Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 2057027

General Description

The MAX667 low-dropout, positive, linear voltage requlator supplies up to 250mA of output current. With no load, it has a typical quiescent current of 20µA. At 200mA of output current, the input/output voltage differential is typically 150mV. Other features include a lowvoltage detector to indicate power failure, as well as early-warning and low-dropout detectors to indicate an imminent loss of output voltage regulation. A shutdown control disables the output and puts the circuit into a low quiescent-current mode.

The MAX667 employs Dual Mode™ operation. One mode uses internally trimmed feedback resistors to produce +5V. In the other mode, the output may be varied from +1.3V to +16V by connecting two external resistors.

The MAX667 is a pin-compatible upgrade to the MAX666 in most applications where the input voltages are above +3.5V. Choose the MAX667 when high output currents and/or low dropout voltages are desired. as well as for improved performance at higher temperatures.

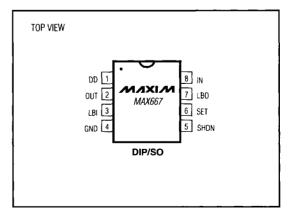
Applications

Battery-Powered Devices Pagers and Radio Control Receivers Portable Instruments Solar-Powered Instruments

- ♦ 350mV Max Dropout at 200mA
- ♦ 250mA Output Current
- ♦ Normal Mode: 20µA Typ Quiescent Current Shutdown Mode: 0.2µA Typ Quiescent Current
- **♦ Low-Battery Detector**
- ♦ Fixed +5V (Min Component Count) or Adjustable Output
- ♦ +3.5V to +16.5V Input
- **♦ Dropout Detector Output**
- ♦ 10µF Output Capacitor

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE			
MAX667CPA	0°C to +70°C	8 Plastic DIP			
MAX667CSA	0°C to +70°C	8 SO			
MAX667C/D	0°C to +70°C	Dice*			
MAX667EPA	-40°C to +85°C	8 Plastic DIP			
MAX667ESA	-40°C to +85°C	8 SO			
MAX667MJA	-55°C to +125°C	8 CERDIP			


^{*} Contact factory for dice specifications.

Typical Operating Circuit

OUT +5V OUT ± C1 10μF NAXIM MAX667 **GND** SHDN

TM Dual Mode is a trademark of Maxim Integrated Products.

Pin Configuration

MIXLM

Maxim Integrated Products 4-81

+5V/Programmable Low-Dropout Voltage Regulator

ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage	+18V
Output Short Circuited to Ground	1sec
LBO Output Sink Current	50mA
LBO Output Voltage	GND to VOUT
SHDN Input Voltage	0.3V to (V _{IN} + 0.3V)
Input Voltages LBI, SET	0.3V to (V _{IN} - 1.0V)
Continuous Power Dissipation	
Plastic DIP (derate 9.09mW/°C at	oove +70°C)727mW

SO (derate 5.88mW/°C above +70°C) CERDIP (derate 8.00mW/°C above +70°C)	
Operating Temperature Ranges	
MAX667C_A	0°C to +70°C
MAX667E_A	40°C to +85°C
MAX667MJA	55°C to +125°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(GND = 0V, V_{IN} = +9V, V_{OUT} = +5V, C1 = 10 μ F, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TA = +25°C MIN TYP MAX		TA = TMIN to TMAX MIN TYP MAX			UNITS
Input Voltage	VIN						3.5		16.5	V
Output Voltage	Vout	$V_{SET} = 0V$, $V_{IN} = 6V$, $I_{OUT} = 10mA$, $T_A = -40$ °C to $+85$ °C			5		4.8		5.2	V
		$V_{SET} = 0V$, $V_{IN} = 6V$, $I_{OUT} = 10$ mA, $T_{A} = -55$ °C to $+125$ °C			5		4.75		5.25	v
Maximum Output Current	lout	V _{IN} = 6V, 4.5V < V _{OUT} < 5.5V		250			250			mΑ
		V _{SHDN} = 2V			0.2	1			2	
Quiescent Current	1	V _{SHDN} = 0V, V _{SET} = 0V	I _{OUT} = 0μA		20	25			35	μА
	la		I _{OUT} = 100μA		20	30			50	
		VSE1 - 0V	I _{OUT} = 200mA		5	15			20	mA
Dropout Voltage (Note1)		I _{OUT} = 100μA			5	60			75	m۷
Dropout Voltage (Note1)		$I_{OUT} = 200 \text{mA}$			150	250			350	1110
Load Regulation		I _{OUT} = 10mA to 200mA			50	100			250	m۷
Line Regulation		V _{IN} = 6V to 10V, I _{OUT} = 10mA			5	10		•	15	m۷
SET Reference Voltage	VSET				1.225		1.20		1.25	V
SET Input Leakage Current	ISET	V _{SET} = 1.5V			0.01	±10			± 1000	nΑ
Output Leakage Current	lout	V _{SHDN} = 2V			0.1				1	μΑ
Short-Circuit Current	lout	(Note 2)				400			450	mA
Low-Battery Detector Reference Voltage	V _{LBI}				1.225		1.195		1.255	٧
Low-Battery Detector Input Leakage Current	ILBI	V _{LB1} = 1.5V			0.01	±10		:	± 1000	nA
Low-Battery Detector Output Voltage	V _{LBO}	V _{IN} = 9V, V _{LBI} = 2V, I _{LBO} = 10mA				0.25			0.4	٧
SHDN Threshold	V _{SHDN}	VIH		1.5			1.5			V
OTIDIA HIJESHOU		VIL	_			0.3			0.3	
SHDN Leakage Current	ISHDN	V _{SHDN} = 0V to V _{IN}			0.01	±10			± 1000	nΑ
Dropout Detector Output Voltage	V _{DD}	$V_{SET} = 0V,$ $V_{SHDN} = 0V,$ $R_{DD} = 100k\Omega,$ $I_{OUT} = 10mA$	V _{IN} = 7V						0.25	
			V _{IN} = 4.5V				3.5			

Note 1: Dropout Voltage is V_{IN} - V_{OUT} when V_{OUT} falls to 0.1V below its value at $V_{IN} = V_{OUT} + 2V$.

Note 2: Short-Circuit Current is pulse tested to maintain junction temperature. Short-circuit duration is limited by package dissipation.