

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

General Description

The MAX3372E-MAX3379E and MAX3390E-MAX3393E ±15kV ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. A low-voltage logic signal present on the V_L side of the device appears as a high-voltage logic signal on the VCC side of the device, and vice-versa. The MAX3374E/MAX3375E/ MAX3376E/MAX3379E and MAX3390E-MAX3393E unidirectional level translators level shift data in one direction $(V_L \rightarrow V_{CC} \text{ or } V_{CC} \rightarrow V_L)$ on any single data line. The MAX3372E/MAX3373E and MAX3377E/MAX3378E bidirectional level translators utilize a transmission-gatebased design (Figure 2) to allow data translation in either direction (V_L ↔ V_{CC}) on any single data line. The MAX3372E-MAX3379E and MAX3390E-MAX3393E accept V_L from +1.2V to +5.5V and V_{CC} from +1.65V to +5.5V, making them ideal for data transfer between lowvoltage ASICs/PLDs and higher voltage systems.

All devices in the MAX3372E–MAX3379E, MAX3390E–MAX3393E family feature a three-state output mode that reduces supply current to less than 1µA, thermal short-circuit protection, and ±15kV ESD protection on the VCC side for greater protection in applications that route signals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E operate at a guaranteed data rate of 8Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See the *Timing Characteristics* table.)

The MAX3372E–MAX3376E are dual level shifters available in 3 x 3 UCSP $^{\text{TM}}$, 8-pin TDFN, and 8-pin SOT23-8 packages. The MAX3377E/MAX3378E/MAX3379E and MAX3390E–MAX3393E are quad level shifters available in 3 x 4 UCSP, 14-pin TDFN, and 14-pin TSSOP packages.

_Applications

SPI™, MICROWIRE™, and I²C Level Translation
Low-Voltage ASIC Level Translation
Smart Card Readers
Cell-Phone Cradles
Portable POS Systems
Portable Communication Devices
Low-Cost Serial Interfaces
Cell Phones
GPS
Telecommunications Equipment

Features

♦ Guaranteed Data Rate Options

230kbps

8Mbps $(+1.2V \le V_L \le V_{CC} \le +5.5V)$

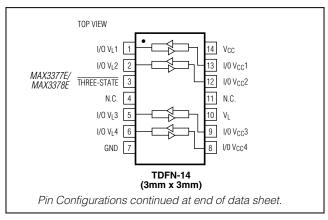
10Mbps $(+1.2V \le V_L \le V_{CC} \le +3.3V)$

16Mbps (+1.8V \leq V_L \leq V_{CC} \leq +2.5V and +2.5V

 $\leq V_L \leq V_{CC} \leq +3.3V$

- Bidirectional Level Translation (MAX3372E/MAX3373E and MAX3377E/MAX3378E)
- ♦ Operation Down to +1.2V on V_L
- ♦ ±15kV ESD Protection on I/O Vcc Lines
- ◆ Ultra-Low 1µA Supply Current in Three-State Output Mode
- ♦ Low-Quiescent Current (130µA typ)
- ♦ UCSP, TDFN, SOT23, and TSSOP Packages
- **♦ Thermal Short-Circuit Protection**

Ordering Information


PART	TEMP	PIN-	PKG	
	RANGE	PACKAGE	CODE	
MAX3372EEKA+T	-40°C to +85°C	8 SOT23	K8S-3	

⁺Denotes a lead-free package.

Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc. SPI is a trademark of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

T = Tape and reel.

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
Vcc0.3V to +6V
I/O V _{CC} 0.3V to (V _{CC} + 0.3V)
I/O V _L 0.3V to (V _L + 0.3V)
THREE-STATE0.3V to (V _L + 0.3V)
Short-Circuit Duration I/O VL, I/O VCC to GNDContinuous
Short-Circuit Duration I/O V _L or I/O V _{CC} to GND
Driven from 40mA Source
(except MAX3372E and MAX3377E)Continuous

Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin SOT23 (derate 8.9mW/°C above +70°C)	.714mW
8-Pin TDFN (derate 18.2mW/°C above +70°C)1	455mW
3 x 3 UCSP (derate 4.7mW/°C above +70°C)	.379mW
3 x 4 UCSP (derate 6.5mW/°C above +70°C)	.579mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C)	.727mW
14-Pin TDFN (derate 18.2mW/°C above +70°C)1	454mW
Operating Temperature Range40°C to	+85°C
Storage Temperature Range65°C to	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +1.65 \text{V to} +5.5 \text{V}, V_L = +1.2 \text{V to} (V_{CC} + 0.3 \text{V}), \text{ GND} = 0, I/O V_L \text{ and I/O V}_{CC} \text{ unconnected}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}.$ Typical values are at $V_{CC} = +3.3 \text{V}, V_L = +1.8 \text{V}, T_A = +25 ^{\circ} \text{C}.)$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES			•			
V _L Supply Range	VL		1.2		5.5	V
V _{CC} Supply Range	V _C C		1.65		5.50	V
Supply Current from V _{CC}	IQVCC			130	300	μΑ
Supply Current from V _L	IQVL			16	100	μΑ
V _{CC} Three-State Output Mode Supply Current	ITHREE-STATE-VCC	T _A = +25°C, THREE-STATE = GND		0.03	1	μΑ
V _L Three-State Output Mode Supply Current	THREE-STATE-VL	T _A = +25°C, THREE-STATE = GND		0.03	1	μΑ
Three-State Output Mode Leakage Current I/O V _L and I/O V _{CC}	THREE-STATE-LKG	T _A = +25°C, THREE-STATE = GND	0.02 1		1	μА
THREE-STATE Pin Input Leakage		T _A = +25°C		0.02	1	μΑ
ESD PROTECTION						
		IEC 1000-4-2 Air-Gap Discharge		±8		
I/O V _{CC} (Note 3)		IEC 1000-4-2 Contact Discharge		±8		kV
		Human Body Model		±15		
LOGIC-LEVEL THRESHOLDS (MAX3372E/MAX337	7E)				
I/O V _{L_} Input-Voltage High	VIHL		V _L - 0.	2		V
I/O V _{L_} Input-Voltage Low	V _{ILL}				0.15	V

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +1.65 \text{V to } +5.5 \text{V}, V_L = +1.2 \text{V to } (V_{CC} + 0.3 \text{V}), \text{ GND} = 0, \text{ I/O } V_L \text{ and I/O } V_{CC} \text{ unconnected, } T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3 \text{V}, V_L = +1.8 \text{V}, T_A = +25 ^{\circ} \text{C}.)$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
I/O V _{CC} _ Input-Voltage High	VIHC		V _C C - 0.4		V
I/O V _{CC} _ Input-Voltage Low	V _{ILC}			0.15	V
I/O V _{L_} Output-Voltage High	VohL	I/O V _L source current = 20μ A, I/O V _{CC} \geq V _{CC} - 0.4V	0.67 × V _L		V
I/O V _{L_} Output-Voltage Low	V _{OLL}	I/O V _L sink current = 20μ A, I/O V _{CC} ≤ 0.15 V		0.4	V
I/O V _{CC} _ Output-Voltage High	Vohc	I/O V _{CC} source current = 20μ A, I/O V _L \geq V _L - 0.2 V	0.67 × V _{CC}		V
I/O V _{CC} _ Output-Voltage Low	Volc	I/O V _{CC} sink current = 20μ A, I/O V _L ≤ 0.15 V		0.4	V
THREE-STATE Input-Voltage High	VIL-THREE-STATE		V _L - 0.2		V
THREE-STATE Input-Voltage Low	VIL-THREE-STATE			0.15	V
LOGIC-LEVEL THRESHOLDS (MAX3373E-MAX33	76E/MAX3378E/MAX3379E and MAX3	3390E-MAX3393E)		
I/O V _{L_} Input-Voltage High	VIHL		V _L - 0.2		V
I/O V _{L_} Input-Voltage Low	V _{ILL}			0.15	V
I/O V _{CC} _ Input-Voltage High	VIHC		V _{CC} - 0.4		V
I/O V _{CC} _ Input-Voltage Low	VILC			0.15	>
I/O V _{L_} Output-Voltage High	V _{OHL}	I/O V _{L_} source current = 20μA, I/O V _{CC_} ≥ V _{CC} - 0.4V	0.67 × V _L		V
I/O V _{L_} Output-Voltage Low	Voll	I/O V _{L_} sink current = 1mA, I/O V _{CC_} ≤ 0.15V		0.4	V
I/O V _{CC} _ Output-Voltage High	Vohc	I/O V _{CC} source current = 20µA, I/O V _L ≥ V _L - 0.2V	0.67 × V _{CC}		V
I/O V _{CC} Output-Voltage Low	Volc	I/O V _{CC} _ sink current = 1mA, I/O V _L _ ≤ 0.15V		0.4	V
THREE-STATE Input-Voltage High	VIH-THREE-STATE		V _L - 0.2		V
THREE-STATE Input-Voltage Low	VIL-THREE-STATE			0.15	V

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

TIMING CHARACTERISTICS

 $(V_{CC} = +1.65 \text{V to} +5.5 \text{V}, V_{L} = +1.2 \text{V to} (V_{CC} + 0.3 \text{V}), \text{ GND} = 0, \text{R}_{LOAD} = 1 \text{M}\Omega, \text{I/O test signal of Figure 1, T}_{A} = \text{T}_{MIN} \text{ to T}_{MAX}, \text{ unless otherwise noted.}$ Typical values are at VCC = +3.3 V, V_L = +1.8 V, T_A = +25 °C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS	
MAX3372E/MAX3377E (CLOAI	o = 50pF)							
I/O V _{CC} _ Rise Time (Note 4)	trvcc				1100		ns	
I/O V _{CC} _ Fall Time (Note 5)	tFVCC				1000		ns	
I/O V _L _ Rise Time (Note 4)	t _{RVL}				600		ns	
I/O V _L _ Fall Time (Note 5)	t _{FVL}				1100		ns	
Propagation Dalay	I/O _{VL-VCC}	Driving I/O V _L				1.6	110	
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC} _				1.6	μs	
Channel-to-Channel Skew	tskew	Each translator equ	ally loaded			500	ns	
Maximum Data Rate		$C_L = 25pF$		230			kbps	
MAX3373E-MAX3376E/MAX337	78E/MAX3379E	and MAX3390E-MAX3	393E (C _{LOAD} = 15pF, Driv	er Output	Impeda	nce ≤ 50 Ω	2)	
+1.2V \leq V _L \leq V _{CC} \leq +5.5V								
I/O V _{CC} _ Rise Time (Note 4)	tp. (0.0			7	25	20		
1/O VCC_ hise fille (Note 4)	tRVCC	Open-drain driving		170	400	ns		
I/O V _{CC} _ Fall Time (Note 5)	t=100				6	37	ns	
1/0 VCC_1 all fille (Note 3)	tFVCC	Open-drain driving			20	50	115	
I/O V _{L_} Rise Time (Note 4)	t _{RVL}				8	30		
1/O VL_Trise Time (Note 4)	IHVL	Open-drain driving			180	400	ns	
I/O V _L Fall Time (Note 5)	tLFV				3	30	ns	
1/O VL_1 all Tille (Note 3)	LLFV	Open-drain driving			30	60	115	
	I/O _{VL-VCC}	Driving I/O V _L _			5	30		
Propagation Delay	1/OVL-VCC	Driving 1/O VL_	Open-drain driving		210	1000	ns	
Tropagation Delay	I/Ovcc-vl	Driving I/O V _{CC} _			4	30		
	1/OVCC-VL	Driving 1/O VCC_	Open-drain driving		190	1000		
Channel-to-Channel Skew	tokew	Each translator				20	ns	
Onamiel-to-Onamiel Skew	tskew	equally loaded	Open-drain driving			50	115	
Maximum Data Rate				8			Mbps	
waximum Data nate		Open-drain driving		500			kbps	

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

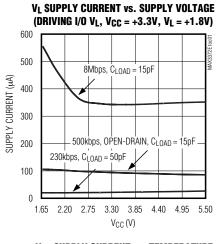
TIMING CHARACTERISTICS (continued)

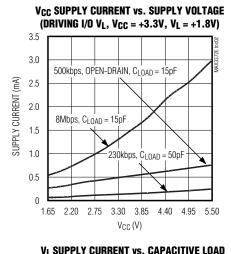
 $(V_{CC} = +1.65V \text{ to } +5.5V, V_L = +1.2V \text{ to } (V_{CC} + 0.3V), \text{ GND} = 0, \text{ R}_{LOAD} = 1M\Omega, \text{ I/O test signal of Figure 1, T}_A = T_{MIN} \text{ to T}_{MAX}, \text{ unless otherwise noted.}$ (Notes 1, 2)

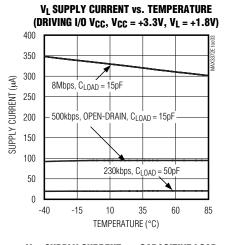
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$+1.2 \text{V} \leq \text{V}_{\text{L}} \leq \text{V}_{\text{CC}} \leq +3.3 \text{V}$						
I/O V _{CC} _ Rise Time (Note 4)	t _{RVCC}				25	ns
I/O V _{CC} _ Fall Time (Note 5)	tFVCC				30	ns
I/O V _L _ Rise Time (Note 4)	t _{RVL}				30	ns
I/O V _L _ Fall Time (Note 5)	t _{FVL}				30	ns
Propagation Daloy	I/O _{VL-VCC}	Driving I/O V _L			20	20
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC} _			20	ns
Channel-to-Channel Skew	tskew	Each translator equally loaded			10	ns
Maximum Data Rate			10			Mbps
$\textbf{+2.5V} \leq \textbf{V}_{\textbf{L}} \leq \textbf{V}_{\textbf{CC}} \leq \textbf{+3.3V}$						
I/O V _{CC} _ Rise Time (Note 4)	trvcc				15	ns
I/O V _{CC} _ Fall Time (Note 5)	tFVCC				15	ns
I/O V _L _ Rise Time (Note 4)	t _{RVL}				15	ns
I/O V _L Fall Time (Note 5)	tFVL				15	ns
	I/O _{VL-VCC}	Driving I/O V _L			15	
Propagation Delay	I/Ovcc-vl	Driving I/O V _{CC} _			15	ns
Channel-to-Channel Skew	tskew	Each translator equally loaded			10	ns
Maximum Data Rate			16			Mbps
$\textbf{+1.8V} \leq \textbf{V}_{\textbf{L}} \leq \textbf{V}_{\textbf{CC}} \leq \textbf{+2.5V}$						
I/O V _{CC} _ Rise Time (Note 4)	trvcc				15	ns
I/O V _{CC} _ Fall Time (Note 5)	tFVCC				15	ns
I/O V _L _ Rise Time (Note 4)	t _{RVL}				15	ns
I/O V _L Fall Time (Note 5)	tFVL				15	ns
Drangation Dalay	I/O _{VL-VCC}	Driving I/O V _L			15	
Propagation Delay	I/Ovcc-vl	Driving I/O V _{CC} _			15	ns
Channel-to-Channel Skew	tskew	Each translator equally loaded			10	ns
Maximum Data Rate			16			Mbps

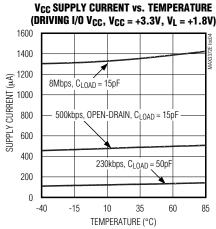
Note 1: All units are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and not production tested.

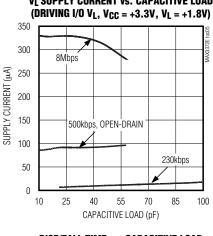
Note 2: For normal operation, ensure $V_L < (V_{CC} + 0.3V)$. During power-up, $V_L > (V_{CC} + 0.3V)$ will not damage the device.

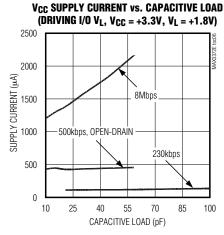

Note 3: To ensure maximum ESD protection, place a 1µF capacitor between VCC and GND. See Applications Circuits.

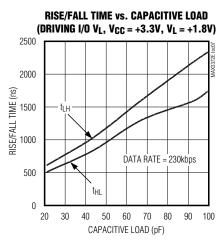

Note 4: 10% to 90% **Note 5:** 90% to 10%

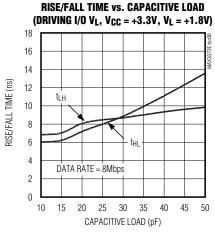

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

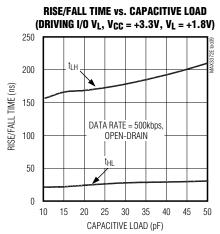

Typical Operating Characteristics

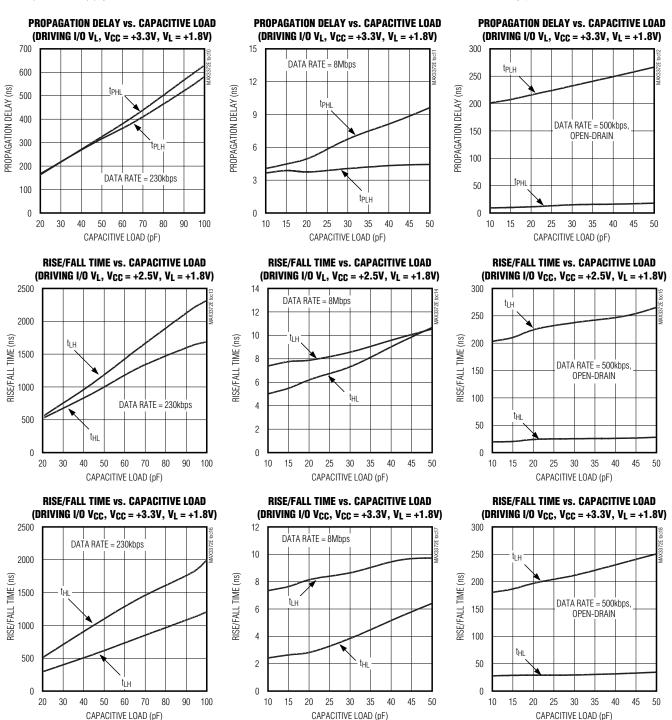

 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)





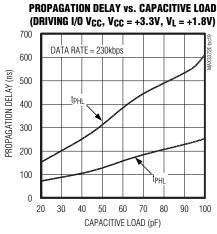


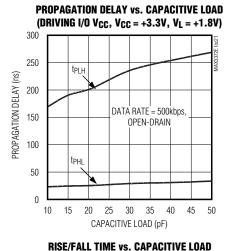


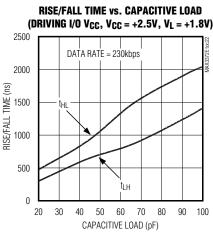


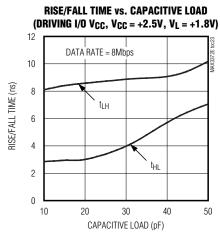
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

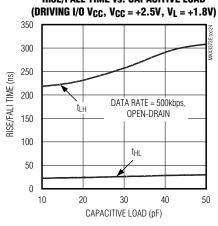
Typical Operating Characteristics (continued)

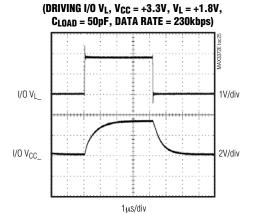

 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E and MAX3390E–MAX3393E only.)

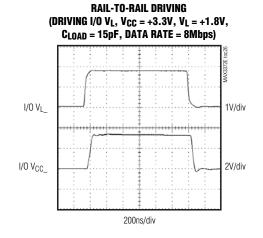


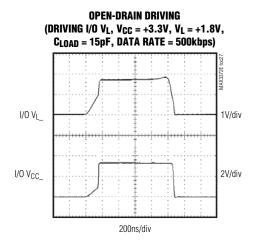

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

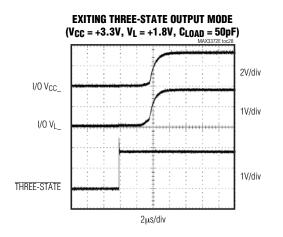

Typical Operating Characteristics (continued)


 $(R_{LOAD} = 1M\Omega, T_A = +25$ °C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)






RAIL-TO-RAIL DRIVING



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Typical Operating Characteristics (continued)

 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E and MAX3390E–MAX3393E only.)

Pin Description

		Р	IN				
3 x 4 UCSP	TSSOP	SOT23-8	3 x 3 UCSP	TDFN 8	TDFN 14	NAME	FUNCTION
A1	2	5	C2	6	1	I/O V _L 1	Input/Output 1. Referenced to V _L . (Note 6)
A2	3	4	C3	8	2	I/O VL2	Input/Output 2. Referenced to V _L . (Note 6)
А3	4	_	_	_	5	I/O VL3	Input/Output 3. Referenced to V _L . (Note 6)
A4	5	_	_	_	6	I/O VL4	Input/Output 4. Referenced to V _L . (Note 6)
B1	14	7	A1	4	14	Vcc	V _{CC} Input Voltage +1.65V ≤ V _{CC} ≤ +5.5V.
B2	1	3	C1	7	10	VL	Logic Input Voltage +1.2V ≤ V _L ≤ (V _{CC} + 0.3V)
ВЗ	8	6	B1	5	3	THREE- STATE	Three-State Output Mode Enable. Pull THREE-STATE low to place device in three-state output mode. I/O V _{CC} _ and I/O V _L _ are high impedance in three-state output mode. Note: Logic referenced to V _L (for logic thresholds see the <i>Electrical Characteristics</i> table).
B4	7	2	В3	2	7	GND	Ground
C1	13	8	A2	3	13	I/O V _{CC} 1	Input/Output 1. Referenced to V _{CC} . (Note 6)
C2	12	1	АЗ	1	12	I/O V _{CC} 2	Input/Output 2. Referenced to V _{CC} . (Note 6)
C3	11	_		_	9	I/O V _{CC} 3	Input/Output 3. Referenced to V _{CC} . (Note 6)
C4	10	_	_	_	8	I/O V _{CC} 4	Input/Output 4. Referenced to V _{CC} . (Note 6)
_	6, 9	_	B2	_	4, 11	N.C.	No Connection. Not internally connected.
_	_	_	_	EP	EP	EP	Exposed Pad. Connect to ground.

Note 6: For unidirectional devices (MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390E–MAX3393E) see the *Pin Configurations* for input/output configurations.

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Detailed Description

The MAX3372E-MAX3379E and MAX3390E-MAX3393E ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. A low-voltage logic signal present on the VI side of the device appears as a highvoltage logic signal on the VCC side of the device, and vice-versa. The MAX3374E/MAX3375E/MAX3376E/ MAX3379E and MAX3390E-MAX3393E unidirectional level translators level shift data in one direction (V_L → VCC or VCC → VL) on any single data line. The MAX3372E/MAX3373E and MAX3377E/MAX3378E bidirectional level translators utilize a transmission-gatebased design (see Figure 2) to allow data translation in either direction (V_I ↔ V_{CC}) on any single data line. The MAX3372E-MAX3379E and MAX3390E-MAX3393E

accept V_L from +1.2V to +5.5V and V_{CC} from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems.

All devices in the MAX3372E–MAX3379E, MAX3390E–MAX3393E family feature a three-state output mode that reduces supply current to less than 1µA, thermal short-circuit protection, and ±15kV ESD protection on the V_{CC} side for greater protection in applications that route signals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E operate at a guaranteed data rate of 8Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See the *Timing Characteristics* table.)

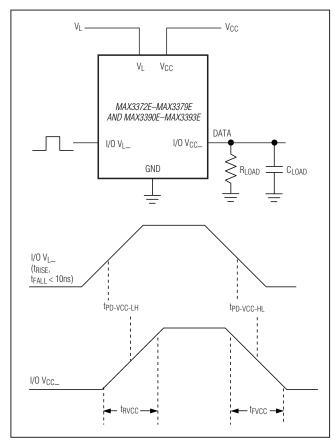


Figure 1a. Rail-to-Rail Driving I/O VL

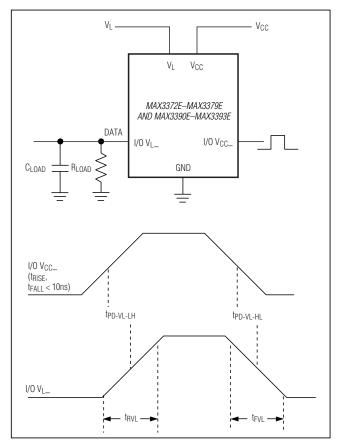


Figure 1b. Rail-to-Rail Driving I/O VCC

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Level Translation

For proper operation ensure that $+1.65V \le V_{CC} \le +5.5V$, $+1.2V \le V_{L} \le +5.5V$, and $V_{L} \le (V_{CC} + 0.3V)$. During power-up sequencing, $V_{L} \ge (V_{CC} + 0.3V)$ will not damage the device. During power-supply sequencing, when V_{CC} is floating and V_{L} is powering up, a current may be sourced, yet the device will not latch up. The speed-up circuitry limits the maximum data rate for devices in the MAX3372E-MAX3379E, MAX3390E-MAX3393E family to 16Mbps. The maximum data rate also depends heavily on the load capacitance (see the *Typical Operating Characteristics*), output impedance of the driver, and the operational voltage range (see the *Timing Characteristics* table).

Speed-Up Circuitry

The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E feature a one-shot generator that decreases the rise time of the output. When triggered, MOSFETs PU1 and PU2 turn on for a short time to pull up

I/O V_L and I/O V_{CC} to their respective supplies (see Figure 2b). This greatly reduces the rise time and propagation delay for the low-to-high transition. The scope photo of Rail-to-Rail Driving for 8Mbps Operation in the *Typical Operating Characteristics* shows the speed-up circuitry in operation.

Rise-Time Accelerators

The MAX3373E–MAX3376E/MAX3378E/MAX3379E and the MAX3390E–MAX3393E have internal rise-time accelerators allowing operation up to 16Mbps. The rise-time accelerators are present on both sides of the device and act to speed up the rise time of the input and output of the device, regardless of the direction of the data. The triggering mechanism for these accelerators is both level and edge sensitive. To prevent false triggering of the rise-time accelerators, signal fall times of less than 20ns/V are recommended for both the inputs and outputs of the device. Under less noisy conditions, longer signal fall times may be acceptable.

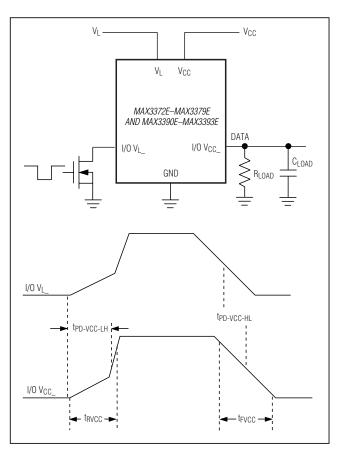


Figure 1c. Open-Drain Driving I/O VCC

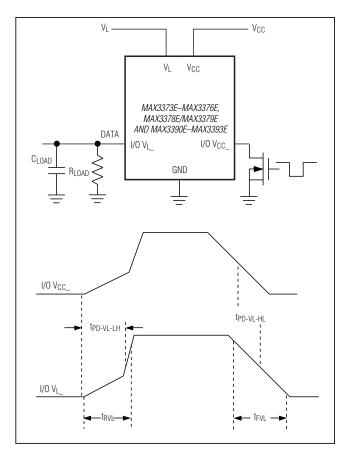


Figure 1d. Open-Drain Driving I/O VL

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/O V_{CC} lines have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, Maxim's E versions keep working without latchup, whereas competing products can latch and must be powered down to remove latchup.

ESD protection can be tested in various ways. The I/O VCC lines of this product family are characterized for protection to the following limits:

- 1) ±15kV using the Human Body Model
- ±8kV using the Contact Discharge method specified in IEC 1000-4-2
- 3) ±10kV using IEC 1000-4-2's Air-Gap Discharge method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 3a shows the Human Body Model and Figure 3b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k}\Omega$ resistor.

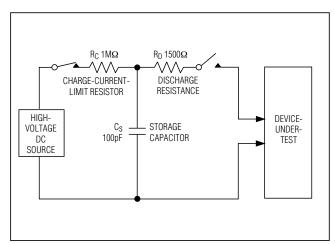


Figure 3a. Human Body ESD Test Model

IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX3372E–MAX3379E and MAX3390E–MAX3393E help to design equipment that meets Level 3 of IEC 1000-4-2, without the need for additional ESD-protection components.

The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 4a shows the IEC 1000-4-2 model, and Figure 4b shows the current waveform for the ±8kV, IEC 1000-4-2, Level 4, ESD contact-discharge test.

The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.

Machine Model

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just inputs and outputs. Therefore, after PCB assembly, the Machine Model is less relevant to I/O ports.

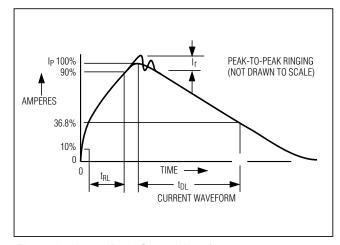


Figure 3b. Human Body Current Waveform

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Three-State Output Mode

Pull THREE-STATE low to place the MAX3372E–MAX3379E and MAX3390E–MAX3393E in three-state output mode. Connect THREE-STATE to VL (logic-high) for normal operation. Activating the three-state output mode disconnects the internal $10k\Omega$ pullup resistors on the I/O VCC and I/O VL lines. This forces the I/O lines to a high-impedance state, and decreases the supply current to less than $1\mu A$. The high-impedance I/O lines in three-state output mode allow for use in a multidrop network. When in three-state output mode, do not allow the voltage

at I/O VL_ to exceed (VL + 0.3V), or the voltage at I/O VCC_ to exceed (VCC + 0.3V).

Thermal Short-Circuit Protection

Thermal overload detection protects the MAX3372E–MAX3379E and MAX3390E–MAX3393E from short-circuit fault conditions. In the event of a short-circuit fault, when the junction temperature (T_J) reaches +152°C, a thermal sensor signals the three-state output mode logic to force the device into three-state output mode. When T_J has cooled to +142°C, normal operation resumes.

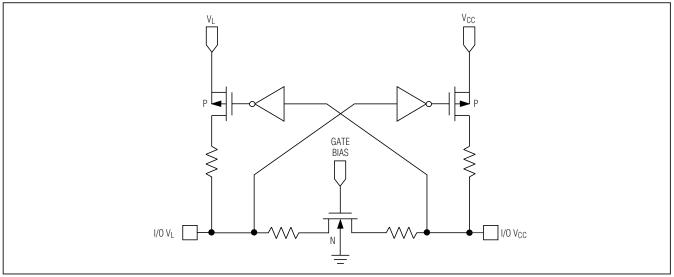


Figure 2a. Functional Diagram, MAX3372E/MAX3377E (1 I/O line)

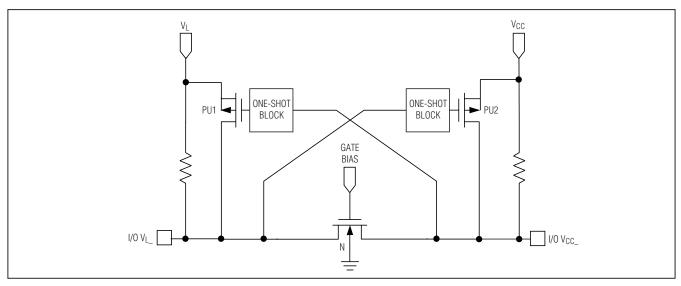


Figure 2b. Functional Diagram, MAX3373E/MAX3378E (1 I/O line)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Level Translation

For proper operation ensure that $+1.65V \le V_{CC} \le +5.5V$, $+1.2V \le V_L \le +5.5V$, and $V_L \le (V_{CC} + 0.3V)$. During power-up sequencing, $V_L \ge (V_{CC} + 0.3V)$ will not damage the device. During power-supply sequencing, when V_{CC} is floating and V_L is powering up, a current may be sourced, yet the device will not latch up. The speed-up circuitry limits the maximum data rate for devices in the MAX3372E-MAX3379E, MAX3390E-MAX3393E family to 16Mbps. The maximum data rate also depends heavily on the load capacitance (see the *Typical Operating Characteristics*), output impedance of the driver, and the operational voltage range (see the *Timing Characteristics* table).

Speed-Up Circuitry

The MAX3373E-MAX3376E/MAX3378E/MAX3379E and MAX3390E-MAX3393E feature a one-shot generator that decreases the rise time of the output. When triggered, MOSFETs PU1 and PU2 turn on for a short time to pull up

I/O V_L and I/O V_{CC} to their respective supplies (see Figure 2b). This greatly reduces the rise time and propagation delay for the low-to-high transition. The scope photo of Rail-to-Rail Driving for 8Mbps Operation in the *Typical Operating Characteristics* shows the speed-up circuitry in operation.

Rise-Time Accelerators

The MAX3373E–MAX3376E/MAX3378E/MAX3379E and the MAX3390E–MAX3393E have internal rise-time accelerators allowing operation up to 16Mbps. The rise-time accelerators are present on both sides of the device and act to speed up the rise time of the input and output of the device, regardless of the direction of the data. The triggering mechanism for these accelerators is both level and edge sensitive. To prevent false triggering of the rise-time accelerators, signal fall times of less than 20ns/V are recommended for both the inputs and outputs of the device. Under less noisy conditions, longer signal fall times may be acceptable.

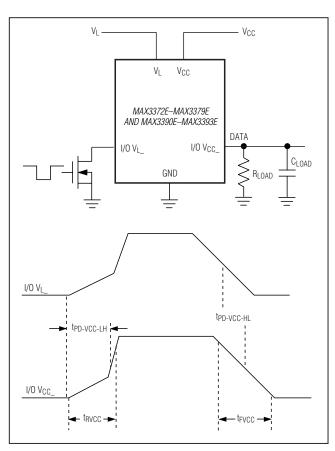


Figure 1c. Open-Drain Driving I/O VCC

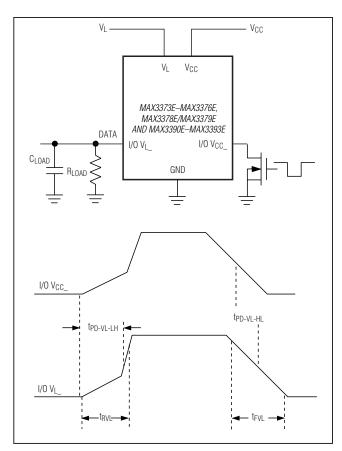


Figure 1d. Open-Drain Driving I/O VL

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Detailed Description

The MAX3372E-MAX3379E and MAX3390E-MAX3393E ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. A low-voltage logic signal present on the VL side of the device appears as a highvoltage logic signal on the VCC side of the device, and vice-versa. The MAX3374E/MAX3375E/MAX3376E/ MAX3379E and MAX3390E-MAX3393E unidirectional level translators level shift data in one direction (V_L → VCC or VCC → VL) on any single data line. The MAX3372E/MAX3373E and MAX3377E/MAX3378E bidirectional level translators utilize a transmission-gatebased design (see Figure 2) to allow data translation in either direction (V_L ↔ V_{CC}) on any single data line. The MAX3372E-MAX3379E and MAX3390E-MAX3393E

accept V_L from +1.2V to +5.5V and V_{CC} from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems.

All devices in the MAX3372E–MAX3379E, MAX3390E–MAX3393E family feature a three-state output mode that reduces supply current to less than $1\mu A$, thermal short-circuit protection, and $\pm 15 kV$ ESD protection on the VCC side for greater protection in applications that route signals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E operate at a guaranteed data rate of 8Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See the *Timing Characteristics* table.)

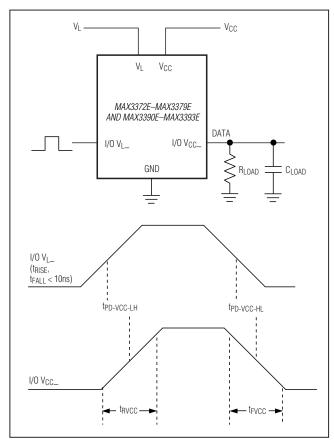
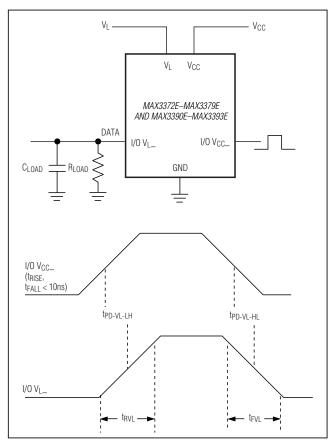
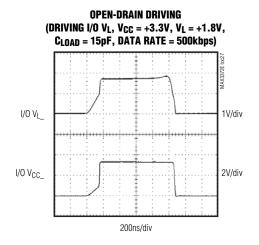
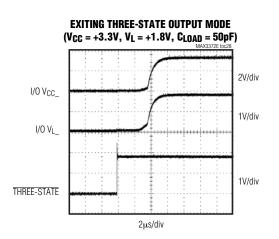


Figure 1a. Rail-to-Rail Driving I/O VL

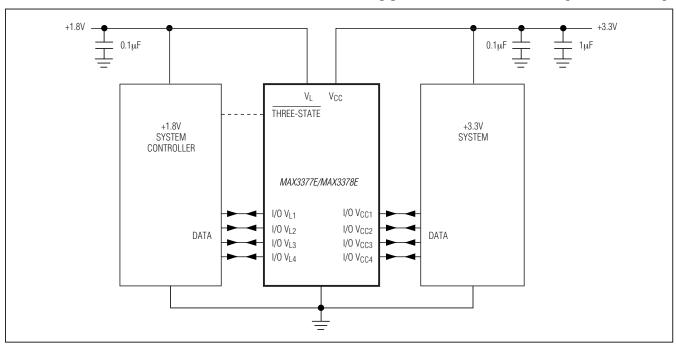



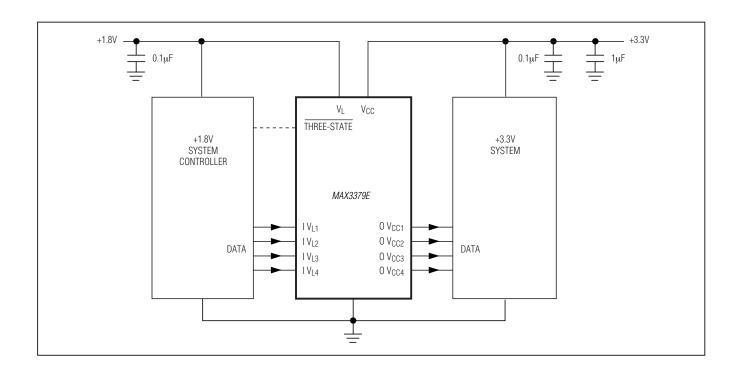

Figure 1b. Rail-to-Rail Driving I/O VCC

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Typical Operating Characteristics (continued)

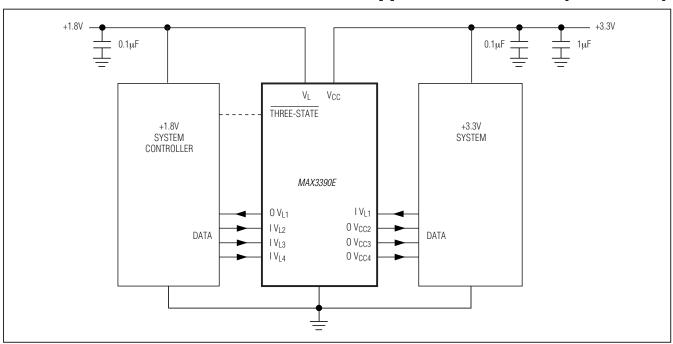
 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)

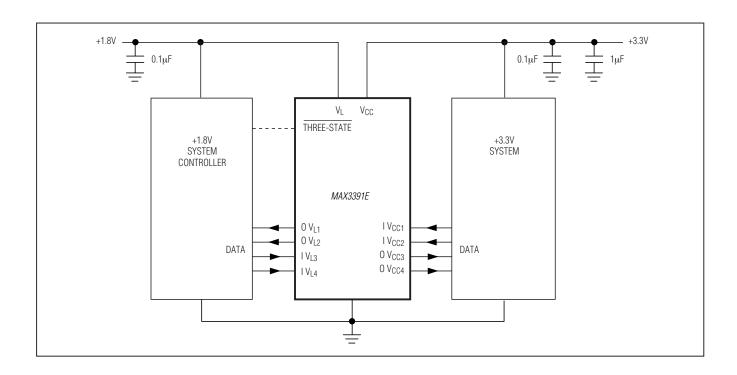

Pin Description


		Р	IN				
3 x 4 UCSP	тѕѕор	SOT23-8	3 x 3 UCSP	TDFN 8	TDFN 14	NAME	FUNCTION
A1	2	5	C2	6	1	I/O V _L 1	Input/Output 1. Referenced to V _L . (Note 6)
A2	3	4	C3	8	2	I/O VL2	Input/Output 2. Referenced to V _L . (Note 6)
А3	4	_	_	_	5	I/O V _L 3	Input/Output 3. Referenced to V _L . (Note 6)
A4	5	_	_	_	6	I/O VL4	Input/Output 4. Referenced to V _L . (Note 6)
B1	14	7	A1	4	14	Vcc	V _{CC} Input Voltage +1.65V ≤ V _{CC} ≤ +5.5V.
B2	1	3	C1	7	10	VL	Logic Input Voltage $+1.2V \le V_L \le (V_{CC} + 0.3V)$
ВЗ	8	6	B1	5	3	THREE- STATE	Three-State Output Mode Enable. Pull THREE-STATE low to place device in three-state output mode. I/O V _{CC} _ and I/O V _L _ are high impedance in three-state output mode. Note: Logic referenced to V _L (for logic thresholds see the <i>Electrical Characteristics</i> table).
B4	7	2	В3	2	7	GND	Ground
C1	13	8	A2	3	13	I/O V _{CC} 1	Input/Output 1. Referenced to V _{CC} . (Note 6)
C2	12	1	АЗ	1	12	I/O V _{CC} 2	Input/Output 2. Referenced to V _{CC} . (Note 6)
C3	11	_	_	_	9	I/O V _{CC} 3	Input/Output 3. Referenced to V _{CC} . (Note 6)
C4	10	_			8	I/O V _{CC} 4	Input/Output 4. Referenced to VCC. (Note 6)
	6, 9		B2		4, 11	N.C.	No Connection. Not internally connected.
	_	_	_	EP	EP	EP	Exposed Pad. Connect to ground.

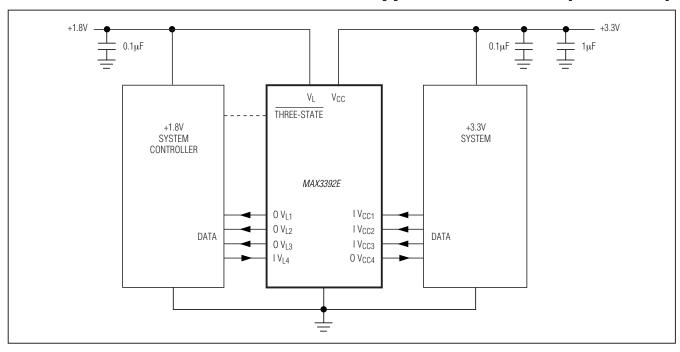
Note 6: For unidirectional devices (MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390E–MAX3393E) see the *Pin Configurations* for input/output configurations.

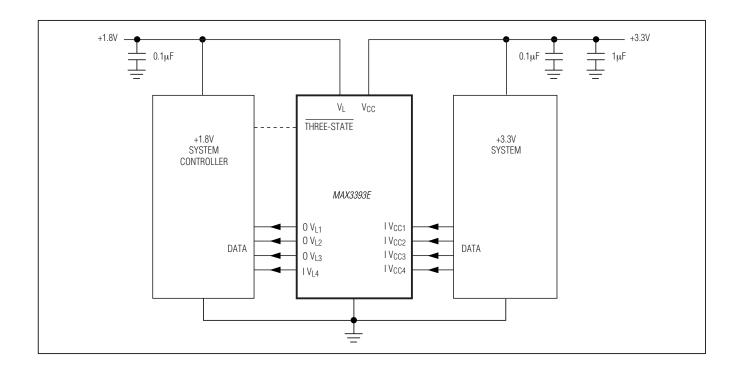
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)

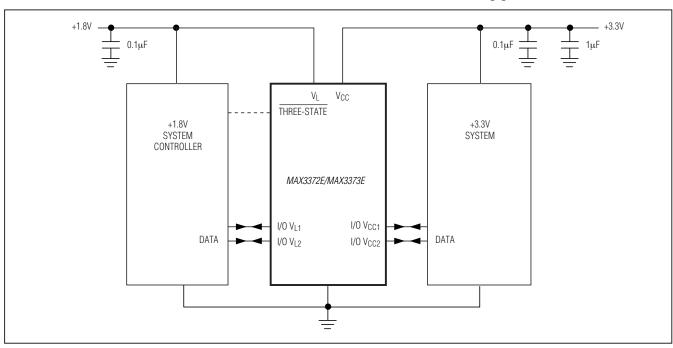


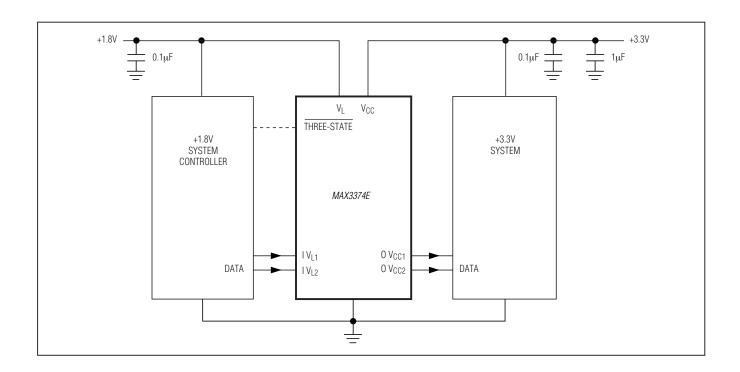
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Applications Circuits

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

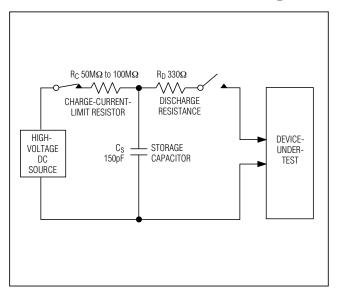


Figure 4a. IEC 1000-4-2 ESD Test Model

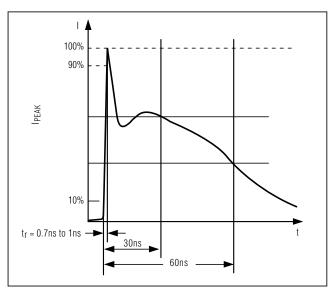


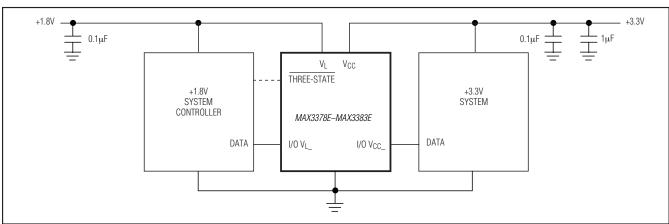
Figure 4b. IEC 1000-4-2 ESD Generator Current Waveform

Applications Information

Power-Supply Decoupling

To reduce ripple and the chance of transmitting incorrect data, bypass V_L and V_{CC} to ground with a 0.1µF capacitor. See the *Typical Operating Circuit*. To ensure full ± 15 kV ESD protection, bypass V_{CC} to ground with a 1µF capacitor. Place all capacitors as close to the power-supply inputs as possible.

I²C Level Translation


The MAX3373E-MAX3376E, MAX3378E/MAX3379E and MAX3390E-MAX3393E level-shift the data present on the I/O lines between +1.2V and +5.5V, making them ideal for level translation between a low-voltage

ASIC and an I²C device. A typical application involves interfacing a low-voltage microprocessor to a 3V or 5V D/A converter, such as the MAX517.

Push-Pull vs. Open-Drain Driving

All devices in the MAX3372E–MAX3379E and MAX3390E–MAX3393E family may be driven in a pushpull configuration. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E include internal $10k\Omega$ resistors that pull up I/O V_L and I/O V_{CC} to their respective power supplies, allowing operation of the I/O lines with open-drain devices. See the *Timing Characteristics* table for maximum data rates when using open-drain drivers.

Typical Operating Circuit

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/O VCC lines have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, Maxim's E versions keep working without latchup, whereas competing products can latch and must be powered down to remove latchup.

ESD protection can be tested in various ways. The I/O VCC lines of this product family are characterized for protection to the following limits:

- 1) ±15kV using the Human Body Model
- ±8kV using the Contact Discharge method specified in IEC 1000-4-2
- 3) ±10kV using IEC 1000-4-2's Air-Gap Discharge method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 3a shows the Human Body Model and Figure 3b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k}\Omega$ resistor.

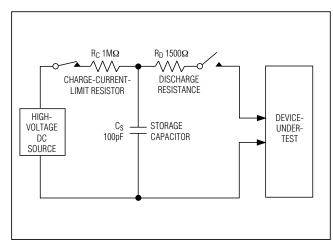


Figure 3a. Human Body ESD Test Model

IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX3372E–MAX3379E and MAX3390E–MAX3393E help to design equipment that meets Level 3 of IEC 1000-4-2, without the need for additional ESD-protection components.

The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD withstand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 4a shows the IEC 1000-4-2 model, and Figure 4b shows the current waveform for the ±8kV, IEC 1000-4-2, Level 4, ESD contact-discharge test.

The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.

Machine Model

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just inputs and outputs. Therefore, after PCB assembly, the Machine Model is less relevant to I/O ports.

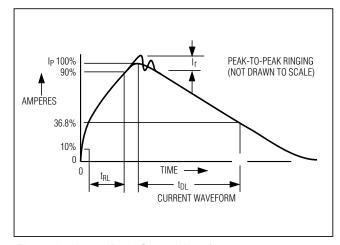


Figure 3b. Human Body Current Waveform

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Three-State Output Mode

Pull THREE-STATE low to place the MAX3372E–MAX3379E and MAX3390E–MAX3393E in three-state output mode. Connect THREE-STATE to VL (logic-high) for normal operation. Activating the three-state output mode disconnects the internal $10k\Omega$ pullup resistors on the I/O VCC and I/O VL lines. This forces the I/O lines to a high-impedance state, and decreases the supply current to less than $1\mu A$. The high-impedance I/O lines in three-state output mode allow for use in a multidrop network. When in three-state output mode, do not allow the voltage

at I/O VL_ to exceed (VL + 0.3V), or the voltage at I/O VCC_ to exceed (VCC + 0.3V).

Thermal Short-Circuit Protection

Thermal overload detection protects the MAX3372E–MAX3379E and MAX3390E–MAX3393E from short-circuit fault conditions. In the event of a short-circuit fault, when the junction temperature (T_J) reaches +152°C, a thermal sensor signals the three-state output mode logic to force the device into three-state output mode. When T_J has cooled to +142°C, normal operation resumes.

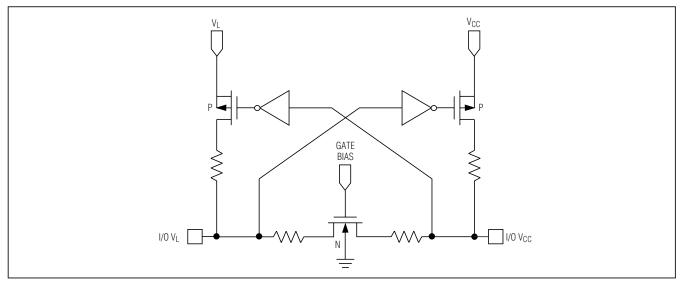


Figure 2a. Functional Diagram, MAX3372E/MAX3377E (1 I/O line)

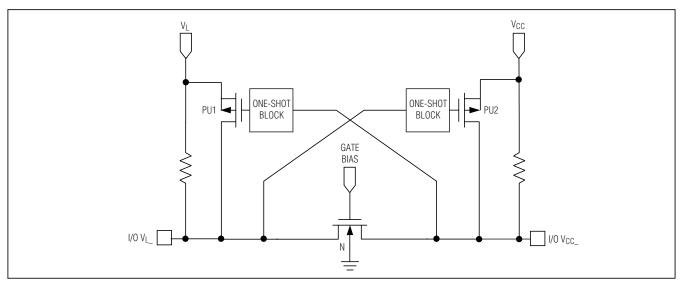
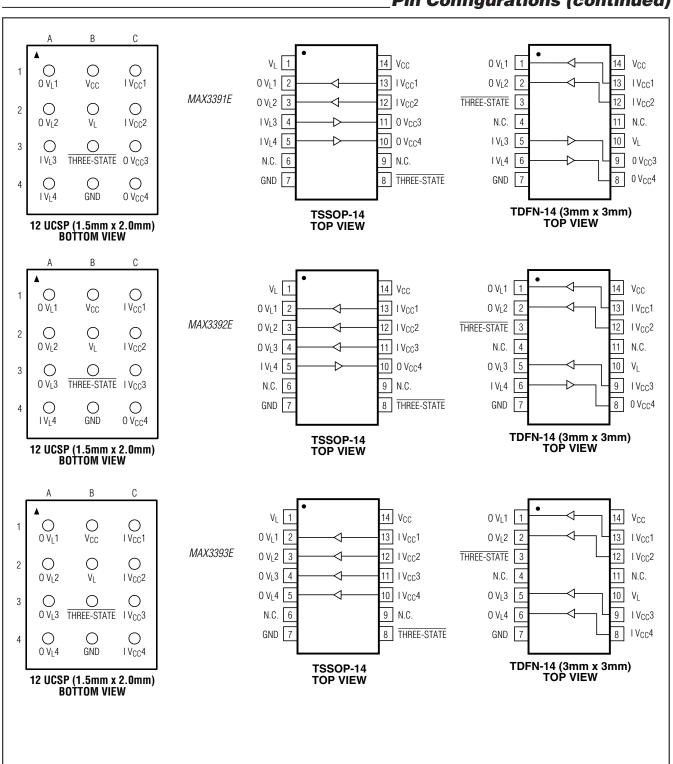
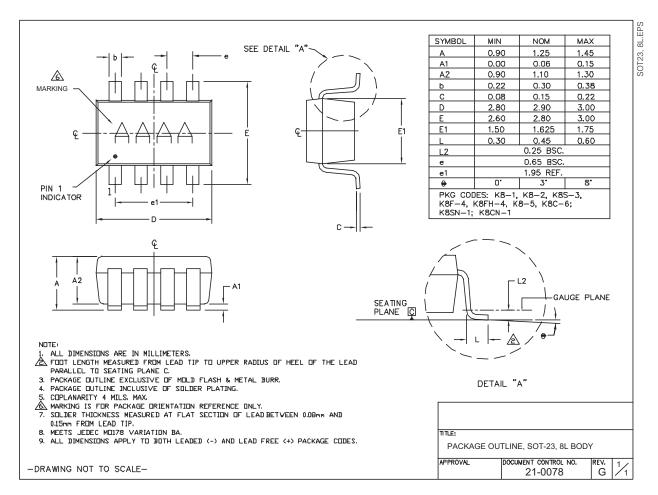



Figure 2b. Functional Diagram, MAX3373E/MAX3378E (1 I/O line)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Pin Configurations (continued)

±15kV ESD-Protected, 1μA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

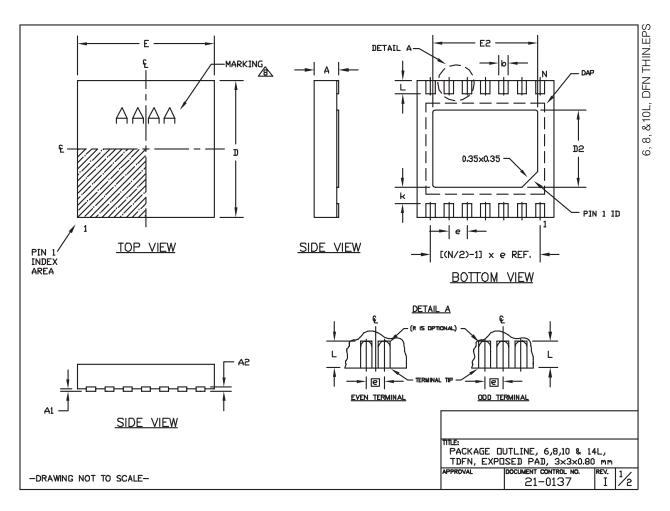
Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Chip Information

TRANSISTOR COUNT: MAX3372E-MAX3376E: 189

MAX3377E-MAX3379E.


MAX3390E-MAX3393E: 295

PROCESS: BICMOS

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

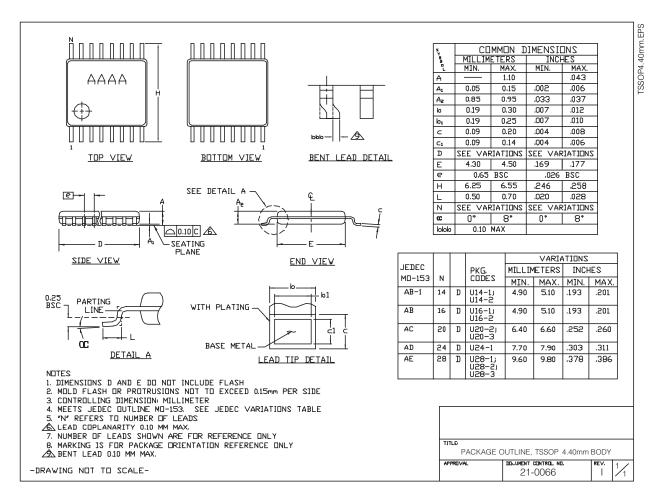
Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS							
SYMBOL	MIN.	MAX.					
А	0.70	0.80					
D	2.90	3.10					
E	2.90	3.10					
A1	0.00	0.05					
L	0.20 0.40						
k	0.25 MIN.						
A2	A2 0.20 REF.						

PACKAGE VARIATIONS							
PKG. CODE	N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e
T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF
T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF
T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF

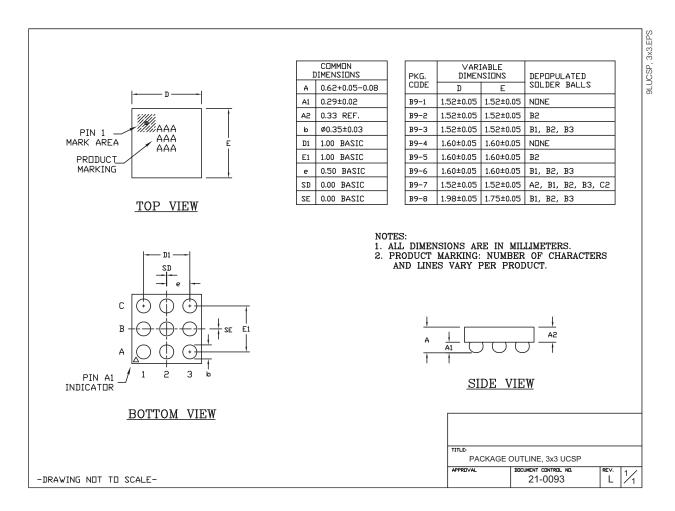
NOTES:


- 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
- 2. COPLANARITY SHALL NOT EXCEED 0.08 mm.
- 3. WARPAGE SHALL NOT EXCEED 0.10 mm.
- 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
- 5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 & T1433-2.
- 6. "N" IS THE TOTAL NUMBER OF LEADS.
- 7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- A MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

-DRAWING NOT TO SCALE-

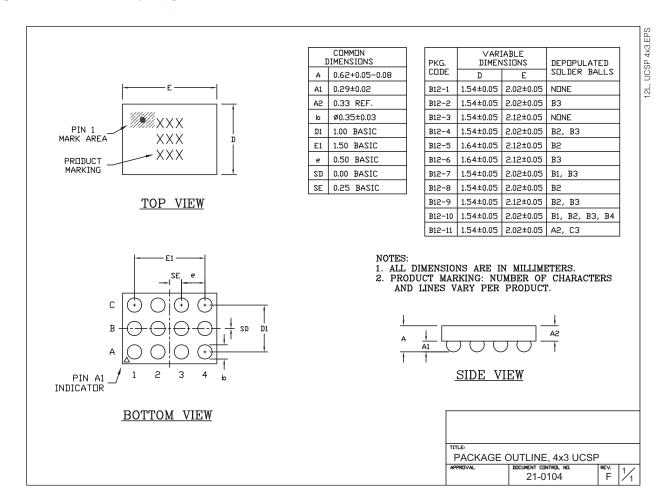
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/02	Initial Release	_
1	12/06	Addition of 12-bump ECSP packaging	-
2	11/07	Addition of lead-free options	1, 20–31

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.