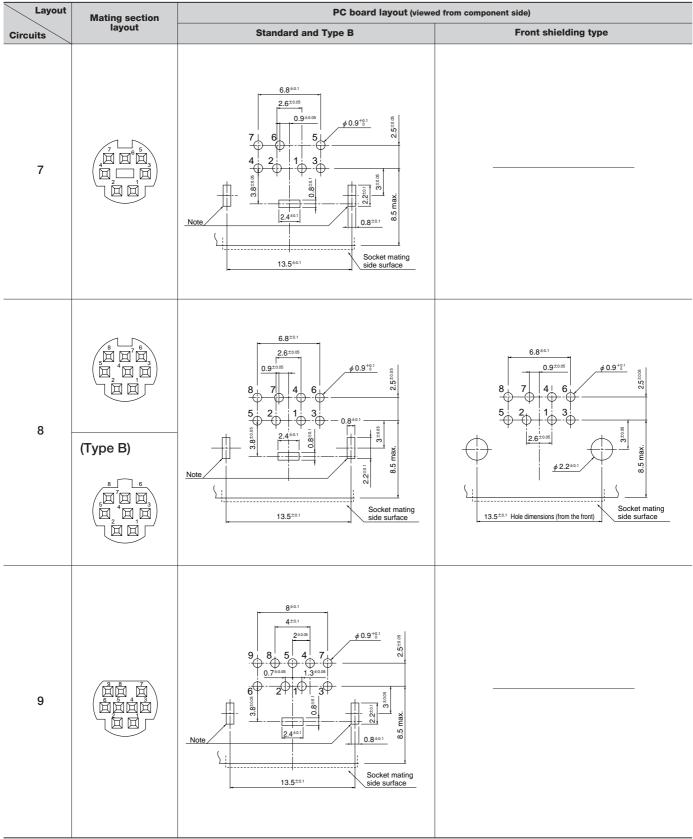

Miniature circular connectors

The extremely compact MD miniature circular connector has an outside diameter roughly half that of conventional circular DIN connectors. The connector's contact exclusively designed by JST dramatically reduces assembly time while improving contact reliability. The MD connector's shielding is superb. All you need to do is crimp the connector ground clip over the cable's braided shielding wire. Simple and reliable, JST's MD connector is well suited for the production of high-density office automation equipments as well as audio and video products.

- Crimp contact with integral construction for improved reliability
- Easy assembly without using special tools
- Simple braid-to-connector assembly and effective EMI protection

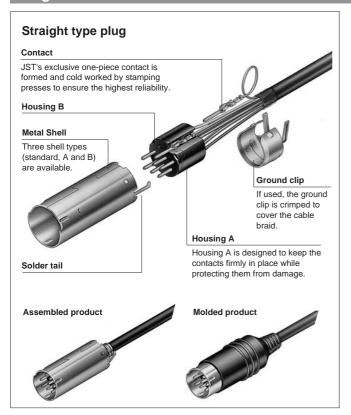
Standards -

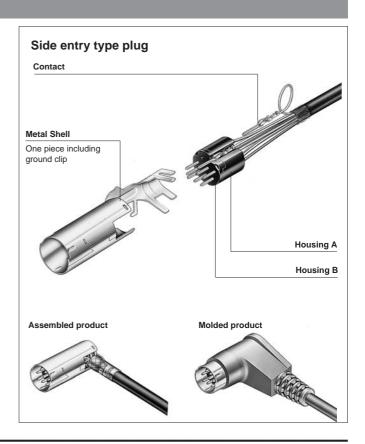

- Recognized E60389
- Certified LR20812

- * Refer to "General Instruction and Notice when using Terminals and Connectors" at the end of this catalog.
- * Contact JST for details.
- * Compliant with RoHS

PC board layout

Layout	Mating section layout	PC board layout (view	PC board layout (viewed from component side)			
Circuits	Mating Section layout	Standard and Type B	Front shielding type			
4		8 E 2.4±0.1	6.8±0.1 \$\\ \phi 0.9 \(\frac{1}{6} \) \$\\ \frac{8}{61} \\ \frac{1}{6} \) \$\\ \frac{8}{61} \\ \frac{1}{6} \) \$\\ \frac{1}{6} \\ \frac{1}{6} \			
5		8 0.9 +8 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 ^{±0.1} 4 4 5 4 7 8 9 10 10 10 10 10 10 10 10 10			
6		6.8±0.1 6.8±0.1 6.8±0.05 5.00.9±0.1 8.00.9±0.1 9.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			



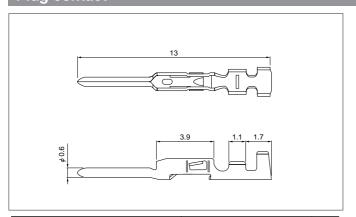

Note: 1. The two holes are necessary when installing a shielding cover.

- 2. Tolerances are non-cumulative: ±0.05 mm for all centers.
- 3. Hole dimensions differ depending on the type of PC board and piercing method. The dimensions above should serve as a guideline. For details, contact JST.
- 4. The layout drawing is viewed from the socket mounting side.
- 5. When using a socket with shielding cover or with flange shielding cover, the pattern should be designed to connect the shielding cover and the shielding tube, if necessary. (No need for the front shielding cover.)

Assembly layout					
Plug	Straight type	Side entry type			
Standard type Type B With shielding cover	13 20 15.6	13 15			
Standard type Type B With flange shielding cover	13.2 20 15.6 2 2 8.5	13.2 15			
Front shielding type	12.5 20 15.6	12.5			

Plug

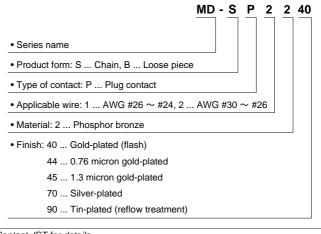
Specifications-


Materials

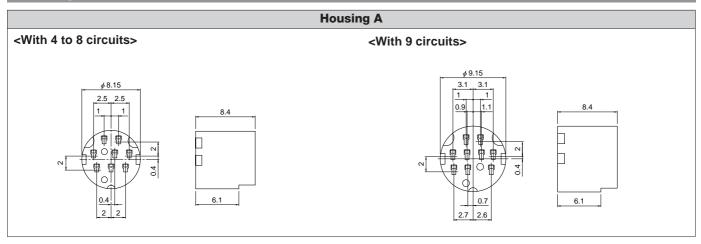
Part name	Material and Finish
Contact	Phosphor bronze, nickel-undercoated, Mating part; gold-plated Crimping part; tin-plated (reflow treatment) Phosphor bronze, tin-plated (reflow treatment) Phosphor bronze, nickel-undercoated silver-plated
Housing A, B	PBT, UL94V-0, black
Metal shell	Steel, nickel-plated
Ground clip	Brass, nickel-plated

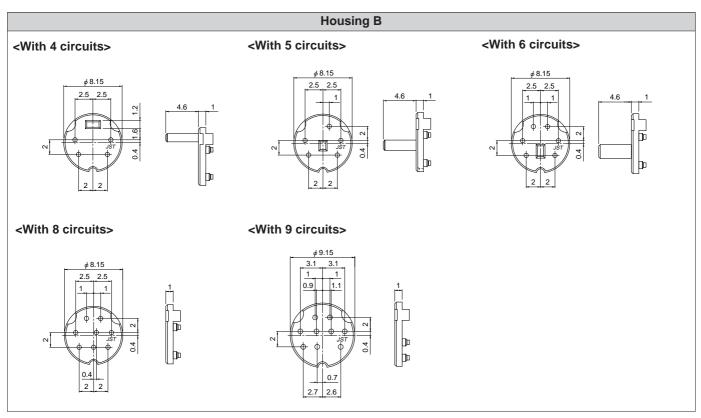
Characteristics

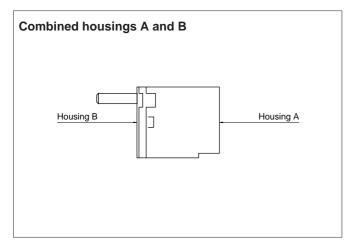
Current rating	1.0 A AC, DC (AWG #26)
Voltage rating	50 V AC, DC
Temperature range	-25°C ~ +85°C(including temperature rise in applying electrical current)
Contact resistance	Initial value/ 100 m Ω max. After environmental tests/ 300 m Ω max.
Insulation resistance	50 MΩ min.
Withstanding voltage	500 VAC/minute
Applicable wire	AWG #30~#24


Plug contact

	Model No.		Applicable wire			Q'tv/
Gold-plated (flash)	Silver-plated	Tin-plated	mm²	AWG#	Insulation O.D. (mm)	reel
MD-SP2240	MD-SP2270	MD-SP2290	0.06~0.13	30~26	0.7~1.1	10,000
MD-SP1240	MD-SP1270	MD-SP1290	0.13~0.2	26~24	1.0~1.2	10,000


RoHS compliance Gold-plated products display (LF)(SN) on a label.


Model number identification



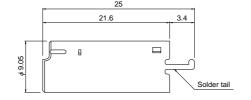
*Contact JST for details.

Housing

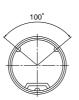
Housing A is used with housing B. Housing B must have the same number of orifices as there will be contacts in the connector. However, housing A can have a greater number of cavities (but never less). Thus in applications in which a user may require MD connectors with different pin counts, only one kind of "A" housing needs to be inventoried - the one with the highest pin count. For more details regarding such combinations, contact JST.

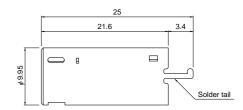
Circuits	Mode	O'tu/box	
Circuits	Housing A	Housing B	Q'ty/box
4	MD-PI 4A	MD-PI 4B	1,000
5	_	MD-PI 5B	1,000
6	MD-PI 6A	MD-PI 6B	1,000
8	MD-PI 8A	MD-PI 8B	1,000
9	MD-PI 9A	MD-PI 9B	1,000

RoHS compliance

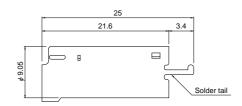

Note: MD-PI5B is not CSA certified.

Metal shell (straight type)


Standard type

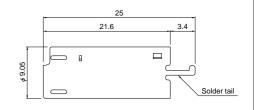

<With 4 to 8 circuits>


<With 9 circuits>



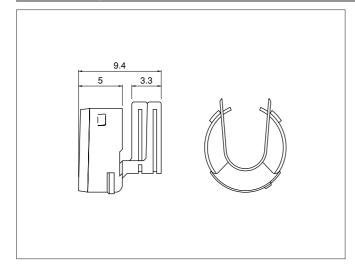
Type A

<features polarizing keys, usable with S-VHS connector>



Type B

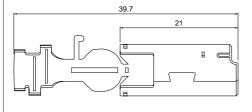
<features 4 polarizing keys, usable with having 8 circuits>

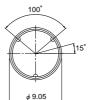


	Model No.						
Circuits	Standard		Standard Type A (features three polarizing keys)		Type B (features 4 polarizing keys8 circuits only)		Q´ty/box
	With solder tail	Without solder tail	With solder tail	Without solder tail	With solder tail	Without solder tail	
4~8	MD-PS8T	*MD-PS8T1	*MD-PS8AT	*MD-PS8AT1	*MD-PS8BT	*MD-PS8BT1	750
9	MD-PS9T	*MD-PS9T1	_	_	_	_	750

RoHS compliance

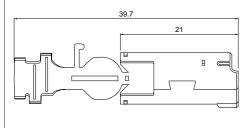
Ground clip

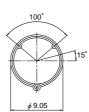

Circuits	Model No.	Applicable cable O.D. (mm)	Q'ty/reel
4 0	MD-PCC8T-S1	2.7~3.8	1,000
4~8	MD-PCC8T-S2	4.3~5.5	1,000
9	MD-PCC9T-S3	3.6~4.8	1,000


RoHS compliance

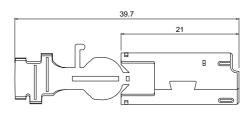
^{*}Marked products are not CSA certified.

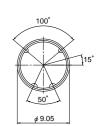
Metal shell (side entry type)

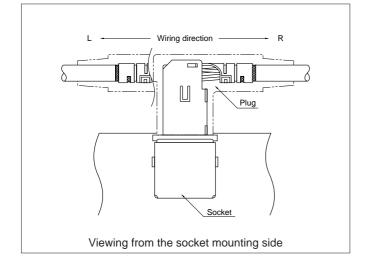

Standard type



Type A


<features polarizing keys, usable with S-VHS connector>



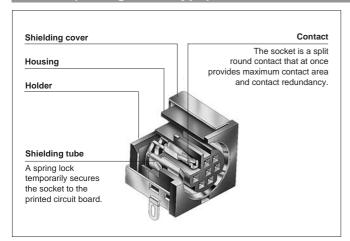


Type B

<features 4 polarizing keys, usable with housing having 8 circuits>

Tuna	Circuito	Model	Q'ty/box	
Туре	Circuits	R	L	Q ty/box
Standard	4~8	MD-PS8SR	MD-PS8SL	500
Α	4~8	MD-PS8ASR	_	500
В	8	MD-PS8BSR	_	500

RoHS compliance


Crimping machine, Applicator

, ,						
Contact	Crimping		Applicator			
Contact	machine	Crimp applicator	Dies	Crimp applicator with dies		
MD-PCC8T-S1		MKS-L	MK/MD-PCC8T-S1	APLMK MD-PCC8T-S1		
MD-PCC01-31		*MKS-SC	-	-		
MD-PCC8T-S2	AP-K2N	MKS-L	MK/MD-PCC8T-S2	APLMK MD-PCC8T-S2		
WID-PCC01-32		*MKS-SC	-	-		
MD-PCC8T-S3		MKS-L	MK/MD-PCC8T-S3	APLMK MD-PCC8T-S3		
MD-PCC01-33		*MKS-SC	-	-		
MD-PS8SL		MKS-L-RG	MK/MD-PS8SR	APLMK MD-PS8SR		
WID-F303L		*MKS-SC	-	-		
MD-PS8ASR		MKS-L-RG	MK/MD-PS8SR	APLMK MD-PS8SR		
IVID-F30A3K		*MKS-SC	-	-		

Note: *Strip-crimp applicator

Contact	Crimping	Applicator		
Contact	machine	Crimp applicator	Dies	Crimp applicator with dies
MD-PS8BSR		MKS-L-RG	MK/MD-PS8SR	APLMK MD-PS8SR
INID-POODSK	- AP-K2N	*MKS-SC	-	-
MD-PS8SR		MKS-L-RG	MK/MD-PS8SR	APLMK MD-PS8SR
WID-P303K		*MKS-SC	-	-
MD-SP12**		MKS-L	MK/MD-SP12	APLMK MD-SP12
IVID-3F12		*MKS-SC	SC/MD-SP12	APLSC MD-SP12
MD-SP22**		MKS-L	MK/MD-SP22	APLMK MD-SP22
IVID-3P22		*MKS-SC	SC/MD-SP22	APLSC MD-SP22

Socket (through-hole type)

Split round contact provides maximum contact area and contact redundancy

The socket contact is split to insure redundant connection and is cylindrically shaped to provide maximum contact mating area. The result is a highly reliable connection to the mating pin. This superb contact performance is maintained even after many mating and unmating cycles.

• Flange construction

The flange construction allows the socket to be secured on the equipment chassis with screws, ensuring more reliable electrical connection.

Standard type with flange shielding cove

(Standard type/Type B)

· Compact, high-density design

This socket has a low profile with a mounting height of just 12.8 mm and width of 14 mm. It takes up little space on the printed circuit board, allowing high-density product design.

Spring locks make it easy to temporarily secure sockets to printed circuit boards for soldering

The shielding tubes are equipped with spring locks which can be used to temporarily secure the sockets to printed circuit boards. This prevents the sockets from moving and ensures reliable soldering.

Standard type without shielding cover (left) Standard type with shielding cover (center) Type B (applicable to Type B plug) (right)

(Front shielding type)

Front shielding construction

A metal shielding cover integrating the connection part which connects to the plug's shell is used. Because there is no gap between the socket and the plug, this construction prevents the entry of space conductive noise.

• Effective shielding

With the front shielding construction and the flange construction, the shielding effect is improved by about 15 dB over the conventional models.

Front shielding type socket

Specifications -

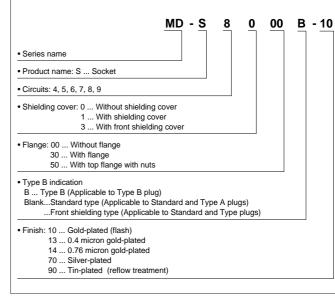
Materials

Part name	Material and Finish
Contact	Phosphor bronze, nickel-undercoated, Mating part; gold-plated Solder tail; tin-plated (reflow treatment) Phosphor bronze, nickel-undercoated silver-plated Phosphor bronze, tin-plated (reflow treatment)
Housing / Holder	PBT, UL94V-0

Characteristics

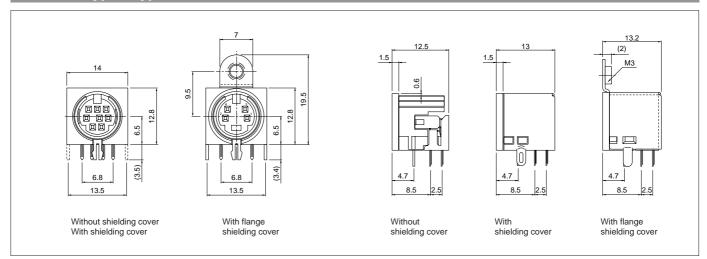
Current rating	1.0 A AC, DC
Voltage rating	50 V AC, DC
Temperature range	-25°C ~ +85°C(including temperature rise in applying electrical current)
Contact resistance	Initial value/ 100 m Ω max. After environmental tests/ 300 m Ω max.
Withstanding voltage	500 VAC/minute
Applicable PC board thickness	1.6 mm

[Standard type/Type B]


Shielding tube	Brass, nickel-plated (*note)	
Shielding cover	Brass, nickel-undercoatd, tin/copper alloy-plated	

[Front shielding Type]

i ront sinclaing Ty	96]
Shielding cover	Brass, nickel-plated (*note)

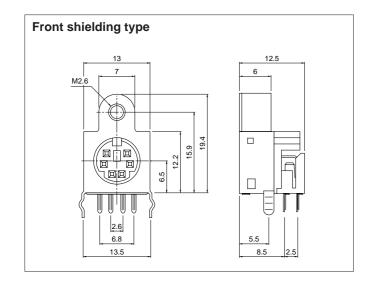

Note: Use soldering flux that is suitable for nickel-plating. Tin plated version is also available.

Model number identification

Note: Contact JST for special plating requirements.

Standard type / Type B

• Standard type: Without shielding cover


Cir-	Model No.		Q'ty/	
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
4	MD-S4000-10	MD-S4000-70	MD-S4000-90	200
5	MD-S5000-10	MD-S5000-70	MD-S5000-90	200
6	MD-S6000-10	MD-S6000-70	MD-S6000-90	200
7	MD-S7000-10	MD-S7000-70	MD-S7000-90	200
8	MD-S8000-10	MD-S8000-70	MD-S8000-90	200
9	MD-S9000-10	MD-S9000-70	MD-S9000-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label.

• Standard type: With shielding cover

Cir-	Model No.		Q'ty/	
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
4	MD-S4100-10	MD-S4100-70	MD-S4100-90	200
5	MD-S5100-10	MD-S5100-70	MD-S5100-90	200
6	MD-S6100-10	MD-S6100-70	MD-S6100-90	200
7	MD-S7100-10	MD-S7100-70	MD-S7100-90	200
8	MD-S8100-10	MD-S8100-70	MD-S8100-90	200
9	MD-S9100-10	MD-S9100-70	MD-S9100-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label. Silver-plated/Tin-plated products display (LF) on a label.

• Standard type: With flange shielding cover

Cir-	Model No.		Q´ty/	
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
4	MD-S4130-10	MD-S4130-70	MD-S4130-90	200
5	MD-S5130-10	MD-S5130-70	MD-S5130-90	200
6	MD-S6130-10	MD-S6130-70	MD-S6130-90	200
7	MD-S7130-10	MD-S7130-70	MD-S7130-90	200
- 8	MD-S8130-10	MD-S8130-70	MD-S8130-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label. Silver-plated/Tin-plated products display (LF) on a label.

• Type B: Without shielding cover

Cir-	Model No.		Q'ty/	
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
	MD-S8000B-10	MD-S8000B-70	MD-S8000B-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label.

• Type B: With shielding cover

Cir-		Model No.		Q'tv/
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
	MD-S8100B-10	MD-S8100B-70	MD-S8100B-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label. Silver-plated/Tin-plated products display (LF) on a label.

• Type B: With flange shielding cover

Cir-		Model No.		Q'tv/
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
8	MD-S8130B-10	MD-S8130B-70	MD-S8130B-90	200

RoHS compliance Gold-plated products display (LF)(SN) on a label. Silver-plated/Tin-plated products display (LF) on a label.

• Front shielding type

Cir-		Model No.		Q'ty/
cuits	Gold-plated(flash)socket	Silver-plated socket	Tin-plated socket	box
4	MD-S4350-10	MD-S4350-70	MD-S4350-90	200
5	MD-S5350-10	MD-S5350-70	MD-S5350-90	200
6	MD-S6350-10	MD-S6350-70	MD-S6350-90	200
8	MD-S8350-10	MD-S8350-70	MD-S8350-90	200

RoHS compliance Gold-plated products display (LF)(SN) A on a label. Silver-plated/Tin-plated products display — A on a label. (— shows space.)