Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 1225797

General Description

The MAX333A is a precision, quad, single-pole doublethrow (SPDT) analog switch. The four independent switches operate with bipolar supplies ranging from ±4.5V to ±20V, or with a single-ended supply between +10V and +30V. The MAX333A offers low on resistance (less than 35Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range $(\Delta 3\Omega \text{ max})$. It also offers break-before-make switching (10ns typical), with turn-off times less than 145ns and turn-on times less than 175ns. The MAX333A is ideal for portable operation since quiescent current runs less than 50µA with all inputs high or low.

This monolithic, quad switch is fabricated with Maxim's new improved silicon-gate process. Design improvements guarantee extremely low charge injection (10pC), low power consumption (3.75mW), and electrostatic discharge (ESD) greater than 2000V.

Logic inputs are TTL and CMOS compatible and guaranteed over a +0.8V to +2.4V range—regardless of supply voltage. Logic inputs and switched analog signals can range anywhere between the supply voltages without damage.

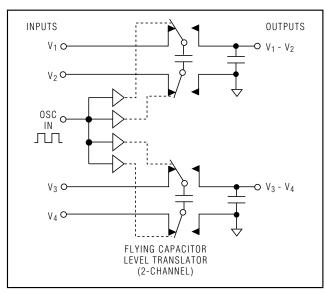
Applications

Test Equipment Communications Systems PBX, PABX Heads-Up Displays Portable Instruments

Features

- Upgraded Replacement for a DG211/DG212 Pair or Two DG403s
- Low On Resistance < 17 Ω Typical (35 Ω Max)
- **Guaranteed Matched On Resistance Between** Channels $< 2\Omega$
- **Guaranteed Flat On Resistance over Analog** Signal Range $\Delta 3\Omega$ Max
- Guaranteed Charge Injection < 10pC
- ♦ Guaranteed Off-Channel Leakage < 6nA at +85°C</p>
- ESD Guaranteed > 2000V per Method 3015.7
- Single-Supply Operation (+10V to +30V) Bipolar-Supply Operation (±4.5V to ±20V)
- TTL-/CMOS-Logic Compatibility
- ♦ Rail-to-Rail Analog Signal Handling Capability

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MAX333ACPP	0°C to +70°C	20 Plastic DIP
MAX333ACWP	0°C to +70°C	20 Wide SO
MAX333ACUP	0°C to +70°C	20 TSSOP
MAX333AC/D	0°C to +70°C	Dice*
MAX333AEPP	-40°C to +85°C	20 Plastic DIP
MAX333AEWP	-40°C to +85°C	20 Wide SO
MAX333AEUP	-40°C to +85°C	20 TSSOP
MAX333AMJP	-55°C to +125°C	20 CERDIP

Contact factory for dice specifications.

Pin Configuration

TOP VIEW IN1 IN4 N01 19 N04 COM1 COM4 NC1 4 NC4 V- 5 V+ MAX333A GND 6 N.C NC2 7 NC3 COM2 8 COM3 N02 g N03 IN2 1 DIP/SO/TSSOP SWITCHES ARE SHOWN WITH LOGIC "0" INPUT N.C. = NOT INTERNALLY CONNECTED

Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to V	44V
VIN, VCOM, VNO, VNCV- to) V+
(V _{NO} - V _{NC})	
V+ to Ground	30V
V- to Ground	30V
Current, Any Terminal Except VCOM, VNO, or VNC30)mA
Continuous Current, VCOM, VNO, or VNC20)mA
Peak Current, V _{COM} , V _{NO} , or V _{NC}	
(Pulsed at 1ms, 10% duty cycle max)70)mA
ESD	00V

Continuous Power Dissipation ($T_A = +70$	O°C) (Note 1)
Plastic DIP (derate above +70°C by 1	11.11mW/°C)889mW
SO (derate above +70°C by 10.00mV	
CERDIP (derate above +70°C by 11.	
TSSOP (derate above +70°C by 7mW	
Operating Temperature Ranges:	,
MAX333AC '	0°C to +70°C
MAX333AE	40°C to +85°C
MAX333AMJP	55°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	

Note 1: Device mounted with all leads soldered to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(GND = 0V, V+ = +15V, V- = -15V, $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Notes 2, 3	MAX	UNITS	
POWER REQUIREMENTS	5							-
Positive Supply Current	l+	V _{IN} = 0V/5V,V+ = 16.5V, V- =	-16.5V			0.05	0.25	mA
Cupply Voltage Dange	V+/V-	Dual supply, V+ = V-			±4.5V		±20	V
Supply Voltage Range	V+	Single supply, V- = GND			10		30] V
Negative Supply Current	I-	$V_{IN} = 0V/5V, V+ = 16.5V, V- =$	-16.5V			0.01	1	μА
LOGIC INPUT					•			
Input Voltage Low	VIL				V-		0.8	V
Input Voltage High	VIH				2.4		V+	V
Input Current	liN	VIN = V-, V+			-1.0	0.0001	1.0	μΑ
SWITCH	1							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}				V-		V+	V
On Circuit Resistance	Dov	$V_{COM} = +10V, I_{(NC \text{ or } NO)} = 1\text{mA};$ M		М		20	35	
On Circuit Resistance	Ron	$V_{COM} = -10V$, $I_{(NC \text{ or } NO)} = 1m$	nΑ	C, E			45	Ω
On Desistance Match	R _{ON}	$I_{A \cup A} = I_{A \cup A} = I_{A$		5°C			2	
On Resistance Match Between Channels (Note 4)		$I(NC \text{ or } NO) = -10\text{mA}, V_D = 10V$ or -10V, V+ =15V, V- = -15V						Ω
		$T_{A} = T_{MIN} \text{ to } T_{MA}$		IN to T_{MAX}			4	
On Resistance Flatness	Ron	$I_{(NC \text{ or } NO)} = -10\text{mA}, V_D = 5V$	$I_{(NC \text{ or } NO)} = -10\text{mA}, V_D = 5V$ $T_A = +25^{\circ}\text{C}$				3	Ω
(Note 4)	HON	or -5V, V+ =15V, V- = -15V	TA = TMIN to TMAX				5] 32
On Circuit Leakage	Ісом	$V_{COM} = \pm 15.5V$, V_{NC} or $V_{NO} =$	+15.5V,	М	-0.75		0.75	nA
Current		V+ = 16.5V, V- = -16.5V		C, E	-1.00	0.20	1.00	11/1
Off Circuit Leakage	I _{NC} or	$V_{COM} = \pm 15.5V V_{NC} \text{ or } V_{NO} =$	+15.5V,	M	-0.25	0.01	0.25	nA
Current DYNAMIC	INO	V+ = 16.5V, V- = -16.5V		C, E	-0.50	0.02	0.05	
Turn-Off Time	4	Figure 1			1		1 1 5	T
	toff	Figure 1					145	ns
Turn-On Time	ton				10		175	ns
Break-Before-Make Time	topen				10			ns
Off Capacitance	Coff					5		pF
On Capacitance	Con	0 10 5 1/				5		pF
Charge Injection	Q	$C_L = 10$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω , Figure 6	T _A = +25	°C		2	10	рС
Off Isolation	OIRR	$f = 1MHz$, $RL = 75\Omega$, $V_{COM} = 2.3V_{RMS}$			72		dB	
Crosstalk	CCRR					78		dB

ELECTRICAL CHARACTERISTICS-DUAL SUPPLIES (continued)

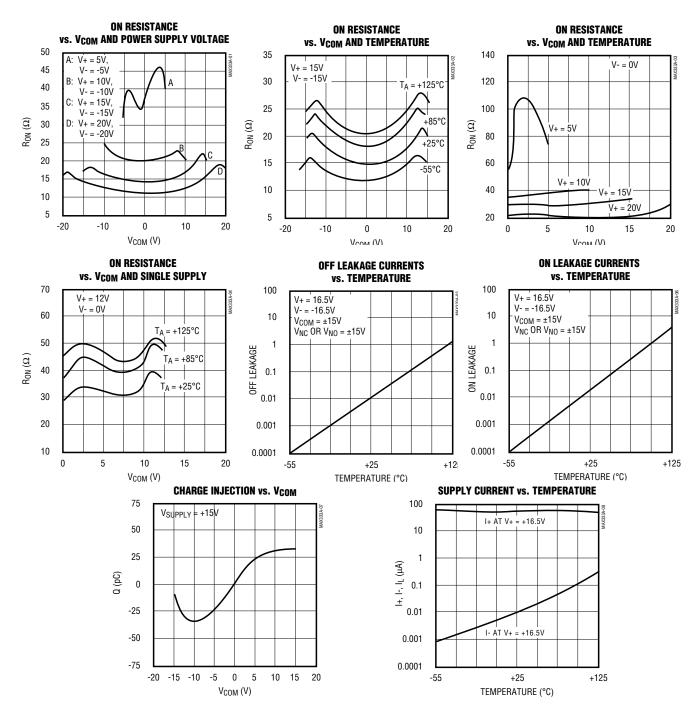
(GND = 0V, V+ = +15V, V- = -15V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Notes 2, 3	MAX)	UNITS
LOGIC INPUT	•						•
Input Voltage Low	V _{IL}			V-		0.8	V
Input Voltage High	VIH			2.4		V+	V
Input Current	I _{IN}	$V_{IN} = V_{-}, V_{+}$		-1.0	0.0001	1.0	μΑ
SWITCH							•
Analog Signal Range	Vсом			V-		V+	V
On Circuit Resistance	Ron	VCOM = 10V, I(NC or NO) = 1mA; VCOM = -10V, I(NC or NO = 1mA	C, E			45 45	Ω
On Circuit Leakage Current	Ісом	VCOM = ±15V, VNC or VNO = -15V, V+ = 16.5V, V- = -16.5V	C, E	-10 -60		10 60	nA
On Circuit Leakage Current	INC or INO	V _{COM} = ±15V, V _{NC} or V _{NO} = -15V, V+ = 16.5V, V- = -16.5V	C, E	-6		6	nA

ELECTRICAL CHARACTERISTICS—Single Supply

(GND = 0V, V+ = \pm 12V, V- = 0V, TA = \pm 25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN (1	TYP MAX Notes 2, 3)	UNITS
SUPPLY					•
Supply Voltage Range	V ₊	Single supply, V- = GND	10	30	V
Positive Supply Current	l+			0.25	mA
INPUT			'		
Input Voltage Low	VINLO		0	0.8	V
Input Voltage High	V _{INHI}		2.4	V+	V
Input Current	liN	VIN = V+, 0V		1	μΑ
SWITCH	1.				
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}		V-	V+	V
On Circuit Resistance	ron	$V_{COM} = 10V$, $I(N_{C} \text{ or } N_{O}) = 1\text{mA}$, $V_{COM} = 1V$, $I(N_{C} \text{ or } N_{O}) = 1\text{mA}$		35 75	Ω
On Circuit Leakage Current	Ісом	$V_{COM} = 11V$, V_{NC} or $V_{NO} = 0V$ $V_{COM} = 1V$, V_{NC} or $V_{NO} = V$ +		0.75	nA
Off Circuit Leakage Current	I _{NC} or I _{NO}	V _{COM} = 11V V _{NC} or V _{NO} = 1V		0.25	nA
DYNAMIC			•		
Turn-Off Time	toff	Figure 1		45	ns
Turn-On Time	ton			90	ns
Break-Before-Make Time	topen		5	10	ns
Off Isolation	OIRR	$f = 1MHz$, $R_L = 75\Omega$, $V_{COM} = 2.3V_{RMS}$		70	dB
Crosstalk	CCRR			72	dB


Note 2: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

Note 3: Typical values are for design aid only, not guaranteed or subject to production testing.

Note 4: On resistance match between channels and flatness are guaranteed only with bipolar-supply operation.

Typical Operating Characteristics

 $(T_A = +25$ °C, unless otherwise noted).

Pin Description

PIN	NAME	FUNCTION
1, 10, 11, 20	IN1-IN4	Logic-Level Inputs
2, 9, 12, 19	NO1-NO4	Normally Open Switches
3, 8, 13, 18	COM1-COM4	Common Switch Poles
4, 7, 14, 17	NC1-NC4	Normally Closed Switches
5	V-	Negative Power Supply
6	GND	Ground
15	N.C.	Not Internally Connected
16	V+	Positive Power Supply

Applications Information

Operation with Supply Voltages Other than ±15V_o

The main limitation of supply voltages other than ±15V is a reduction in the analog signal range. The MAX333A operates with ±5V to ±20V bipolar supplies. The *Typical Operating Characteristics* and graphs show typical on resistance for ±15V, ±10V, ±5 supplies. Switching times increase by a factor of two or more for ±5V operation. The MAX333A can operate from +10V to +24V unipolar supplies. It can be powered from a single +10V to +24V supply, as well as from unbalanced supplies such as +24V and -5V. Connect V- to 0V when operating with a single supply.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by VL, V-, and logic inputs. If power-supply sequencing is not possible, add two small signal diodes in series with the supply pins (Figure 1). Adding the diodes reduces the analog signal range to 1V below V+ and 1V below V-, but low switch resistance and low leakage characteristics are unaffected.

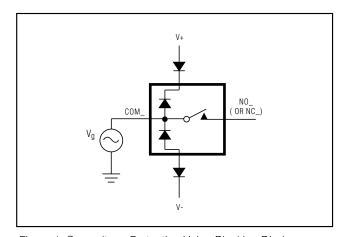


Figure 1. Overvoltage Protection Using Blocking Diodes

Test Circuits/Timing Diagrams

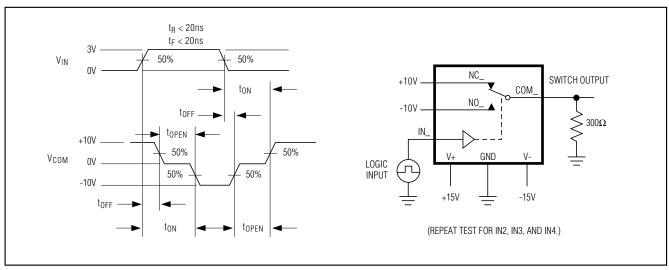


Figure 2. Switching-Time Test Circuit

Test Circuits/Timing Diagrams

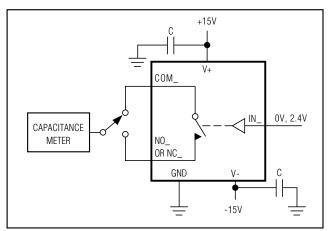


Figure 3. Channel-Off Capacitance

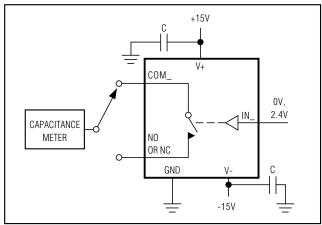


Figure 4. Channel-On Capacitance

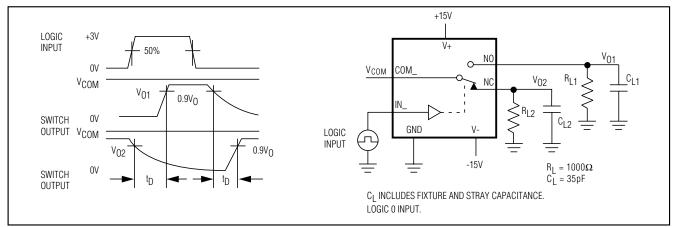


Figure 5. Break-Before-Make

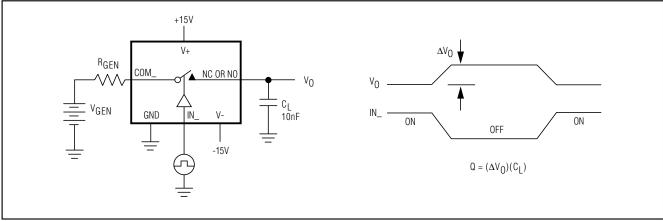


Figure 6. Charge Injection

Test Circuits/Timing Diagrams (continued)

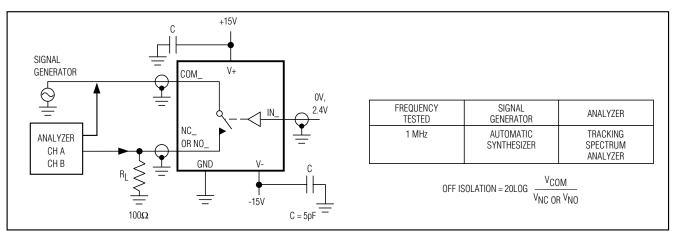


Figure 7. Off-Isolation

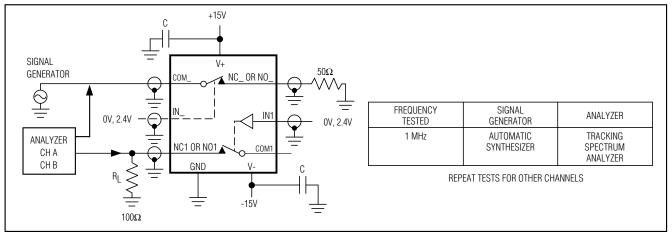
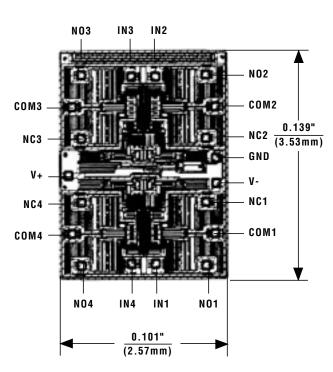



Figure 8. Crosstalk

Chip Topography

TRANSISTOR COUNT: 145; SUBSTRATE CONNECTED TO V+.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.