h,i,j
LSS = Load Pointer to SS | 00001111 | 10110010 |modreg r/ml 7 22 b h,i,j
FLAG CONTROL
CLC = Clear Carry Flag 2 2
CLD = Clear Direction Flag 2 2
CLI = Clear Interrupt Enable Flag 8 8 m
CLTS = Clear Task Switched Flag | 00001111 | 00000110 6 6 c |
CMC = Complement Carry Flag 2 2
LAHF = Load AH into Flag 2 2
POPF = Pop Flags 5 5 b h,n
PUSHF = Push Flags 4 4 b h
SAHF = Store AH into Flags 3 3
STC = Set Carry Flag 2 2
STD = Set Direction Flag 2 2
STI = Set Interrupt Enable Flag 8 8 m
ARITHMETIC
ADD = Add
Register to Register | 000000dw | modreg r/m | 2 2
Register to Memory | 0000000w | modreg r/m | 7 7 b h
Memory to Register | 0000001w | modreg r/m | 6 6 b h
Immediate to Register/Memory | 100000sw | mod000 r/m | immediate data 2/7 2/7 b h
Immediate to Accumulator (short form) immediate data 2 2
ADC = Add With Carry
Register to Register | 000100dw | mod reg r/m | 2 2
Register to Memory | 0001000w | mod reg r/m | 7 7 b h
Memory to Register | 0001001w | mod reg r/m | 6 6 b h
Immediate to Register/Memory | 100000sw | mod010 r/m | immediate data 2/7 2/7 b h
Immediate to Accumulator (short form) immediate data 2 2
INC = Increment
Register/Memory | 1111111w | mod000 r/m | 2/6 2/6 b h
Register (short form) 2 2
SUB = Subtract
Register from Register | 001010dw | mod reg r/m 2 2

97

n
Intel386™ DX MICROPROCESSOR |n'te| .

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
ARITHMETIC (Continued)
Register from Memory | 0010100w |mod reg r/ml 7 7 b h
Memory from Register | 0010101w |mod reg r/ml 6 6 b h
Immediate from Register/Memory | 100000sw |mod 101 r/ml immediate data 2/7 2/7 b h

Immediate from Accumulator (short form) 0010110w immediate data 2 2

SBB = Subtract with Borrow

Register from Register | 000110dw |mod reg r/ml 2 2

Register from Memory | 0001100w |mod reg r/ml 7 7 b h
Memory from Register | 0001101w |mod reg r/ml 6 6 b h
Immediate from Register/Memory | 100000sw |mod 011 r/m| immediate data 2/7 2/7 b h

Immediate from Accumulator (short form) 0001110w immediate data 2 2

DEC = Decrement

Register/Memory | 1111111w |reg001 r/ml 2/6 2/6 b h

Register (short form) 01001 reg 2 2

CMP = Compare

Register with Register | 001110dw |mod reg r/ml 2 2

Memory with Register | 0011100w |mod reg r/ml 5 5 b h
Register with Memory | 0011101w |mod reg r/ml 6 6 b h
Immediate with Register/Memory | 100000sw |mod 111 r/ml immediate data 2/5 2/5 b h

Immediate with Accumulator (short form) 0011110w immediate data 2 2

NEG = Change Sign | 1111011w |m0d01 1 r/m| 2/6 2/6 b h

AAA = ASCII Adjust for Add 00110111 4 4

AAS = ASCII Adjust for Subtract 00111111 4 4

DAA = Decimal Adjust for Add 00100111 4 4

L

DAS = Decimal Adjust for Subtract 00101111 4 4

MUL = Multiply (unsigned)

Accumulator with Register/Memory | 1111011w |mod 100 r/m
Multiplier-Byte 12-17/15-20 [12-17/15-20 b, d d, h
-Word 12-25/15-28 [12-25/15-28 b, d d,h
-Doubleword 12-41/15-44 (12-41/15-44 b, d d, h

IMUL = Integer Multiply (signed)

Accumulator with Register/Memory | 1111011w |mod 101 r/ml
Multiplier-Byte 12-17/15-20 [12-17/15-20 b, d d, h
-Word 12-25/15-28 [12-25/15-28 b, d d, h
-Doubleword 12-41/15-44 (12-41/15-44 b, d d, h
Register with Register/Memory | 00001111 | 10101111 |mod reg r/m
Multiplier-Byte 12-17/15-20 [12-17/15-20 b, d d, h
-Word 12-25/15-28 | 12-25/15-28 b, d d, h
-Doubleword 12-41/15-44 [12-41/15-44 b, d d, h

Register/Memory with Immediate to Register| 011010s1 |modreg r/m| immediate data

-Word 13-26/14-27 (13-26/14-27 b, d d, h
-Doubleword 13-42/14-43 | 13-42/14-43 b, d d, h

98

In ®

Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Pr d| Address | Pr d
Mode or | Virtual | Modeor| Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode
Mode Mode
IARITHMETIC (Continued)
DIV = Divide (Unsigned)
Accumulator by Register/Memory 1111011w mod110 r/m
Divisor—Byte 14/17 14/17 b,e e,h
—Word 22/25 22/25 b,e eh
—Doubleword 38/41 38/41 b,e e,h
IDIV = Integer Divide (Signed)
IAccumulator By Register/Memory 1111011w mod111 r/m
Divisor—Byte 19/22 19/22 b,e e,h
—Word 27/30 27/30 b,e e,h
—Doubleword 43/46 43/46 b,e e,h
IAAD = ASCII Adjust for Divide | 11010101 | 00001010| 19 19
IAAM = ASCII Adjust for Multiply | 11010100| 00001010| 17 17
CBW = Convert Byte to Word 10011000 3 3
CWD = Convert Word to Double Word| 10011001 2 2
LOGIC
Shift Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
Register/Memory by 1 | 1101000w |m0d TTT r/ml 3/7 3/7 b h
Register/Memory by CL | 1101001w |m0d TTT r/m| 3/7 3/7 b h
Register/Memory by Immediate Count | 1100000w |mod TTT r/mlimmed 8-bit data 3/7 3/7 b h
Through Carry (RCL and RCR)
Register/Memory by 1 | 1101000w |modTTT r/ml 9/10 9/10 b h
Register/Memory by CL | 1101001w |mod TTT r/ml 9/10 9/10 b h
Register/Memory by Immediate Count | 1100000w |mod TTT r/mlimmed 8-bit data 9/10 9/10 b h
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
SHLD = Shift Left Double
Register/Memory by Immediate | 00001111 | 10100100 |mod reg r/mlimmed 8-bit data 3/7 3/7
Register/Memory by CL | 00001111 | 10100101 |mod reg r/ml 3/7 3/7
ISHRD = Shift Right Double
Register/Memory by Immediate | 00001111 | 10101100 |mod reg r/mlimmed 8-bit data 3/7 3/7
Register/Memory by CL | 00001111 | 10101101 |mod reg r/ml 3/7 3/7
I/AND = And
Register to Register | 001000dw |rnod reg r/ml 2 2

99

Intel386™ DX MICROPROCESSOR

In

®
Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode
Mode Mode
LOGIC (Continued)
Register to Memory | 0010000w |mod reg r/ml 7 7 b h
Memory to Register | 0010001w |mod reg r/ml 6 6 b h
Immediate to Register/Memory | 100000sw |mod 100 r/ml immediate data 2/7 2/7 b h
Immediate to Accumulator (Short Form) 0010010w | immediate data 2 2
TEST = And Function to Flags, No Result
Register/Memory and Register | 1000010w |rnod reg r/ml 2/5 2/5 b h
Immediate Data and Register/Memory | 1111011w |mod 000 r/ml immediate data 2/5 2/5 b h
Immediate Data and Accumulator
(Short Form) 1010100w | immediate data 2 2
OR = Or
Register to Register | 000010dw |mod reg r/ml 2 2
Register to Memory | 0000100w |mod reg r/ml 7 7 b h
Memory to Register | 0000101w |mod reg r/ml 6 6 b h
Immediate to Register/Memory | 100000sw |mod 001 r/ml immediate data 2/7 2/7 b h
Immediate to Accumulator (Short Form) 00001 10w | immediate data 2 2
XOR = Exclusive Or
Register to Register | 001100dw |mod reg r/ml 2 2
Register to Memory | 0011000w |mod reg r/ml 7 7 b h
Memory to Register | 0011001w |mod reg r/ml 6 6 b h
Immediate to Register/Memory | 100000sw |mod 110 r/ml immediate data 2/7 2/7 b h
Immediate to Accumulator (Short Form) 0011010w | immediate data 2 2
NOT = Invert Register/Memory | 1111011w |rnod 010 r/ml 2/6 2/6 b h
Clk
STRING MANIPULATION Count
Virtual
CMPS = C Byte Word 1010011 8086 10 10 b h
= Compare Byte Wor: w Mode
INS = Input Byte/Word from DX Port 0110110w 29 15 9*/29** b h, m
LODS = Load Byte/Word to AL/AX/EAX| 1010110w 5 5 b h
MOVS = Move Byte Word 1010010w 8 8 b h
OUTS = Output Byte/Word to DX Port 0110111w 28 14 8*/28** b h, m
SCAS = Scan Byte Word 1010111w 8 8 b h
STOS = Store Byte/Word from
AL/AX/EX 1010101w 5 5 b h
XLAT = Translate String 11010111 5 5 h
REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX
REPE CMPS = Compare String
(Find Non-Match) 11110011 1010011w 5+9n 5+9n b h
* If CPL < IOPL ** |f CPL > I0PL

100

In ®

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

Intel386™ DX MICROPROCESSOR

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected Address | Protected
Mode or Virtual Mode or | Virtual
Virtual Address Virtual | Address
8086 Mode 8086 Mode
Mode Mode
REPEATED STRING MANIPULATION (Continued)
REPNE CMPS = Compare String Clk Count
(Find Match) | 11110010 | 1010011w| 80‘;:{;‘,,‘?,;(9 5+9n 5+9n b h
REP INS = Input String | 11110010 | 01101 10w| t28+6n 14+6n |8+6n*/28+6n** b h,m
REP LODS = Load String |11110010|1010110w| 5+6n 5+6n b h
REP MOVS = Move String |11110010|1010010w| 8+4n 8+4n b h
REP OUTS = Output String | 11110010 | 011011 1w| T26+5n 12+5n |6+5n*/26+5n** b h, m
REPE SCAS = Scan String
(Find Non-AL/AX/EAX) | 11110011 | 1010111w| 5+8n 5+8n b h
REPNE SCAS = Scan String
(Find AL/AX/EAX) | 11110010|1010111w| 5+8n 5+8n b h
REP STOS = Store String | 11110010|1010101w| 5+5n 5+5n b h
BIT MANIPULATION
BSF = Scan Bit Forward | 00001111 | 10111100|modreg r/ml 11+3n 11+4+3n b h
BSR = Scan Bit Reverse | 00001111 | 10111101 |modreg r/ml 9+3n 9+3n b h
BT = Test Bit
Register/Memory, Immediate | 00001111 | 10111010 |mod1 00 r/mlimmed 8-bit datal 3/6 3/6 b h
Register/Memory, Register | 00001111 | 10100011 |mod reg r/ml 3/12 3/12 b h
BTC = Test Bit and Complement
Register/Memory, Immediate | 00001111 | 10111010 |mod1 11 r/mlimmed 8-bit datal 6/8 6/8 b h
Register/Memory, Register | 00001111 | 10111011 |mod reg r/ml 6/13 6/13 b h
BTR = Test Bit and Reset
Register/Memory, Inmediate | 00001111 | 10111010 |mod1 10 r/mlimmed 8-bit datal 6/8 6/8 b h
Register/Memory, Register | 00001111 | 10110011 |mod reg r/ml 6/13 6/13 b h
BTS = Test Bit and Set
Register/Memory, Immediate | 00001111 | 10111010 |mod1 01 r/mlimmed 8-bit datal 6/8 6/8 b h
Register/Memory, Register | 00001111 | 10101011 |mod reg r/ml 6/13 6/13 b h
CONTROL TRANSFER
CALL = Call
Direct Within Segment 11101000 | full displacement 7+m 7+m b r
Register/Memory
. . 7+m/ 7+m/
Indirect Within Segment | 11111111 |mod01 0 r/m| 10+m 10+m b hr
Direct Intersegment 10011010 [unsigned full offset, selector 17+m 34+m b jkr

NOTES:

T Clock count shown applies if /0 permission allows /0 to the port in virtual 8086 mode. If 1/0 bit map denies permission
exception 13 fault occurs; refer to clock counts for INT 3 instruction.

*1f CPL < IOPL

** |f CPL > IOPL

101

Intel386™ DX MICROPROCESSOR

In

®
Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or | Virtual | Mode or | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode
Mode Mode
CONTROL TRANSFER (Continued)
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 52+m h,j,k,r
Via Call Gate to Different Privilege Level,

(No Parameters) 86+m h,jk,r
Via Call Gate to Different Privilege Level,

(x Parameters) 94+ 4x+m| h,j,k,r
From 80286 Task to 80286 TSS 273 h,jk,r
From 80286 Task to Intel386 DX TSS 298 h,j,k,r
From 80286 Task to Virtual 8086 Task (Intel386 DX TSS) 218 h,jk,r
From Intel386 DX Task to 80286 TSS 273 h,jk,r
From Intel386 DX Task to Intel386 DX TSS 300 h,jkr
From Intel386 DX Task to Virtual 8086 Task (Intel386 DX TSS) 218 h,j.k,r

Indirect Intersegment 11111111 |modO011 r/m 22+m 38+m b h,jk,r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+m h,j,k,r
Via Call Gate to Different Privilege Level,

(No Parameters) 90+m h,jk,r
Via Call Gate to Different Privilege Level,

(x Parameters) 98 +4x+m| h,jk,r
From 80286 Task to 80286 TSS 278 h,jk,r
From 80286 Task to Intel386 DX TSS 303 hjkr
From 80286 Task to Virtual 8086 Task (Intel386 DX TSS) 222 hjkr
From Intel386 DX Task to 80286 TSS 278 h,j,k,r
From Intel386 DX Task to Intel386 DX TSS 305 h,j,kr
From Intel386 DX Task to Virtual 8086 Task (Intel386 DX TSS) 222 h,j.k,r

JMP = Unconditional Jump
Short | 11101011 |8-bit displacementl 7+m 7+m r
Direct within Segment full displacement 7+m 7+m r
Register/Memory Indirect within Segment | 11111111 |mod100 r/m| Thme| rhm b hr
Direct Intersegment unsigned full offset, selector 12+m 27+m jkr
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 45+m h,j,k,r
From 80286 Task to 80286 TSS 274 h,jk,r
From 80286 Task to Intel386 DX TSS 301 h,jk,r
From 80286 Task to Virtual 8086 Task (Intel386 DX TSS) 219 h,j,k,r
From Intel386 DX Task to 80286 TSS 270 hjkr
From Intel386 DX Task to Intel386 DX TSS 303 h,jkr
From Intel386 DX Task to Virtual 8086 Task (Intel386 DX TSS) 221 h,j,k,r
Indirect Intersegment 11111111 |/mod101 r/mi 17+m 31+m b h,jk,r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+m h,jk,r
From 80286 Task to 80286 TSS 279 h,jkr
From 80286 Task to Intel386 DX TSS 306 h,jkr
From 80286 Task to Virtual 8086 Task (Intel386 DX TSS) 223 h,j.k,r
From Intel386 DX Task to 80286 TSS 275 h,jk,r
From Intel386 DX Task to Intel386 DX TSS 308 h,j,k,r
From Intel386 DX Task to Virtual 8086 Task (Intel386 DX TSS) 225 h,jkr

102

In

Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONTROL TRANSFER (Continued)
RET = Return from CALL:
Within Segment 11000011 10+ m 10+ m b g, hr
Within Segment Adding Immediate to SP | 11000010 | 16-bit displ | 10+ m 10+ m b g, hr
Intersegment 18 +m 32+m b g hjkr
Intersegment Adding Immediate to SP | 11001010 | 16-bit displ | 18 +m 32+m b a.hikr
Protected Mode Only (RET):
to Different Privilege Level
Intersegment 69 h,j kr
Intersegment Adding Immediate to SP 69 hjkr
CONDITIONAL JUMPS
NOTE: Times Are Jump “Taken or Not Taken”
JO = Jump on Overflow
8-Bit Displacement | 01110000 | 8-bit displ | 7+mor3(7+mor3 r
Full Displacement | 00001111 | 10000000 | full displacement 7+mor3(7+mor3 r
JNO = Jump on Not Overflow
8-Bit Displacement | 01110001 | 8-bit displ | 7+mor3| 7+ mor3 r
Full Displacement | 00001111 | 10000001 | full displacement 7+mor3(7+mor3 r
JB/JNAE = Jump on Below/Not Above or Equal
8-Bit Displacement 01110010 8-bit displ | 7+mor3|7+mor3 r
Full Displacement | 00001111 10000010 | full displacement 7+ mor3| 7+ mor3 r
JNB/JAE = Jump on Not Below/Above or Equal
8-Bit Displacement | 01110011 | 8-bit displ | 7+mor3(7+mor3 r
Full Displacement | 00001111 | 10000011 | full displacement 7+mor3(7+mor3 r
JE/JZ = Jump on Equal/Zero
8-Bit Displacement | 01110100 | 8-bit displ | 7+mor3| 7+ mor3 r
Full Displacement | 00001111 | 10000100 | full displacement 7+mor3(7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero
8-Bit Displacement | 01110101 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10000101 | full displacement 7+ mor3| 7+ mor3 r
JBE/JNA = Jump on Below or Equal/Not Above
8-Bit Displacement | 01110110 | 8-bit displ | 7+mor3(7+mor3 r
Full Displacement | 00001111 | 10000110 | full displacement 7+ mor3| 7+ mor3 r
JNBE/JA = Jump on Not Below or Equal/Above
8-Bit Displacement | 01110111 | 8-bit displ | 7+mor3(7+mor3 r
Full Displacement | 00001111 | 10000111 | full displacement 7+mor3(7+mor3 r
JS = Jump on Sign
8-Bit Displacement | 01111000 | 8-bit displ | 7+mor3(7+mor3 r
Full Displacement | 00001111 | 10001000 | full displacement 7+mor3(7+mor3 r

103

Intel386™ DX MICROPROCESSOR

intgl.

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONDITIONAL JUMPS (Continued)
JNS = Jump on Not Sign
8-Bit Displacement | 01111001 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001001 | full displacement 7+mor3| 7+ mor3 r
JP/JPE = Jump on Parity/Parity Even
8-Bit Displacement 01111010 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001010 | full displacement 7+ mor3| 7+ mor3 r
JNP/JPO = Jump on Not Parity/Parity Odd
8-Bit Displacement 01111011 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001011 | full displacement 7+ mor3| 7+ mor3 r
JL/JNGE = Jump on Less/Not Greater or Equal
8-Bit Displacement 01111100 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001100 | full displacement 7+ mor3| 7+ mor3 r
JNL/JGE = Jump on Not Less/Greater or Equal
8-Bit Displacement 01111101 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001101 | full displacement 7+ mor3| 7+ mor3 r
JLE/JNG = Jump on Less or Equal/Not Greater
8-Bit Displacement 01111110 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001110 | full displacement 7+ mor3| 7+ mor3 r
JNLE/JG = Jump on Not Less or Equal/Greater
8-Bit Displacement 01111111 | 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001111 | full displacement 7+ mor3| 7+ mor3 r
JCXZ = Jump on CX Zero | 11100011 | 8-bit displ | 9+ mor5| 9+ morb r
JECXZ = Jump on ECX Zero | 11100011 | 8-bit displ | 9+ mor5| 9+ morb r
(Address Size Prefix Differentiates JCXZ from JECXZ)
LOOP = Loop CX Times | 11100010 | 8-bit displ | 11+ m 1M1+m r
LOOPZ/LOOPE = Loop with
Zero/Equal | 11100001 | 8-bit displ | 11+ m M1+m r
LOOPNZ/LOOPNE = Loop While
Not Zero | 11100000 | 8-bit displ | 11+ m 11+ m r
CONDITIONAL BYTE SET
NOTE: Times Are Register/Memory
SETO = Set Byte on Overflow
To Register/Memory | 00001111 | 10010000 |mod000 r/ml 4/5 4/5 h
SETNO = Set Byte on Not Overflow
To Register/Memory 00001111 | 10010001 |mod000 r/ml 4/5 4/5 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
ToRegister/Memoryl 00001111 | 10010010 |mod000 r/ml 4/5 4/5 h

104

|n Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONDITIONAL BYTE SET (Continued)
SETNB = Set Byte on Not Below/Above or Equal
To Register/Memory | 00001111 | 10010011 |mod000 r/ml 4/5 4/5 h
SETE/SETZ = Set Byte on Equal/Zero
To Register/Memory | 00001111 | 10010100 |mod000 r/ml 4/5 4/5 h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory | 00001111 | 10010101 |mod000 r/m| 4/5 4/5 h
SETBE/SETNA = Set Byte on Below or Equal/Not Above
ToRegister/Memoryl 00001111 | 10010110 |mod000 r/ml 4/5 4/5 h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
ToRegister/Memowl 00001111 | 10010111 |mod000 r/ml 4/5 4/5 h
SETS = Set Byte on Sign
To Register/Memory | 00001111 | 10011000 |mod000 r/ml 4/5 4/5 h
SETNS = Set Byte on Not Sign
To Register/Memory | 00001111 | 10011001 |mod000 r/ml 4/5 4/5 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory | 00001111 | 10011010 |mod000 r/ml 4/5 4/5 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
ToRegister/Memoryl 00001111 | 10011011 |mod000 r/m| 4/5 4/5 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory | 00001111 | 10011100 |mod000 r/ml 4/5 4/5 h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
ToRegister/Memoryl 00001111 | 01111101 |mod000 r/ml 4/5 4/5 h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
ToRegister/Memoryl 00001111 | 10011110 |mod000 r/ml 4/5 4/5 h
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
To Register/Memory | 00001111 | 10011111 |mod000 r/ml 4/5 4/5 h
ENTER = Enter Procedure | 11001000 | 16-bit displacement, 8-bit level |
L= 10 10 b h
L= 12 12 b h
L>1 15 + 15 + b h
4(n — 1) 4(n — 1)
LEAVE = Leave Procedure 11001001 4 4 b h

105

n
Intel386™ DX MICROPROCESSOR |n‘te| .

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified | 11001101 | type 37 b

Type 3 11001100 33 b
INTO = Interrupt 4 if Overflow FlagSet| 11001110

If OF = 1 35 b, e
IfOF = 0 3 3 b, e
Bound = Interrupt 5 if Detect Value | 01100010 | mod reg r/m
Out of Range
If Out of Range 44 b,e eghjkr
If In Range 10 10 b, e e g nhjkr

Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate

to Same Privilege Level 59 aikr
Via Interrupt or Trap Gate

to Different Privilege Level 99 g kr
From 80286 Task to 80286 TSS via Task Gate 282 g kr
From 80286 Task to Intel386 DX TSS via Task Gate 309 g kr
From 80286 Task to virt 8086 md via Task Gate 226 g kr
From Intel386 DX Task to 80286 TSS via Task Gate 284 g kr
From Intel386 DX Task to Intel386 DX TSS via Task Gate 311 g kr
From Intel386 DX Task to virt 8086 md via Task Gate 228 g kr
From virt 8086 md to 80286 TSS via Task Gate 289 g kr
From virt 8086 md to Intel386 DX TSS via Task Gate 316 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

INT: TYPE 3

Via Interrupt or Trap Gate

to Same Privilege Level 59 g kr
Via Interrupt or Trap Gate

to Different Privilege Level 99 g kr
From 80286 Task to 80286 TSS via Task Gate 278 g kr
From 80286 Task to Intel386 DX TSS via Task Gate 305 g kr
From 80286 Task to Virt 8086 md via Task Gate 222 g kr
From Intel386 DX Task to 80286 TSS via Task Gate 280 g kr
From Intel386 DX Task to Intel386 DX TSS via Task Gate 307 g kr
From Intel386 DX Task to Virt 8086 md via Task Gate 224 g kr
From virt 8086 md to 80286 TSS via Task Gate 285 g kr
From virt 8086 md to Intel386 DX TSS via Task Gate 312 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

INTO:

Via Interrupt or Trap Grate

to Same Privilege Level 59 aikr
Via Interrupt or Trap Gate

to Different Privilege Level 99 g kr
From 80286 Task to 80286 TSS via Task Gate 280 g kr
From 80286 Task to Intel386 DX TSS via Task Gate 307 g kr
From 80286 Task to virt 8086 md via Task Gate 224 gk r
From Intel386 DX Task to 80286 TSS via Task Gate 282 g kr
From Intel386 DX Task to Intel386 DX TSS via Task Gate 309 g kr
From Intel386 DX Gate 225 g kr
From virt 8086 md to 80286 TSS via Task Gate 287 gk r
From virt 8086 md to Intel386 DX TSS via Task Gate 314 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

106

In ®

Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
INTERRUPT INSTRUCTIONS (Continued)
BOUND:
Via Interrupt or Trap Gate
to Same Privilege Level 59 g kr
Via Interrupt or Trap Gate
to Different Privilege Level 99 aikr
From 80286 Task to 80286 TSS via Task Gate 254 aikr
From 80286 Task to Intel386 DX TSS via Task Gate 284 g kr
From 80268 Task to virt 8086 Mode via Task Gate 231 aikr
From Intel386 DX Task to 80286 TSS via Task Gate 264 aikr
From Intel386 DX Task to Intel386 DX TSS via Task Gate 294 aikr
From 80368 Task to virt 8086 Mode via Task Gate 243 aikr
From virt 8086 Mode to 80286 TSS via Task Gate 264 gikr
From virt 8086 Mode to Intel386 DX TSS via Task Gate 294 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119
INTERRUPT RETURN
IRET = Interrupt Return 11001111 22 g hijkr
Protected Mode Only (IRET)
To the Same Privilege Level (within task) 38 g hijkr
To Different Privilege Level (within task) 82 g hjkr
From 80286 Task to 80286 TSS 232 hjkr
From 80286 Task to Intel386 DX TSS 265 hj,kr
From 80286 Task to Virtual 8086 Task 213 h,j, kr
From 80286 Task to Virtual 8086 Mode (within task) 60
From Intel386 DX Task to 80286 TSS 271 hijkr
From Intel386 DX Task to Intel386 DX TSS 275 h,j, k1
From Intel386 DX Task to Virtual 8086 Task 223 h,j, kr
From Intel386 DX Task to Virtual 8086 Mode (within task) 60
PROCESSOR CONTROL
HLT = HALT 11110100 5 5
MOV = Move to and From Control/Debug/Test Registers
CRO0/CR2/CR3 from register | 00001111 | 00100010 | 11 eeereg | 11/4/5 11/4/5 |
Register From CR0-3 | 00001111 | 00100000 | 11 eeereg | 6 6 [
DRO0-3 From Register | 00001111 | 00100011 | 11 eeereg | 22 22 |
DR6-7 From Register | 00001111 | 00100011 | 11 eeereg | 16 16 [
Register from DR6-7 | 00001111 | 00100001 | 11eeereg | 14 14 [
Register from DRO-3 | 00001111 | 00100001 | 11eeereg | 22 22 [
TR6-7 from Register | 00001111 | 00100110 | 11 eeereg | 12 12 |
Register from TR6-7 | 00001111 | 00100100 | 11 eeereg | 12 12 |
NOP = No Operation 10010000 3 3
WAIT = Wait until BUSY # pinis negated | 10011011 7 7

107

n
Intel386™ DX MICROPROCESSOR |n'te| .

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
PROCESSOR EXTENSION INSTRUCTIONS
Processor Extension Escape 11011TTT [modLLL r/m See h
TTT and LLL bits are opcode 80287/80Intel387

data sheets for
clock counts

information for coprocessor.

PREFIX BYTES
Address Size Prefix 01100111 0 0
LOCK = Bus Lock Prefix 11110000 0 0 m
Operand Size Prefix 01100110 0 0
Segment Override Prefix
Cs: 00101110 0 0
Ds: 00111110 0 0
ES: 00100110 0 0
FS: 01100100 0 0
GS: 01100101 0 0

SS: 00110110 0 0

PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level

From Register/Memory | 01100011 | mod reg r/ml N/A 20/21 a h
LAR = Load Access Rights
From Register/Memory | 00001111 | 00000010 |mod reg r/m| N/A 15/16 a g, hip

LGDT = Load Global Descriptor
Table Register | 00001111 | 00000001 |mod010 r/ml 11 11 b,c h, 1

LIDT = Load Interrupt Descriptor
Table Register | 00001111 | 00000001 |mod011 r/ml " " b,c h1

LLDT = Load Local Descriptor

Table Register to
Register/Memory | 00001111 | 00000000 |mod010 r/ml N/A 20/24 a g, h,j !

LMSW = Load Machine Status Word

From Register/Memory | 00001111 | 00000001 |mod110 r/ml 11/14 11/14 b, c h1
LSL = Load Segment Limit

From Register/Memory | 00001111 | 00000011 |modreg r/ml

Byte-Granular Limit N/A 21/22 a g hjp

Page-Granular Limit N/A 25/26 a g hjp
LTR = Load Task Register

From Register/Memory | 00001111 | 00000000 |mod01 1 r/ml N/A 23/27 a g, hj!

SGDT = Store Global Descriptor
Table Register | 00001111 | 00000001 |mod000 r/ml 9 9 b,c h

SIDT = Store Interrupt Descriptor
Table Register | 00001111 | 00000001 |mod001 r/ml 9 9 b, c h

SLDT = Store Local Descriptor Table Register
To Register/Memory | 00001111 | 00000000 |mod000 r/ml N/A 2/2 a h

108

u
|n'te| . Intel386™ DX MICROPROCESSOR

Table 6-1. Intel386™ DX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
SMSW =Store Machine
Status Word | 00001111 | 00000001 |rnod100 r/ml 2/2 2/2 b,c h,I
STR =Store Task Register
To Register/Memory | 00001111 | 00000000 |mod001 r/ml N/A 2/2 a h
VERR =Verify Read Accesss
Register/Memory | 00001111 | 00000000 |mod100 r/ml N/A 10/11 a g hjp
VERW = Verify Write Accesss | 00001111 | 00000000 |mod101 r/ml N/A 15/16 a g hip

INSTRUCTION NOTES FOR TABLE 6-1

Notes a through c apply to Intel386 DX Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through g apply to Intel386 DX Real Address Mode and Intel386 DX Protected Virtual Address Mode:
d. The Intel386 DX uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:

Actual Clock = if m < > 0 then max ([logo |m|], 8) + b clocks:

if m = 0 then 3+b clocks

In this formula, m is the multiplier, and

b = 9 for register to register,

b = 12 for memory to register,

b = 10 for register with immediate to register,

b = 11 for memory with immediate to register.
e. An exception may occur, depending on the value of the operand.
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.
g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to Intel386 DX Protected Virtual Address Mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment’s descriptor must indicate “present” or exception 11 (CS, DS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.

I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = 0.

0. The PE bit of the MSW (CRO0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.

g. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand’s starting address.

r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.

109

Intel386™ DX MICROPROCESSOR

6.2 INSTRUCTION ENCODING

6.2.1 Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 6-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and ““scaled index” byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

intgl.

encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 6-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 6-2 is a complete list of all fields ap-
pearing in the Intel386 DX instruction set. Further
ahead, following Table 6-2, are detailed tables for
each field.

TTTTTTTT|TTTTTTTT|modTTTr/m| ssindex base |d32|16|8\nonedata32|16|8|none

Z OY7 ()J\765Y320J\765Y320J\ 5 o 5)
opcode “mod r/m” “s-i-b” address immediate
(one or two bytes) N byte byte displacement data
(T represents an Y (4, 2,1 bytes (4, 2,1 bytes
opcode bit.) register and address or none) or none)
mode specifier
Figure 6-1. General Instruction Format
Table 6-2. Fields within Intel386™ DX Instructions
Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation 1
S Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3forr/m
Ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted
or a Condition Negated 4

Note: Table 6-1 shows encoding of individual instructions.

110

intgl.

6.2.2 32-Bit Extensions of the
Instruction Set

With the Intel386 DX, the 8086/80186/80286 in-
struction set is extended in two orthogonal direc-
tions: 32-bit forms of all 16-bit instructions are added
to support the 32-bit data types, and 32-bit address-
ing modes are made available for all instructions ref-
erencing memory. This orthogonal instruction set ex-
tension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefix-
es to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the In-
tel386 DX when operating in those modes (for 16-bit
default sizes compatible with the 8086/80186/
80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all Intel386
DX modes, including the Real Address Mode or the
Virtual 8086 Mode. In these modes the default is
always 16 bits, so prefixes are needed to specify
32-bit operands or addresses. For instructions with
more than one prefix, the order of prefixes is unim-
portant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

6.2.3 Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

Intel386™ DX MICROPROCESSOR

6.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

6.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m” byte, or as the r/m

field of the “mod r/m” byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field During 16-Bit During 32-Bit

Data Operations | Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Encoding of reg Field When w Field
is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations:

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

111

Intel386™ DX MICROPROCESSOR

Register Specified by reg Field
During 32-Bit Data Operations

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
111 BH EDI

6.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Intel386 DX FS and GS seg-
ment registers to be specified.

2-Bit sreg2 Field

2.Bit Segment
sreg?2 Field Register
Selected
00 ES
01 Cs
10 SS
11 DS
3-Bit sreg3 Field
. Segment
3'B't. Register
sreg3 Field Selected
000 ES
001 Cs
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

112

intgl.

6.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the “mod
r/m” byte, and a second byte of addressing informa-
tion, the “s-i-b” (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the “mod
r/m” byte has r/m = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the “mod r/m” byte,
also contains three bits (shown as TTT in Figure 6-1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-
codings of all 16-bit addressing modes and 32-bit
addressing modes.

In

tel.

Intel386™ DX MICROPROCESSOR

Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX+SI] 10 000 DS:[BX+SI+d16]
00 001 DS:[BX+DI] 10 001 DS:[BX+DI+d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
00011 SS:[BP+DI] 10011 SS:[BP + DI+ d16]
00 100 Ds:[sl] 10 100 DS:[SI+d16]
00 101 DS:[DI] 10 101 DS:[DI+d16]
00110 DS:d16 10110 SS:[BP+d16]
00 111 DS:[BX] 10 111 DS:[BX+d16]
01 000 DS:[BX+ SI+d8] 11 000 register—see below
01001 DS:[BX+ DI+ d8] 11 001 register—see below
01010 SS:[BP+SI+d8] 11010 register—see below
01011 SS:[BP+ DI+ d8] 11011 register—see below
01100 DS:[SI+d8] 11100 register—see below
01101 DS:[DI+ d8] 11101 register—see below
01110 SS:[BP +d8] 11110 register—see below
01111 DS:[BX+ d8] 11111 register—see below

Register Specified by r/m
During 16-Bit Data Operations

Function of w Field
mod r/m
(when w=0) (whenw =1)

11 000 AL AX
11 001 CL CX
11010 DL DX
11 011 BL BX
11100 AH SP
11101 CH BP
11110 DH Sl
11111 BH DI

Register Specified by r/m
During 32-Bit Data Operations

Function of w Field
mod r/m
(when w=0) (whenw =1)
11 000 AL EAX
11 001 CL ECX
11010 DL EDX
11011 BL EBX
11100 AH ESP
11 101 CH EBP
11110 DH ESI
11111 BH EDI

113

Intel386™ DX MICROPROCESSOR

intgl.

Encoding of 32-bit Address Mode with “mod r/m” byte (no “s-i-b” byte present):

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[EAX] 10 000 DS:[EAX+d32]
00 001 DS:[ECX] 10 001 DS:[ECX+d32]
00010 DS:[EDX] 10010 DS:[EDX +d32]
00011 DS:[EBX] 10011 DS:[EBX+d32]
00 100 s-i-b is present 10100 s-i-b is present
00 101 DS:d32 10 101 SS:[EBP+d32]
00110 DS:[ESI] 10110 DS:[ESI+d32]
00 111 DS:[EDI] 10111 DS:[EDI+d32]
01000 DS:[EAX+d8] 11 000 register—see below
01001 DS:[ECX +d8] 11 001 register—see below
01010 DS:[EDX +d8] 11010 register—see below
01011 DS:[EBX +d8] 11011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP+d8] 11101 register—see below
01110 DS:[ESI+d8] 11110 register—see below
01111 DS:[EDI+d8] 11111 register—see below

114

Register Specified by reg or r/m
during 16-Bit Data Operations:

function of w field
mod r/m
(when w=0) (whenw=1)

11 000 AL AX
11 001 CL CX
11010 DL DX
11 011 BL BX
11100 AH SP
11101 CH BP
11110 DH Sl
11111 BH DI

Register Specified by reg or r/m
during 32-Bit Data Operations:

function of w field
mod r/m
(when w=0) (whenw=1)

11 000 AL EAX
11 001 CL ECX
11010 DL EDX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11110 DH ESI
11111 BH EDI

intgl.

Intel386™ DX MICROPROCESSOR

Encoding of 32-bit Address Mode (“mod r/m” byte and “s-i-b” byte present):

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 x1
00 001 DS:[ECX + (scaled index)] 01 X2
00010 DS:[EDX + (scaled index)] 10 x4
00011 DS:[EBX + (scaled index)] 1 X8
00 100 SS:[ESP + (scaled index)]
00 101 DS:[d32 + (scaled index)]
00 110 DS:[ESI + (scaled index)] index Index Register
00 111 DS:[EDI + (scaled index)] 000 EAX

001 ECX
01000 DS:[EAX + (scaledindex) + d8] 010 EDX
01 001 DS:[ECX + (scaledindex) + d8] 011 EBX
01010 DS[EDX + (Scaled index) + d8] 100 no index reg**
01011 DS:[EBX + (scaledindex) + d8] 101 EBP
01100 SS:[ESP + (scaledindex) + d8] 110 ESI
01101 SS:[EBP + (scaledindex) + d8] 111 EDI
01110 DS:[ESI + (scaledindex) + d8]
01111 DS:[EDI + (scaledindex) + d8] **IMPORTANT NOTE:

When index field is 100, indicating “no index register,” then

10000 | DSIERK + (scaedinden) + doz) | 2 MUST caal 0.t o 100 s doos o
10 001 DS:[ECX + (scaledindex) + d32]
10010 DS:[EDX + (scaledindex) + d32]
10 011 DS:[EBX + (scaledindex) + d32]
10 100 SS:[ESP + (scaledindex) + d32]
10 101 SS:[EBP + (scaledindex) + d32]
10110 DS:[ESI + (scaledindex) + d32]
10 111 DS:[EDI + (scaledindex) + d32]
NOTE:

Mod field in “mod r/m” byte; ss, index, base fields in

“s-i-b” byte.

115

Intel386™ DX MICROPROCESSOR

6.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

intgl.

d Direction of Operation

0 | Register/Memory <- - Register

“reg” Field Indicates Source Operand;

“mod r/m” or “mod ss index base” Indicates
Destination Operand

1 | Register <- - Register/Memory

“reg” Field Indicates Destination Operand;
“mod r/m” or “mod ss index base” Indicates
Source Operand

6.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Mnemonic Condition tttn
(@] Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal {1100
NL/GE Not Less Than/Greater or Equal |1101
LE/NG Less Than or Equal/Greater Than|1110
NLE/G Not Less or Equal/Greater Than |1111

Effect on Effect on
Immediate Data8 Immediate Data 16|32
0|None None
1|Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

6.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

6.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

116

eee Code Reg Name
000 CRO
010 CR2
011 CRS3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TR7

Do not use any other encoding

Intel386™ DX MICROPROCESSOR

1.35" ~:| l—0.25"
¢
1

-PIN1

1

—
el

__T

231630-84

Figure 7-1. Processor Module Dimensions

7. DESIGNING FOR ICETM-Intel386
DX EMULATOR USE

The Intel386 DX in-circuit emulator products are
ICE-Intel386 DX 25 MHz or 33 MHz (both referred to
as ICE-Intel386 DX emulator). The ICE-Intel386 DX
emulator probe module has several electrical and
mechanical characteristics that should be taken into
consideration when designing the hardware.

Capacitive loading: The ICE-Intel386 DX emulator
adds up to 25 pF to each line.

Drive requirement: The ICE-Intel386 DX emulator
adds one standard TTL load on the CLK2 line, up to
one advanced low-power Schottky TTL load per
control signal line, and one advanced low-power
Schottky TTL load per address, byte enable, and
data line. These loads are within the probe module
and are driven by the probe’s Intel386 DX compo-
nent, which has standard drive and loading capabili-
ty listed in the A.C. and D.C. Specification Tables in
Sections 9.4 and 9.5.

Power requirement: For noise immunity the ICE-In-
tel386 DX emulator probe is powered by the user
system. This high-speed probe circuitry draws up to
1.5A plus the maximum Igg from the user Intel386
DX component socket.

Intel386 DX location and orientation: The ICE-In-
tel386 DX processor module, target-adaptor cable
(which does not exist for the ICE-Intel386 DX
33 MHz emulator), and the isolation board used for
extra electrical buffering of the emulator initially, re-
quire clearance as illustrated in Figures 7-1 and 7-2.

Interface Board and CLK2 speed reduction:
When the ICE-Intel386 DX emulator probe is first
attached to an unverified user system, the interface
board helps the ICE-Intel386 DX emulator function
in user systems with bus faults (shorted signals,
etc.). After electrical verification it may be removed.
Only when the interface board is installed, the user
system must have a reduced CLK2 frequency of
25 MHz maximum.

Cache coherence: The ICE-Intel386 DX emulator
loads user memory by performing Intel386 DX com-
ponent write cycles. Note that if the user system is
not designed to update or invalidate its cache (if it
has a cache) upon processor writes to memory, the
cache could contain stale instruction code and/or
data. For best use of the ICE-Intel386 DX emulator,
the user should consider designing the cache (if any)
to update itself automatically when processor writes
occur, or find another method of maintaining cache
data coherence with main user memory.

117

Intel386™ DX MICROPROCESSOR

17.5" 4.5" 3.6" —=
00 %
00

274"
B , ,
= 3) 1
1.25"
12.75"

23.4"

Y

231630-85

118

Figure 7-2. Processor Module, Target-Adapter Cable, and Isolation Board Dimensions

intgl.
8. MECHANICAL DATA

8.1 INTRODUCTION

In this section, the physical packaging and its con-
nections are described in detail.

Intel386™ DX MICROPROCESSOR

8.2 PACKAGE DIMENSIONS AND
MOUNTING

The initial Intel386 DX package is a 132-pin ceramic
pin grid array (PGA). Pins of this package are ar-
ranged 0.100 inch (2.54mm) center-to-center, in a
14 x 14 matrix, three rows around.

A wide variety of available sockets allow low inser-
tion force or zero insertion force mountings, and a
choice of terminals such as soldertail, surface
mount, or wire wrap. Several applicable sockets are
listed in Table 8.1.

r PIN #1 POSITION 4—" <|> —| T T <|r T T N s rmstn) .057’&).(2?33 —»‘ ‘<—
HPPPEPPEPEO®®®®® @ &0 (68
@@ @©@@©®®O®®@®® @® @® @ 550 (13.959)
HO@@@@®®®@©®®®® @ @ @ 450 (11.421)
3 1I0XOXO; ® (® (@1 350 (8.883)
sll@@© @ ' (® (® @1 250 (6.345)
s||@@®® | ® (® @1 .150 (3.807)
0@ ® o L OJOJO} | 050 (1.269)
2| [OXOJXO; OJOJO)
s|lee® | ©O®
1 HOXOXO! . OYOIO) .001 (OQ?NZS%E —
nl|l®®® OXOJO)
2|©000EEEEOOORDO wwm
BllO@@®O®O©O©®E®®®®@®® ®|| saoorF 018(0.47)
£ | [CXOJOXOXOXOJOIOXOXOXOJOXOXO) (4) PLAcES D'ATYP?
= E.ozDo(oE.san) <G—‘ A .o';o | 165 (4.189) J«—»
MIN TYP (6.508)
—| | .070(1.777) DIA .110(2.792)
TYP BRAZE PAD
« 1.450(36.802)
231630-35

Figure 8.1. 132-Pin Ceramic PGA Package Dimensions

119

Intel386™ DX MICROPROCESSOR |n

Table 8.1. Several Socket Options for 132-Pin PGA

5562741

Other socket options
55583-1
55573-2

Amp Incorporated

(Harrisburg, PA 17105 U.S.A.
Phone 717-564-0100)

* Low insertion force (LIF) soldertail

* Amp tests indicate 50% reduction in insertion
force compared to machined sockets

* Zero insertion force (ZIF) soldertail

* Zero insertion force (ZIF) Burn-in version

231630-45
Cam handle locks in low profile position when substrate is installed (handle UP for
open and DOWN for closed positions)

courtesy Amp Incorporated

Peel-A-Way Mylar and Kapton
Socket Terminal Carriers

* Low insertion force surface
mount CS132-37TG

* Low insertion force soldertail
CS132-01TG

* Low insertion force wire-wrap
CS132-02TG (two level)
CS132-03TG (three-level)

* Low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street
Warwick, Rl 02818 U.S.A.
Phone 401-885-0485)

Peel-A-Way Carrier No. 132: SOLDER TAIL -01 LOW PROFILE -04 PRESS FIT -05
Kapton Carrier is KS132 —r—
Mylar Carrier is MS132 e l’;‘
e a20
Molded Plastic Body KS132 S
is shown below: —‘- 21
a1 a0
. 128 —+
e 38 A,
LSo 029
b ‘020 OIA.
MILLIMETER
INCH
FOOT PRINT NO. 132 WIRE WRAP -02/-03 | SOLDER TAIL -33
| 140050._| PEEL-A-WAY
{ a2
%0
419
185
)
214 -02 1
| 30 2LEVEL 347
~ I 100 TYP 12.70 .03 "
500 JLEVEL|
14 x 14 x 3ROWS 20
oia.
231630-46

231630-47
courtesy Advanced Interconnections
(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

120

In ®

Intel386™ DX MICROPROCESSOR

Table 8.1. Several Socket Options for 132-Pin PGA (Continued)

PIN GRID ARRAY VisinPak Kapton Carrier A: Soldertail B: Soldertail
DECOUPLING SOCKETS b v I_I
* Low insertion force soldertail PKC Series
0.125 length PGD-005-1A1 : . Y—
Finish: Term/Contact Tin- M Crid Aray 0.166 0.166
Lead/Gold PGM (Plastic) or PPS
* Low insertion force soldertail (Glass Epoxy) Series
0.180 length PGD-005-1B1
Finish: Term/Contact: Tin-
Lead/Gold
0.125
* Low insertion 3 level Wire/ 0.180
Wrap PGD-005-1C1 Finish:
Term/Contact Tin-Lead/Gold
Includes 0.10 wF & 1.0 uF J LOBZO x
Decoupling Capacitors
0.020
AUGAT INC. .
33 Perry Ave., P.O. Box 779 Attleboro, MA 02703 C: Soldertail 1.45040.020
TECHNICAL INFORMATION: (508) 222-2202 T (SQUARE)
CUSTOMER SERVICE: (508) 699-9800
©08) odos = 00000000000000
: Q0000000000000
Q0000000000000
R 000 000!
Q00 000
338 308
000 e 000
000 INC. OG0
0.510 000 QO
Q00 Q00
Q0000000000000
Q0000000000000
K \20000000000000
~—‘ L—O.ZS sQ. ——I l«— 0.100 TYP.
231630-86
* Low insertion force socket soldertail - St——--
(for production use) i 2
2XX-6576-00-3308 (new style) |
2XX-6003-00-3302 (older style) LN
* Zero insertion force soldertail . .‘lu =
(for test and burn-inuse) ~ |se—-——- e
2XX-6568-00-3302 i
&
Textool Products T) I 1‘]
Electronic Products Division/3M 7 j
(1410 West Pioneer Drive ST " _ [
Irving, Texas 75601 U.S.A. 3
Phone 214-259-2676) |
courtesy Textool Products/3M 231630-48

121

Intel386™ DX MICROPROCESSOR

8.3 PACKAGE THERMAL
SPECIFICATION

The Intel386 DX is specified for operation when
case temperature is within the range of 0°C-85°C.
The case temperature may be measured in any envi-
ronment, to determine whether the Intel386 DX is
within specified operating range.

intgl.

The PGA case temperature should be measured at
the center of the top surface opposite the pins, as in
Figure 8.2.

132=PIN PGA

MEASURE PGA CASE TEMPERATURE
AT CENTER OF TOP SURFACE

231630-36

Figure 8.2. Measuring Intel386™ DX PGA Case Temperature

Table 8.2. Intel386™ DX PGA Package Thermal Characteristics

Thermal Resistance — °C/Watt

Airflow — ft./min (m/sec)

into board.
2.0ya = 0yc + Oca.

plugged into socket or soldered directly

0,.pIN
0,.pIN

Parameter 0 50 100 200 400 600 800
(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06)

6 Junction-to-Case 2 2 2 2 2 2 2
(case measured
as Fig. 8-2)
6 Case-to-Ambient 19 18 17 15 12 10 9
(no heatsink)
6 Case-to-Ambient 16 15 14 12 9 7 6
(with omnidirectional
heatsink)
6 Case-to-Ambient 15 14 13 11 8 6 5
(with unidirectional
heatsink)

NOTES:

1. Table 8.2 applies to Intel386™ DX PGA 3. 0,.cap = 4°C/w (approx.)

4°C/w (inner pins) (approx.)
8°C/w (outer pins) (approx.)

4.Tp = Tc — P * 6ca (ambient temperature)

8J pin 8J

X

XX |

"eJ cap

1l

231630-72

122

intgl.
9. ELECTRICAL DATA

9.1 INTRODUCTION

The following sections describe recommended elec-
trical connections for the Intel386 DX, and its electri-
cal specifications.

9.2 POWER AND GROUNDING

9.2.1 Power Connections

The Intel386 DX is implemented in CHMOS Il and
CHMOS |V technology and has modest power re-
quirements. However, its high clock frequency and
72 output buffers (address, data, control, and HLDA)
can cause power surges as multiple output buffers
drive new signal levels simultaneously. For clean on-
chip power distribution at high frequency, 20 Voo
and 21 Vgg pins separately feed functional units of
the Intel386 DX.

Power and ground connections must be made to all
external Vgg and GND pins of the Intel386 DX. On
the circuit board, all Vgg pins must be connected on
a Vg plane. All Vgg pins must be likewise connect-
ed on a GND plane.

9.2.2 Power Decoupling
Recommendations

Liberal decoupling capacitance should be placed
near the Intel386 DX. The Intel386 DX driving its
32-bit parallel address and data buses at high fre-
quencies can cause transient power surges, particu-
larly when driving large capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the Intel386 DX and

Intel386™ DX MICROPROCESSOR

decoupling capacitors as much as possible. Capaci-
tors specifically for PGA packages are also commer-
cially available, for the lowest possible inductance.

9.2.3 Resistor Recommendations

The ERROR # and BUSY # inputs have resistor pull-
ups of approximately 20 K built-in to the Intel386
DX to keep these signals negated when no Intel387
DX coprocessor is present in the system (or tempo-
rarily removed from its socket). The BS16# input
also has an internal pullup resistor of approximately
20 KQ, and the PEREQ input has an internal pull-
down resistor of approximately 20 K.

In typical designs, the external pullup resistors
shown in Table 9-1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pullup resistors in other ways.

9.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in-
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, perhaps) prevent any
chance of spurious activity by connecting these as-
sociated inputs to GND:

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pullup D13 NA# to
Vce.

If not using 16-bit bus size, pullup C14 BS16# to
Vce-

Pullups in the range of 20 K are recommended.

Table 9-1. Recommended Resistor Pullups to V¢c

Pin and Signal Pullup Value

Purpose

E14 ADS# 20 KQ £10%

Lightly Pull ADS # Negated
During Intel386 DX Hold
Acknowledge States

C10 LOCK# 20 KQ £10%

Lightly Pull LOCK # Negated
During Intel386 DX Hold
Acknowledge States

123

Intel386™ DX MICROPROCESSOR

9.3 MAXIMUM RATINGS

Table 9-2. Maximum Ratings

Intel386™ DX
Parameter 20, 25, 33 MHz
Maximum Rating

Storage Temperature —65°C to +150°C
Case Temperature Under Bias —65°Cto +110°C
Supply Voltage with Respect to Vgg| —0.5V to +6.5V
Voltage on Other Pins —0.5Vto Vge + 0.5V

9.4 D.C. SPECIFICATIONS
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to 85°C

Table 9-3. Intel386™ DX

intgl.

Table 9-2 is a stress rating only, and functional oper-
ation at the maximums is not guaranteed. Functional
operating conditions are given in 9.4 D.C. Specifica-
tions and 9.5 A.C. Specifications.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the In-
tel386 DX contains protective circuitry to resist dam-
age from static electric discharge, always take pre-
cautions to avoid high static voltages or electric

fields.

D.C. Characteristics

Intel386™ DX
20 MHz, 25 MHz, . Test
Symbol Parameter 33 MHz Unit Conditions
Min Max
VL Input Low Voltage —0.3 0.8 V | (Note 1)
ViH Input High Voltage 20 |Vgc + 03| V
ViLc CLK2 Input Low Voltage —0.3 0.8 V [(Note 1)
ViHC CLK2 Input High Voltage
20 MHz Voc — 0.8|Vge + 03| V
25 MHz and 33 MHz 3.7 |Vgc + 03| V
VoL Output Low Voltage
loL = 4 mA: A2-A31, DO-D31 0.45 \"
loL = 5 mA: BEO# -BE3#, W/R #, 0.45 \"
D/C#,M/10#, LOCK#, ADS#, HLDA
VoH Output High Voltage
lon = 1 mA: A2-A31, D0O-D31 24 \"
lon = 0.9 mA: BEO# -BE3#, W/R #, 2.4 \"
D/C#,M/10#, LOCK#, ADS#, HLDA
I Input Leakage Current +15 wA |0V < V|y < Vee
(For All Pins except BS16#, PEREQ, BUSY #,
and ERROR #)
i1 Input Leakage Current 200 rA [Viq = 2.4V (Note 2)
(PEREQ Pin)
IiL Input Leakage Current —400 rA [V)L = 0.45 (Note 3)
(BS16+#, BUSY #, and ERROR # Pins)
ILo Output Leakage Current +15 | uwA [0.45V < Vout < Vo
lcc Supply Current (Note 4)
CLK2 = 40 MHz: with 20 MHz Intel386™ DX 260 | mA |Icc Typ. = 200 mA
CLK2 = 50 MHz: with 25 MHz Intel386™ DX 320 | mA [lcc Typ. = 240 mA
CLK2 = 66 MHz: with 33 MHz Intel386™ DX 390 | mA |Igc Typ. = 300 mA
CiN Input or 1/0 Capacitance 10 pF |Fc = 1 MHz
Cout |Output Capacitance 12 pF |Fc = 1 MHz
CcLk | CLK2 Capacitance 20 pF |Fc = 1 MHz
NOTES:

1. The min value, —0.3, is not 100% tested.

2. PEREQ input has an internal pulldown resistor.
3. BS16#, BUSY # and ERROR# inputs each have an internal pullup resistor.

4. CHMOS IV Technology (CHMOS Ill Max Icc at 20 MHz, 25 MHz = 500 mA, 550 mA).

124

intel.
9.5 A.C. SPECIFICATIONS

9.5.1 A.C. Spec Definitions

The A.C. specifications, given in Tables 9-4, 9-5, and
9-6, consist of output delays, input setup require-
ments and input hold requirements. All A.C. specifi-
cations are relative to the CLK2 rising edge crossing
the 2.0V level.

A.C. spec measurement is defined by Figure 9-1. In-
puts must be driven to the voltage levels indicated
by Figure 9-1 when A.C. specifications are mea-
sured. Intel386 DX output delays are specified with
minimum and maximum limits, measured as shown.
The minimum Intel386 DX delay times are hold times

Intel386™ DX MICROPROCESSOR

provided to external circuitry. Intel386 DX input set-
up and hold times are specified as minimums, defin-
ing the smallest acceptable sampling window. Within
the sampling window, a synchronous input signal
must be stable for correct Intel386 DX operation.

Outputs NA#, W/R#, D/C#, M/IO#, LOCK#,
BEO# -BE3#, A2-A31 and HLDA only change at
the beginning of phase one. D0-D31 (write cycles)
only change at the beginning of phase two. The
READY #, HOLD, BUSY #, ERROR #, PEREQ and
DO0-D31 (read cycles) inputs are sampled at the be-
ginning of phase one. The NA#, BS16#, INTR and
NMI inputs are sampled at the beginning of phase
two.

CLK2 I:

OUTPUTS T
(A2-A31,D/C#, BEO#=BE3#, I: VR

Tx

ADS#, M/I0#, W /R4, LOCK#, HLDA)

® MIN. _ [MAX.

OUTPUTS
(D0-D31)

VALID OUTPUT n 1.5V,

1.5V VALID OUTPUT n+1

INPUTS 3.0V

NOTE 1

(NA#,BS164, |:

k1.5 VALID INPUT 1.5V

INTR, NMI) ov

INPUTS
(READY#, HOLD, BUSY#,
ERROR#, PEREQ, DO-D31)

LEGEND:

' r—@—u—@—-l
3.0V NOTE 1

\K1.5V VALID INPUT 1.5V R\

ov T

@ - MAXIMUM OUTPUT DELAY SPEC.
® - MINIMUM OUTPUT DELAY SPEC.
© = MINIMUM INPUT SETUP SPEC.
(© = MINIMUM INPUT HOLD SPEC.

NOTES:
1. Input waveforms have tr < 2.0 ns from 0.8V to 2.0V.
2. See section 9.5.8 for typical output rise time versus load capacitance.

231630-37

Figure 9-1. Drive Levels and Measurement Points for A.C. Specifications

125

n
Intel386™ DX MICROPROCESSOR |n'te| .

9.5.2 A.C. Specification Tables
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9-4. 33 MHz Intel386™ DX A.C. Characteristics

33 MHz | Ret.

Symbol Parameter Intel386™ DX | Unit Fig. Notes
Min Max
Operating Frequency 8 33.3 | MHz Half of CLK2 Frequency

t1 CLK2 Period 150 | 625 | ns | 9-3
t2a CLK2 High Time 6.25 ns | 9-3 |at2v
t2b CLK2 High Time 45 ns | 9-3 |at3.7Vv
t3a CLK2 Low Time 6.25 ns | 9-3 |at2Vv
t3b CLK2 Low Time 4.5 ns | 9-3 |at0.8V
t4 CLK2 Fall Time 4 ns | 9-3 [3.7V 1o 0.8V (Note 3)
t5 CLK2 Rise Time 4 ns | 9-3 | 0.8V 10 3.7V (Note 3)
t6 A2-A31 Valid Delay 4 15 ns | 9-5 |C_ = 50 pF
t7 A2-A31 Float Delay 4 20 ns | 9-6 | (Note 1)
8 BEO# -BE3#, LOCK# Valid Delay 4 15 ns | 9-5 | CL = 50 pF
t9 BEO# -BE3#, LOCK# Float Delay 4 20 ns | 9-6 | (Note 1)
t10 W/R#,M/I0O#, D/C#, Valid Delay 4 15 ns | 9-5 |C_ = 50 pF
t10a ADS # Valid Delay 4 14.5 ns | 9-5 | C_ = 50 pF
t11 W/R#, M/I0#, D/C#, ADS# Float Delay 4 20 ns | 9-6 | (Note 1)
t12 D0-D31 Write Data Valid Delay 7 24 ns | 9-5a | C_ = 50 pF, (Note 4)
t12a D0-D31 Write Data Hold Time 2 9-5b | CL = 50 pF
t13 D0-D31 Float Delay 4 17 ns | 9-6 | (Note 1)
t14 HLDA Valid Delay 4 20 ns | 9-6 | C_ = 50 pF
t15 NA# Setup Time 5 ns | 9-4
t16 NA# Hold Time 2 ns | 9-4
17 BS16# Setup Time 5 ns | 9-4
t18 BS16+# Hold Time 2 ns | 9-4
t19 READY # Setup Time 7 ns | 9-4
t20 READY # Hold Time 4 ns | 9-4

126

u
|n'te| . Intel386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9-4. 33 MHz Intel386™ DX A.C. Characteristics (Continued)

33 MHz .| Ret.
Symbol Parameter Intel386™ DX Unit Fig. Notes
Min Max
t21 D0-D31 Read Setup Time 5 ns 9-4
t22 D0-D31 Read Hold Time 3 ns 9-4
t23 HOLD Setup Time 11 ns 9-4
t24 HOLD Hold Time 2 ns 9-4
t25 RESET Setup Time 5 ns 9-7
126 RESET Hold Time 2 ns 9-7
t27 NMI, INTR Setup Time 5 ns 9-4 (Note 2)
128 NMI, INTR Hold Time 5 ns 9-4 (Note 2)
t29 PEREQ, ERROR #, BUSY # Setup Time 5 ns 9-4 (Note 2)
130 PEREQ, ERROR #, BUSY # Hold Time 4 ns 9-4 (Note 2)
NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not 100%
tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

3. Rise and fall times are not tested.

4. Min. time not 100% tested.

127

n
Intel386™ DX MICROPROCESSOR |n'te| .

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9-5. 25 MHz Intel386™ DX A.C. Characteristics

25 MHz | Ret.

Symbol Parameter Intel386™ DX | Unit Fig. Notes
Min Max
Operating Frequency 4 25 MHz Half of CLK2 Frequency

t1 CLK2 Period 20 125 ns | 9-3
t2a CLK2 High Time 7 ns | 9-3 |at2v
t2b CLK2 High Time 4 ns | 9-3 |at3.7Vv
t3a CLK2 Low Time 7 ns | 9-3 |at2Vv
t3b CLK2 Low Time 5 ns | 9-3 |at0.8V
t4 CLK2 Fall Time 7 ns | 9-3 |3.7Vto 0.8V
t5 CLK2 Rise Time 7 ns | 9-3 |0.8Vto 3.7V
t6 A2-A31 Valid Delay 4 21 ns | 9-5 |C_ = 50 pF
t7 A2-A31 Float Delay 4 30 ns | 9-6 | (Note 1)
18 BEO# —BE3# Valid Delay 4 24 ns | 9-5 |C_ = 50 pF
t8a LOCK# Valid Delay 4 21 ns | 9-5 | C_ = 50 pF
t9 BEO# -BE3#, LOCK# Float Delay 4 30 ns | 9-6 | (Note 1)
t10 W/R#,M/I0#,D/C#, ADS# Valid Delay 4 21 ns | 9-5 | C_ = 50 pF
t11 W/R#, M/I0#, D/C#, ADS# Float Delay 4 30 ns | 9-6 | (Note 1)
t12 D0-D31 Write Data Valid Delay 7 27 ns | 9-5a|C = 50 pF
t12a D0-D31 Write Data Hold Time 2 9-5b | CL = 50 pF
t13 D0-D31 Float Delay 4 22 ns | 9-6 | (Note 1)
t14 HLDA Valid Delay 4 22 ns | 9-6 | C_ = 50 pF
t15 NA# Setup Time 7 ns | 9-4
t16 NA# Hold Time 3 ns | 9-4
17 BS16# Setup Time 7 ns | 9-4
t18 BS16+# Hold Time 3 ns | 9-4
t19 READY # Setup Time 9 ns | 9-4
t20 READY # Hold Time 4 ns | 9-4

128

u
|n'te| . Intel386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9-5. 25 MHz Intel386™ DX A.C. Characteristics (Continued)

25 MHz . | Ret.
Symbol Parameter Intel386™ DX Unit Fig. Notes
Min Max
t21 D0-D31 Read Setup Time 7 ns 9-4
t22 D0-D31 Read Hold Time 5 ns 9-4
t23 HOLD Setup Time 15 ns 9-4
t24 HOLD Hold Time 3 ns 9-4
t25 RESET Setup Time 10 ns 9-7
t26 RESET Hold Time 3 ns 9-7
t27 NMI, INTR Setup Time 6 ns 9-4 (Note 2)
t28 NMI, INTR Hold Time 6 ns 9-4 (Note 2)
t29 PEREQ, ERROR #, BUSY # Setup Time 6 ns 9-4 (Note 2)
t30 PEREQ, ERROR #, BUSY # Hold Time 5 ns 9-4 (Notes 2, 3)
NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3. Symbol Parameter Min

Tc = 0°C t30 PEREQ, ERROR#, BUSY # Hold Time 4

Tc = +85°C 130 PEREQ, ERROR#, BUSY # Hold Time 5

129

n
Intel386™ DX MICROPROCESSOR |n'te| .

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9.6. 20 MHz Intel386™ DX A.C. Characteristics

20 MHz) Ref.
Symbol Parameter Intel386™ DX Unit Fig. Notes
Min Max
Operating Frequency 4 20 MHz Half of CLK2
Frequency

14 CLK2 Period 25 125 ns 9-3

toa CLK2 High Time 8 ns 9-3 atav

top CLK2 High Time 5 ns 9-3 at (Vgc — 0.8V)

t3a CLK2 Low Time 8 ns 9-3 atav

t3p CLK2 Low Time 6 ns 9-3 at 0.8V

14 CLK2 Fall Time 8 ns 9-3 (Vcc — 0.8V) to 0.8V

ts CLK2 Rise Time 8 ns 9-3 0.8V to (Voc — 0.8V)

ts A2-A31 Valid Delay 4 30 ns 9-5 CL = 120 pF

t7 A2-A31 Float Delay 4 32 ns 9-6 (Note 1)

tg BEO# -BE3#, LOCK # 4 30 ns 9-5 CL = 75pF
Valid Delay

tg BEO# -BE3#, LOCK# 4 32 ns 9-6 (Note 1)
Float Delay

t10 W/R#,M/10#,D/C#, 6 28 ns 9-5 CL = 75pF
ADS # Valid Delay

t41 W/R#,M/I0#,D/C#, 6 30 ns 9-6 (Note 1)
ADS # Float Delay

t12 D0-D31 Write Data 4 38 ns 9-5¢ C_ = 120 pF
Valid Delay

t43 D0-D31 Float Delay 4 27 ns 9-6 (Note 1)

t14 HLDA Valid Delay 6 28 ns 9-6 C_ = 75pF

t15 NA# Setup Time 9 ns 9-4

t16 NA# Hold Time 14 ns 9-4

t17 BS16# Setup Time 13 ns 9-4

t1s BS16# Hold Time 21 ns 9-4

t1g READY # Setup Time 12 ns 9-4

too READY # Hold Time 4 ns 9-4

toq D0-D31 Read 11 ns 9-4
Setup Time

too D0-D31 Read 6 ns 9-4
Hold Time

to3 HOLD Setup Time 17 ns 9-4

tog HOLD Hold Time 5 ns 9-4

tos RESET Setup Time 12 ns 9-7

130

u
|n'te| . Intel386™ DX MICROPROCESSOR

9.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vgg = 5V +5%; Tcase = 0°C to +85°C

Table 9-6. 20 MHz Intel386™ DX A.C. Characteristics (Continued)

20 MHz Ref
Symbol Parameter Intel386™ DX Unit Fig- Notes
Min Max
tog RESET Hold Time 4 ns 9-7
to7 NMI, INTR Setup Time 16 ns 9-4 (Note 2)
tog NMI, INTR Hold Time 16 ns 9-4 (Note 2)
tog PEREQ, ERROR #, BUSY # 14 ns 9-4 (Note 2)
Setup Time
t30 PEREQ, ERROR #, BUSY # 5 ns 9-4 (Note 2)
Hold Time

NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not 100%
tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

131

n
Intel386™ DX MICROPROCESSOR |n‘te| .

9.5.3 A.C. Test Loads 9.5.4 A.C. Timing Waveforms

Intel386 DX CPU

OUTPUT |
C_ = 120 pF on A2-A31, D0-D31

CL = 75 pF on BEO#-BE3#, W/R#, M/IO#, D/C#, ADS#,
LOCK#, HLDA
C includes all parasitic capacitances.

S

231630-38

231630-39

Figure 9-2. A.C. Test Load Figure 9-3. CLK2 Timing

Tx Tx

by $2 #1 #2 #1
CLK2 |: ?~l /' \ ?l _*_

READY# |: NN

i
4

HOLD [NN N
<_@_>
tveon [M JN"
BUSY,
ot [TN X
4—@—>

NA# |: NN
._@_>
Bste [MW N
<_@_>
4

i NN

231630-40

Figure 9-4. Input Setup and Hold Timing

132

In

tel.

Intel386™ DX MICROPROCESSOR

$2
CLK2 |:
8

SO

MIN MAX
o ot VALID n K VALID n+ 1
W/R#, M/I0 0o ik MAX
é/%#,ﬁDs#,; VALIIiJ n NN VALID n#1
®- MIN MAX
A2=A31 [vALID n XN\ VALID n# 1
HLDA |:

231630-41

Figure 9-5. Output Valid Delay Timing

T,

[[
wel AN\

T

¢4 -3
[.
1

W/R# [_/

DO-D31 I:

231630-79

7 +
\ VALID n+1

w/re [& ! min.
DQ—D31I: VALID n ' m

231630-80

Figure 9-5a. Write Data Valid Delay Timing
(25 MHz, 33 MHz)

Figure 9-5b. Write Data Hold Timing
(25 MHz, 33 MHz)

™!

[¢
|
wel AN F A\
|

vl _J

' min., max.

DO-D31 I:

VALID n !

¢ VALID n+1

.4

231630-81

Figure 9-5c. Write Data Valid Delay Timing (20 MHz)

133

Intel386™ DX MICROPROCESSOR

9.5.5 Typical Output Valid Delay Versus Load Capacitance

at Maximum Operating Temperature (C. = 120 pF)

nom+6 T T T
i~ nom+3 — —
[=4
=
=
<
-

(] nom
a [
(=]
S |
4 [
> nom=3 '
= [
=
o '
=
= [
© nom=6 — [—
[
[
| | :
nom=9

C, (picofarads)

NOTE:
This graph will not be linear outside of the C|_ range shown.

\
50 75 100 125 150

231630-77

9.5.6 Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (C_ = 75 pF)

nom+9 [— I [I —
—~
g nom+6
>
3
o nom#+3
=
3
<
>
= nom
2 '
o
s '
2 [
(<]

nom=3 [— : —

]
! | \
nom=6 [—

75 100 125

C, (picofarads)

NOTE:
This graph will not be linear outside of the C| range shown.

150

231630-82

134

u
|n'te| . Intel386™ DX MICROPROCESSOR

9.5.7 Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (C = 50 pF)

nom+9 |— —

nom+6

nom+3

OUTPUT VALID DELAY (ns)

nom

nom=3 [— ‘ | | —
50 75 100 125 150
C, (picofarads)
231630-83
NOTE:
This graph will not be linear outside of the C| range shown.
9.5.8 Typical Output Rise Time Versus Load Capacitance
at Maximum Operating Temperature

8
3
o~
1
S
(=]
£
3
= 2l]
&
o

s \ | |

50 75 100 125 150

C, (picofarads)
231630-78

NOTE:
This graph will not be linear outside of the C|_ range shown.

135

n
Intel386™ DX MICROPROCESSOR |n‘te| .

Th Ti OR T1
¢2 o1 ¢2 1 ¢2
cue [M\
@ MIN MAX@ MIN MAX
BEO#—BES#,[11 _ _ | T 1
LOCK# (HIGH Z)
@ MIN MAX@ MIN MAX
W/R#,M/IO#.I: r 11 _ _ |- T
D/C#, ADS# (HIGH Z)
@ MIN MAX @ MIN MAX
A2-A31 F—— a4+ - =—|-4+ - =4 — A
I: (HIGH 2)
3 MIN max 2 MIN MAX
DO-D31 F——++—-—==-+-=-= -
[(HIGH Z)
@ ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE
4 TV max 2 MIN MAX
Hoa [f RN
231630-42
Figure 9-6. Output Float Delay and HLDA Valid Delay Timing
RESET INITIALIZATION SEQUENCE ———
$2 OR ¢1 $2 OR ¢1 $2 @1
CLK2 [
-~ ®
RESET [\ N
25
231630-43

The second internal processor phase following RESET high-to-low transition (provided tp5 and tog are met) is $2.

Figure 9-7. RESET Setup and Hold Timing, and Internal Phase

136

intgl.

Intel386™ DX MICROPROCESSOR

10. REVISION HISTORY

This Intel386 DX data sheet, version -005, contains updates and improvements to previous versions. A revi-
sion summary is listed here for your convenience.

The sections significantly revised since version -001 are:

2.9.6

2.9.7

2.11.2

2.12

3.1

4433

Figures 4-15a, 4-15b
4.6.4

4.6.6

5.6

5.8

5.8.1

Table 6-3

7.

Figures 7-8, 7-9, 7-10
6.2.3.4

Sequence of exception checking table added.
Instruction restart revised.

TLB testing revised.

Debugging support revised.

LOCK prefix restricted to certain instructions.

I/0 privilege level and I/0 permission bitmap added.
I/0 permission bitmap added.

Protection and 1/0 permission bitmap revised.

Entering and leaving virtual 8086 mode through task switches, trap and interrupt
gates, and IRET explained.

Self-test signature stored in EAX.

Coprocessor interface description added.

Software testing for coprocessor presence added.

PGA package thermal characteristics added.

Designing for ICE-Intel386 revised.

ICE-Intel386 clearance requirements added.

Encoding of 32-bit address mode with no “sib” byte corrected.

The sections significantly revised since version -002 are:

Table 2-5
Figure 4-15a
Figure 5-28
5.7

9.4

9.5

Table 6-1

Interrupt vector assignments updated.

Bit_map__offset must be less than or equal to DFFFH.

Intel386 DX outputs remain in their reset state during self-test.
Component and revision identifier history updated.

20 MHz D.C. specifications added.

16 MHz A.C. specifications updated. 20 MHz A.C. specifications added.
Clock counts updated.

The sections significantly revised since version -003 are:

Table 2-6b

2.9.8

Figure 4-5

5.4.3.4

Figures 5-16, 5-17,
5-19, 5-22

9.5

Interrupt priorities 2 and 3 interchanged.

Double page faults do not raise double fault exception.

Maximum-sized segments must have segments Baseq1 o = 0.

BS16# timing corrected.

BS16# timing corrected. BS16# must not be asserted once NA# has been
sampled asserted in the current bus cycle.

16 MHz and 20 MHz A.C. specifications revised. All timing parameters are now
guaranteed at 1.5V test levels. The timing parameters have been adjusted to
remain compatible with previous 0.8V/2.0V specifications.

137

n
Intel386™ DX MICROPROCESSOR |n‘te| .

The sections significantly revised since version -004 are:

Chapter 4 25 MHz Clock data included.

Table 2-4 Segment Register Selection Rules updated.

5.4.4 Interrupt Acknowledge Cycles discussion corrected.

Table 5-10 Additional Stepping Information added.

Table 9-3 Icc values updated.

9.5.2 Table for 25 MHz A.C. Characteristics added. A.C. Characteristics tables reor-
dered.

Figure 9-5 Output Valid Delay Timing Figure reconfigured. Partial data now provided in addi-
tional Figures 9-5a and 9-5b.

Table 6-1 Clock counts updated and formats corrected.

The sections significantly revised since version -005 are:

Table of Contents Simplified.

Chapter 1 Pin Assignment.

2.3.6 Control Register 0.

Table 2-4 Segment override prefixes possible.
Figure 4-6 Note added.

Figure 4-7 Note added.

5.2.3 Data bus state at end of cycle.
5.2.8.4 Coprocessor error.

5.5.3 Bus activity during and following reset.
Figure 5-28 ERROR #.

Chapter 6 Moved forward in datasheet.
Chapter 7 Moved forward in datasheet.
Chapter 8 Upgraded to chapter.

Table 9-3 25 MHz Igc Typ. value corrected.
Table 9-3 33 MHz D.C. Specifications added.
Table 9-4 33 MHz A.C. Specifications added.
Figure 9-5 t8a and t10a added.

Figure 9-5¢ Added.

9.5.6 Added derating for C| = 75 pF.
9.5.7 Added derating for C| = 50 pF.
Figure 9.6 t8a and t10a added.

The sections significantly revised since version -006 are:

234 Alignment of maximum sized segments.

2.9.8 Double page faults do not raise double fault exception.
5.5.3 ERROR# and BUSY # sampling after RESET.

Figure 5-21 BS16# timing altered.

Figure 5-26 READY # timing altered.

Figure 5-28 ERROR# timing corrected.

6.2.3.1 Corrected Encoding of Register Field Chart.

Chapter 7 Updated ICE-Intel386 DX information.

9.5.2 Remove preliminary stamp on 25 MHz A.C. Specifications.
9.5.2 Remove preliminary stamp on 33 MHz A.C. Specifications.

138

