NPI: UltraTECTM UTX Series

NPI: UltraTECTM UTX Series

- The UltraTEC[™] UTX Series is a high-performance thermoelectric cooler assembled with next generation thermoelectric material which provides:
 - improved temperature differential and efficiency than standard semiconductor materials
 - higher cooling capacity
- The UltraTEC UTX[™] Series uses a large number of N and P couples to generate a higher heat flux density than standard thermoelectric coolers.

Next Generation Materials (NGM)

- Same form, fit, and function as standard material (SM)
- Same material composition
- Same nominal ACR with improved tolerance
- Higher performance and efficiency
- Stronger material able to produce smaller sizes

Used in Premium Thermoelectric Modules for High Performance Applications

Available March 2020

Bi₂Te₃

THERMAL SYSTEM

Improved Temperature Differential

Standard vs NGM, ΔT						
Rod Type	SM (°K)	NGM(°K)	ΔT (°K)			
Average	69.5	72.4	2.9			
Max	70.4	73.0	2.6			
Min	67.7	71.2	3.5			

- Temperature differential of a low-profile Thermoelectric Module was tested
- UTX11-12-F2-3030-TA-W6:
 - The average ΔT of NGM is 3°K higher than standard material
 - The ΔT can be more than 4°K for taller Thermoelectric Modules

NGM has higher performance and COP

Improved Cooling Capacity

Standard vs NGM, Qc						
Rod Type	SM (W)	NGM (W)	ΔQc (W)			
Average	57.4	63.0	5.6			
Max	57.7	63.8	6.1			
Min	57.0	62.0	5.0			

Cooling Capacity, Qc

- Cooling capacity of a low-profile Thermoelectric Module was tested
- UTX8-12-F2-2525-TA-W6:
 - The average Qc of NGM is 5.6W higher than standard material
 - This is an 10% improvement over standard material

NGM has higher cooling capacity

Improved COP

Standard vs NGM, %						
Rod Type	SM (%)	NGM (%)	Δ (%)			
Average	49.1	53.6	4.5			
Max	49.4	54.0	4.6			
Min	48.7	53.1	4.4			

Coefficient of Performance (COP)

- Cooling capacity of a low-profile Thermoelectric Module was tested
- UTX8-12-F2-2525-TA-W6
 - The average COP of NGM is 4.5% higher than standard material
 - This is an 9% improvement over standard material

NGM has higher efficiency

UltraTECTM UTX Series

Part Description	Q _c max (W)	lmax	Vmax (VDC)	ΔT (°K)	L1 (mm)	W (mm)	L2 (mm)	H (mm)	Wire AWG
UTX8-12-F2-2525-TA-W6	67	7.9	14.4	71	24	25	27	1.9	24
UTX8-12-F2-3030-TA-W6	67	10.9	14.4	71	30	30	34	2.5	20
UTX11-12-F2-3030-TA-W6	92	14.5	14.4	71	30	30	34	2.4	22
UTX15-12-F2-4040-TA-W6	123	14.6	14.4	71	40	40	44	2.8	20
UTX15-12-F2-3030-TA-W6	128	15.2	14.4	71	30	30	34	2.4	22
UTX6-19-F1-4040-TA-W6	79	6	22.6	71	40	40	40	3.9	22
UTX8-200-F2-4040-TA-W6	115	8.6	22.7	71	40	40	44	3.8	20
UTX15-200-F2-4040-TA-W6	204	15.4	22.7	71	40	40	44	3.3	20
UTX6-24-F1-5555-TA-W6	96	6	27.4	71	55	55	55	3.9	22
UTX8-24-F1-5555-TA-W6	138	8.6	27.4	71	55	55	55	3.8	22
UTX15-24-F2-5252-TA-W6	232	14.5	27.4	71	52	52	56	3.3	18
UTX20-242-F2-5858-TA-W6	323	20	27.5	71	58	58	62	3.0	18
UTX8-288-F2-5252-TA-W6	165	8.6	32.7	71	52	52	56	3.8	20
UTX9-28-F2-4040-TA-W6	178	9.3	32.7	71	40	40	44	2.8	18
UTX15-288-F2-5252-TA-W6	294	15.4	32.7	71	52	52	56	3.3	20

Target Applications

Industrial Lasers:

Laser Projection

Laser Cooling

Industry Industrial Laser **Application Laser Projection**

Description

- Entertainment projection for Imax, outdoor theaters and stadiums need high end laser projection.
- The lasers used in these systems need to be cooled to room temperature to maximize image resolution and color pallet.
- Often requires liquid cooling to manage high heat flux density.

Why Thermoelectrics?

- Lower cost solution than recirculating chiller
- Compact form factor
- Solid state construction, low maintenance.
- Mountable in any orientation
- **DC** Operation

Potential Customers

Specifications

Th = $40 \text{ to } 50^{\circ}\text{C}$

 $Tc = 20^{\circ}C$

Laser Light Show

Why Laird Thermal Systems?

High heat pumping capacity, > 300W

Protection against condensation.

 TEM automation line yields high quality parts and lower cost.

Low thermal resistances on hot and cold side

- · Good material growth operation assures best in class thermoelectric materials.
- Wide TEM product breadth of high density TEMs
- Expertise in both thermoelectrics and liquid cooling.

Laser Projector

Industry Industrial Laser Application Laser Cooling

- Industrial lasers are used to cut a wide breadth of materials. They us complex algorithms to control input power, which enables user to adjust cut to accommodate type of materials that is being machined.
- High-tech manufacturing processes used in microelectronics, semiconductor (solar & wafer), tool and die, medical and life science industries all use lasers to cut materials with extreme precision.
- Lasers dissipate a lot of heat, so they need cooling to remain stable during operation.

Why Thermoelectrics?

- · Ideal for spot cooling, compact form factor
- Solid-state construction providing long life and low maintenance
- Reverse polarity which enables precise temperature control
- Parts do not outgas

Potential Customers

Specifications

- Dissipate heat generated by laser, which can range from 2 to 10 Watts for direct optical cooling or hundreds of watts for laser system cooling.
- Maintain temperature of laser system at constant temp 20 to 25 ± 1°C, while ambient temp may fluctuate from 18 to 32°C.
- Parts placed inside laser can not outgas.

Why Laird Thermal Systems?

- TEM automation line yields high quality parts and lower cost.
- Good material growth operation assures best in class thermoelectric materials.
- Wide TEM product breadth of high density TEMs.
- Expertise in both thermoelectrics and liquid cooling.