

General Description

The MAX8903A/MAX8903C/MAX8903D are integrated 1-cell Li+ chargers and Smart Power Selectors™ with dual (AC adapter and USB) power inputs. The switch mode charger uses a high switching frequency to eliminate heat and allow tiny external components. It can operate with either separate inputs for USB and AC adapter power, or from a single input that accepts both. All power switches for charging and switching the load between battery and external power are included onchip. No external MOSFETs, blocking diodes, or current-sense resistors are required.

The MAX8903A/MAX8903C/MAX8903D feature optimized smart power control to make the best use of limited USB or adapter power. Battery charge current and SYS output current limit are independently set. Power not used by the system charges the battery. Charge current and SYS output current limit can be set up to 2A while USB input current can be set to 100mA or 500mA. Automatic input selection switches the system from battery to external power. The DC input operates from 4.15V to 16V with up to 20V protection, while the USB input has a range of 4.1V to 6.3V with up to 8V protection.

The MAX8903A/MAX8903C/MAX8903D internally block current from the battery and system back to the DC and USB inputs when no input supply is present. Other features include pre-qual charging and timer, fast charge timer, overvoltage protection, charge status and fault outputs, power-OK monitors, and a battery thermistor monitor. In addition, on-chip thermal limiting reduces battery charge rate and AC adapter current to prevent charger overheating. The MAX8903A/MAX8903C/ MAX8903D are available in a 4mm x 4mm, 28-pin thin QFN package.

Applications

PDAs, Palmtops, and Wireless Handhelds Personal Navigation Devices Smart Cell Phones

Portable Multimedia **Players** Mobile Internet Devices Ultra Mobile PCs

Selector Guide

PART	MINIMUM SYS VOLTAGE (V)	BATTERY REGULATION VOLTAGE (V)		
MAX8903AETI+	3.0	4.2		
MAX8903CETI+	3.4	4.2		
MAX8903DETI+	3.4	4.1		

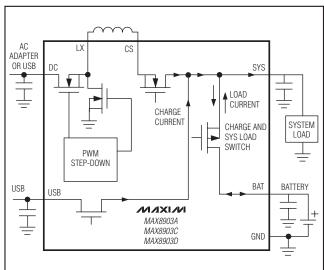
^{*}Protected by US Patent #6,507,172.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

Features

- **♦** Efficient DC-DC Converter Eliminates Heat
- ♦ 4MHz Switching for Tiny External Components
- ♦ Instant On—Works with No Battery or Low **Battery**
- **♦ Dual Current-Limiting Input Circuits—AC Adapter** or USB

Automatic Adapter/USB/Battery Switchover to **Support Load Transients** 50mΩ System-to-Battery Switch Supports USB Spec


- **♦ Thermistor Monitor**
- ♦ Integrated Current-Sense Resistor
- ♦ No External MOSFETs or Diodes
- ♦ 4.1V to 16V Input Operating Voltage Range

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX8903AETI+	-40°C to +85°C	28 Thin QFN-EP**
MAX8903CETI+	-40°C to +85°C	28 Thin QFN-EP**
MAX8903DETI+	-40°C to +85°C	28 Thin QFN-EP**

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Operating Circuit

Pin Configuration appears at end of data sheet.

Maxim Integrated Products 1

^{**}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

DC, LX to GND	0.3V to +20V	LX Continuous Current (total in two pins)2.4ARMS
DCM to GND	0.3V to (V _{DC} + 0.3V)	CS Continuous Current (total in two pins)2.4ARMS
DC to SYS	6V to +20V	SYS Continuous Current (total in two pins)
BST to GND	0.3V to +26V	BAT Continuous Current (total in two pins)
BST TO LX	0.3V to +6V	VL Short Circuit to GNDContinuous
USB to GND	0.3V to +9V	Continuous Power Dissipation ($T_A = +70^{\circ}C$)
USB to SYS	6V to +9V	28-Pin Thin QFN-EP
VL to GND	0.3V to +6V	Multilayer (derate 28.6mW/°C above +70°C)2286mW
THM, IDC, ISET, CT to GND	0.3V to (VL + 0.3V)	28-Pin Thin QFN-EP
DOK, FLT, CEN, UOK, CHG, USUS,		Single-Layer (derate 20.8mW/°C above +70°C)1666.7mW
BAT, SYS, IUSB, CS to GND		Operating Temperature Range40°C to +85°C
SYS to BAT	0.3V to +6V	Junction Temperature Range40°C to +150°C
PG, EP (exposed pad) to GND	0.3V to +0.3V	Storage Temperature Range65°C to +150°C
DC Continuous Current (total in two pins))2.4A _{RMS}	Soldering Temperature (reflow)+260°C
USB Continuous Current	1.6A	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DC} = V_{USB} = 5V, V_{BAT} = 4V, circuit of Figure 2, T_{A} = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_{A} = +25^{\circ}C.)$ (Note 1)

PARAMETER	CONDITIO	NS	MIN	TYP	MAX	UNITS	
DC INPUT	·					•	
DC Operating Range			4.15		16	V	
DC Lindon (altaga Threshold	When V _{DOK} goes low, V _{DC}	No valid USB input	3.9	4.0	4.1	V	
DC Undervoltage Threshold	rising, 500mV typical hysteresis	Valid USB input	4.0	4.3	4.4	V	
DC Overvoltage Threshold	When V _{DOK} goes high, V _{DC} risin hysteresis	g, 500mV typical	16.5	17	17.5	V	
	Charger enabled, no switching, \	V _{SYS} = 5V		2.3	4		
	Charger enabled, f = 3MHz, V _{DC}	= 5V		15			
DC Supply Current	Charger enabled, $V_{\overline{CEN}} = 0V$, 100		1	2	mA		
	Charger enabled, $V_{\overline{CEN}} = 5V$, 100		1	2			
	V _{DCM} = 0V, V _{USUS} = 5V		0.10	0.25			
DC High-Side Resistance			0.15		Ω		
DC Low-Side Resistance			0.15		Ω		
DC-to-BAT Dropout Resistance				0.31		Ω	
DC-to-BAT Dropout Voltage	When SYS regulation and chargi 200mV hysteresis	ng stops, V _{DC} falling,	0	15	30	mV	
Cuitabina Francisco	$V_{DC} = 8V$, $V_{BAT} = 4V$			4		NAL I-	
Switching Frequency	V _{DC} = 5V, V _{BAT} = 3V		3		MHz		
DC Step-Down Output Current- Limit Step Range		0.5		2	А		
		$R_{IDC} = 3k\Omega$	1900	2000	2100	mA	
DC Step-Down Output Current Limit	$V_{DC} = 6V, V_{SYS} = 4V$	$R_{IDC} = 6k\Omega$	950	1000	1050		
LIIIII		$R_{IDC} = 12k\Omega$	450	500	550		
DC Coft Ctort Times	No valid USB input			1		ms	
DC Soft-Start Time	Valid USB input before soft-start			20		μs	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DC} = V_{USB} = 5V, V_{BAT} = 4V, \text{ circuit of Figure 2, } T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) (Note 1)

DC Output Current 500mA USB Mode (Note 3)	mA mA μA V V					
100mA USB Mode (Note 2) VDCM = UV, VIUSB = UV 90 95 100 100	μA V V					
Blocking	V					
USB Operating Range	V V					
USB Standoff Voltage USB Undervoltage Threshold When VUOK goes low, VUSB rising, 500mV hysteresis 3.95 4.0 4.05	V V					
USB Undervoltage Threshold When VUOK goes low, VUSB rising, 500mV hysteresis 3.95 4.0 4.05	V					
USB Overvoltage Threshold When VUOK goes high, VUSB rising, 500mV hysteresis 6.8 6.9 7.0						
USB Current Limit	\ /					
USB Current Limit	V					
VIUSB = 5V (500mA setting) 450 475 500	A					
USB Supply Current ISYS = IBAT = 0mA, Voten = 5V 0.8 2	mA					
Vusus = 5V (USB suspend mode) 0.115 0.25						
Minimum USB to BAT Headroom 0 15 30 USB to SYS Dropout Resistance 0.2 0.35 USB Soft-Start Time VUSB rising VDC falling below DC UVLO to initiate USB soft-start 1 SYS OUTPUT Minimum SYS Regulation Voltage (VsysMIN) ISYS = 1A, VBYSMIN MAX8903A MAX8903D 3.0 Regulation Voltage ISYS = 0A 4.3 4.4 4.5 Load Regulation ISYS = 0 to 2A 40 40 CS to SYS Resistance VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A 0.07 SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100	mA					
USB to SYS Dropout Resistance 0.2 0.35 USB Soft-Start Time VUSB rising 1 VDC falling below DC UVLO to initiate USB soft-start SYS OUTPUT Minimum SYS Regulation Voltage ISYS = 1A, VBAT < VSYSMIN						
USB Soft-Start Time VUSB rising 1 VSYS OUTPUT Minimum SYS Regulation Voltage (Vsysmin) Isys = 1A, Vsysmin MAX8903A 3.0 (Vsysmin) VBAT < Vsysmin	mV					
USB Soft-Start Time VUSB rising 1 VSYS OUTPUT Minimum SYS Regulation Voltage (Vsysmin) Isys = 1A, Vsysmin MAX8903A 3.0 (Vsysmin) VBAT < Vsysmin	Ω					
SYS OUTPUT	ms					
Minimum SYS Regulation Voltage ISYS = 1A, VBAT < VSYSMIN MAX8903A 3.0 (VSYSMIN) VBAT < VSYSMIN	μs					
(VSYSMIN) VBAT < VSYSMIN MAX8903C/MAX8903D 3.4 Regulation Voltage ISYS = 0A 4.3 4.4 4.5 Load Regulation ISYS = 0 to 2A 40 40 CS to SYS Resistance VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A 0.07 SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100						
(VSYSMIN) VBAT < VSYSMIN MAX8903C/MAX8903D 3.4 Regulation Voltage ISYS = 0A 4.3 4.4 4.5 Load Regulation ISYS = 0 to 2A 40 CS to SYS Resistance VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A 0.07 SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100						
Load Regulation Isys = 0 to 2A 40 CS to SYS Resistance VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A 0.07 SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100	V					
CS to SYS Resistance VDC = 6V, VDCM = 5V, VSYS = 4V, ICS = 1A 0.07 SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100	V					
SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100	mV/A					
SYS to CS Leakage VSYS = 5.5V, VDC = VCS = 0V 0.01 BAT to SYS Resistance VDC = VUSB = 0V, VBAT = 4.2V, ISYS = 1A 0.05 0.1 BAT to SYS Reverse Regulation Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200mA 50 75 100	Ω					
BAT to SYS Reverse Regulation Vusb = 5V, VDC = 0V, VIUSB = 0V, Isys = 200mA 50 75 100	μΑ					
Voltage VUSB = 5V, VDC = 0V, VIUSB = 0V, ISYS = 200MA 50 75 100	Ω					
CVC Lindowskiego Throphold CVC falling (200m) V hyptogoig (Neto 4)	mV					
SYS Undervoltage Threshold SYS falling, 200mV hysteresis (Note 4) 1.8 1.9 2.0	V					
BATTERY CHARGER						
MAX8930A/ $T_A = +25^{\circ}C$ 4.179 4.2 4.221						
MAX8903C $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ 4 158 4 2 4 242	·2 V					
BAT Regulation Voltage (VBATREG) $ \text{IBAT} = \text{OmA} $ $ \text{T}_{\Delta} = +25^{\circ}\text{C} $ 4.079 4.1 4.121						
MAX8903D $T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ 4.059 4.1 4.141						
Charger Restart Threshold (V _{RSTRT}) Change in V _{BAT} from DONE to fast-charge -150 -100 -60	mV					
BAT Prequal Threshold VBAT rising, 180mV hysteresis 2.9 3 3.1	V					
Prequal Charge Current Percentage of fast-charge current set at ISET 10	%					

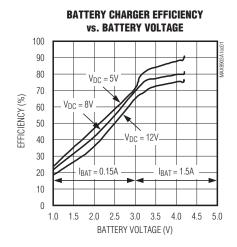
ELECTRICAL CHARACTERISTICS (continued)

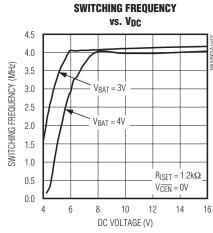
 $(V_{DC} = V_{USB} = 5V, V_{BAT} = 4V, circuit of Figure 2, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at <math>T_A = +25^{\circ}C.)$ (Note 1)

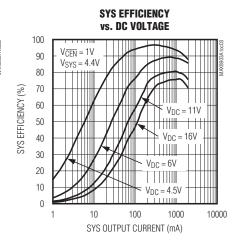
PARAMETER	CONI	DITIONS	MIN	TYP	MAX	UNITS		
	$R_{ISET} = 600\Omega$		1800	2000	2200			
Fast-Charge Current	$R_{ISET} = 1.2k\Omega$		900	1000	1100	mA		
	$R_{ISET} = 2.4k\Omega$		450	500	550			
DONE Threshold	Percentage of fast-charge,	I _{BAT} decreasing		10		%		
RISET Resistor Range			0.6		2.4	kΩ		
ISET Output Voltage				1.5		V		
ISET Current Monitor Gain				1.25		mA/A		
	No DC or USB input			0.05	4			
BAT Leakage Current	With valid input power, VCE	N = 5V		1	6	μΑ		
Charger Soft-Start Time				1.0		ms		
Charger Thermal Limit Temperature				100		°C		
Charger Thermal Limit Gain	Charge current = 0 at +120	°C		5		%/°C		
CHARGER TIMER			I					
Prequalification Time	C _{CT} = 0.15µF			33		min		
Fast-Charge Time	C _{CT} = 0.15µF			660		min		
Timer Accuracy		-15		+15	%			
Timer Extend Current Threshold	Percentage of fast-charge of clock operates at half-spee	40	50	60	%			
Timer Suspend Current Threshold	Percentage of fast-charge of clock pauses	16	20	24	%			
Charge Done Delay Time	From done threshold detec CHG goes high		15		S			
THERMISTOR MONITOR								
THM Threshold, Hot	When charging is suspende	ed, 1% hysteresis	0.27 x V _V L	0.28 x V _V L	0.29 x V _{VL}	V		
THM Threshold, Cold	When charging is suspende	ed, 1% hysteresis	0.73 x V _V L	0.74 x V _V L	0.75 x V _{VL}	V		
THM Threshold, Disabled	THM function is disabled be	elow this voltage	0.0254 x V _{VL}	0.03 x V _V L	0.036 x V _{VL}	V		
TUM Institute also as	THM = GND or VL; T _A = +25°C			+0.001	+0.2	^		
THM Input Leakage THM = GND or VL; T _A = +85°C			0.01		μΑ			
THERMAL SHUTDOWN, VL, AND	LOGIC I/O: CHG, FLT, DOI	K, UOK, DCM, CEN, USUS, IUS	SB					
	High level					V		
Logic-Input Thresholds (DCM, CEN, USUS, IUSB)	Low level				0.4	v		
(DOIVI, OLIV, OSOS, IOSO)	Hysteresis					mV		
Logic-Input Leakage Current	Valority Oto 5 5V	T _A = +25°C		0.001	1	^		
(CEN, USUS, IUSB)	$V_{INPUT} = 0 \text{ to } 5.5V$	T _A = +85°C		0.01		μΑ		
Logic-Input Leakage Current	V _{DCM} = 0 to 16V	T _A = +25°C		0.001	1	^		
(DCM)	V _{DC} = 16V	T _A = +85°C		0.01		μΑ		

4 ______ *NIXIM*

ELECTRICAL CHARACTERISTICS (continued)

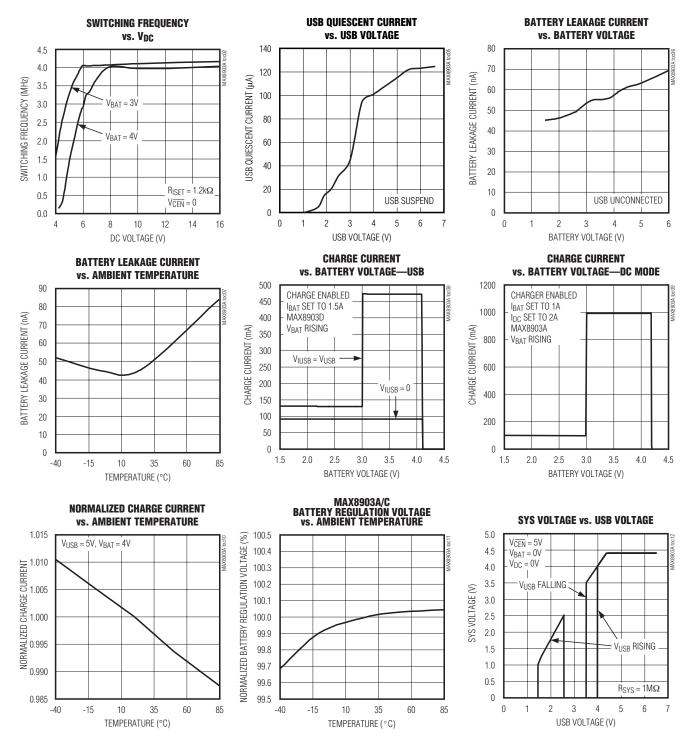

 $(V_{DC} = V_{USB} = 5V, V_{BAT} = 4V, \text{ circuit of Figure 2}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) (Note 1)

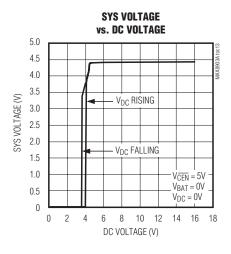

PARAMETER	CONDIT	MIN	TYP	MAX	UNITS	
Logic Output Voltage, Low	Sinking 1mA			8	50	mV
(CHG, FLT, DOK, UOK)	Sinking 10mA			80		IIIV
Open-Drain Output Leakage	Vour EEV	$T_A = +25^{\circ}C$		0.001	1	
Current, High (CHG, FLT, DOK, UOK)	$V_{OUT} = 5.5V$	T _A = +85°C		0.01		μΑ
VL Output Voltage	$V_{DC} = V_{USB} = 6V$, $I_{VL} = 0$ to 1	4.6	5	5.4	V	
VL UVLO Threshold	V _{VL} falling; 200mV hysteresis		3.2		V	
Thermal Shutdown Temperature			160		°C	
Thermal Shutdown Hysteresis				15	•	°C

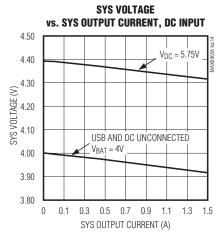

- Note 1: Limits are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design.
- **Note 2:** For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a linear regulator with a 100mA current limit. The linear regulator's output is connected to LX and its output current flows through the inductor into CS and finally to SYS.
- Note 3: For the 500mA USB mode, the actual current drawn from USB is less than the output current due to the input/output current ratio of the DC-DC converter.
- Note 4: For short-circuit protection, SYS sources 25mA below VSYS = 400mV, and 50mA for VSYS between 400mV and 2V.

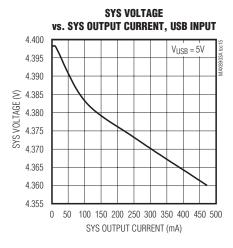
Typical Operating Characteristics

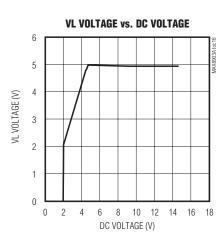
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

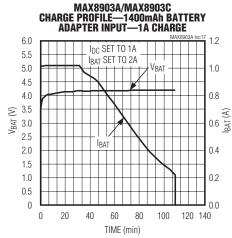


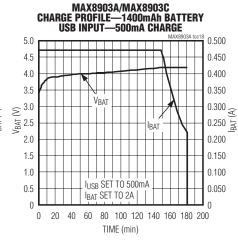

Typical Operating Characteristics (continued)

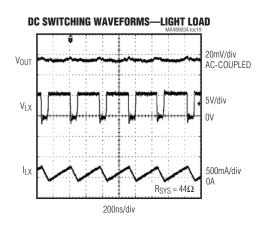

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

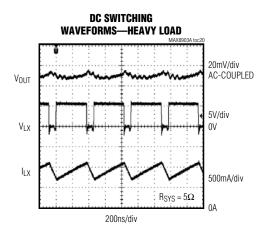


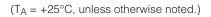

Typical Operating Characteristics (continued)

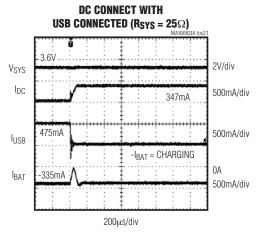

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

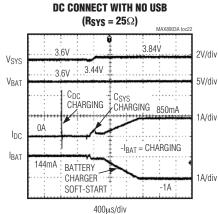


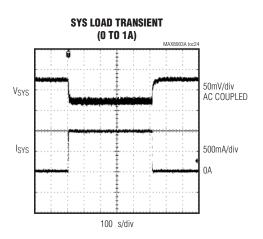


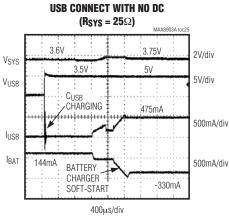


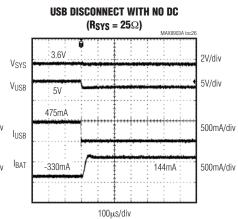


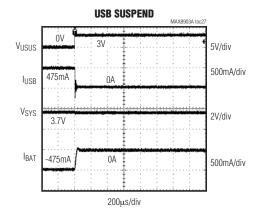


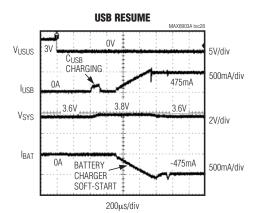



Typical Operating Characteristics (continued)









Pin Description

PIN	NAME	FUNCTION
1, 2	PG	Power Ground for Step-Down Low-Side Synchronous n-Channel MOSFET. Both PG pins must be connected together externally.
3, 4	DC	DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB inputs. The DC current limit is set through DCM, IUSB, or IDC depending on the input source used. See Table 2. Both DC pins must be connected together externally. Connect at least a 4.7µF ceramic capacitor from DC to PG.
5	DCM	Current-Limit Mode Setting for the DC Power Input. When logic-high, the DC input current limit is set by the resistance from IDC to GND. When logic-low, the DC input current limit is internally programmed to 500mA or 100mA, as set by the IUSB logic input. There is an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1.
6	BST	High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1µF ceramic capacitor.
7	IUSB	USB Current-Limit Set Input. Drive IUSB logic-low to set the USB current limit to 100mA. Drive IUSB logic-high to set the USB current limit to 500mA.
8	DOK	DC Power-OK Output. Active-low open-drain output pulls low when a valid input is detected at DC. DOK is still valid when the charger is disabled (CEN high).
9	VL	Logic LDO Output. VL is the output of an LDO that powers the MAX8903A/MAX8903C/MAX8903D internal circuitry and charges the BST capacitor. Connect a 1µF ceramic capacitor from VL to GND.
10	СТ	Charge Timer Set Input. A capacitor (C _{CT}) from CT to GND sets the fast-charge and prequal fault timers. Connect to GND to disable the timer.
11	IDC	DC Current-Limit Set Input. Connect a resistor (R _{IDC}) from IDC to GND to program the current limit of the step-down regulator from 0.5A to 2A when DCM is logic-high.
12	GND	Ground. GND is the low-noise ground connection for the internal circuitry.
13	ISET	Charge Current Set Input. A resistor (R _{ISET}) from ISET to GND programs the fast-charge current up to 2A. The prequal charge current is 10% of the fast-charge current.
14	CEN	Charger Enable Input. Connect $\overline{\text{CEN}}$ to GND to enable battery charging when a valid source is connected at DC or USB. Connect to VL, or drive high to disable battery charging.
15	USUS	USB Suspend Input. Drive USUS logic-high to enter USB suspend mode, lowering USB current to 115µA, and internally shorting SYS to BAT.
16	THM	Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND. Connect a resistor equal to the thermistor +25°C resistance from THM to VL. Charging is suspended when the thermistor is outside the hot and cold limits. Connect THM to GND to disable the thermistor temperature sensor.
17	USB	USB Power Input. USB is capable of delivering 100mA or 500mA to SYS as set by the IUSB logic input. Connect a 4.7µF ceramic capacitor from USB to GND.
18	FLT	Fault Output. Active-low, open-drain output pulls low when the battery timer expires before prequal or fast-charge completes.
19	ŪŌK	USB Power-OK Output. Active-low, open-drain output pulls low when a valid input is detected at USB. UOK is still valid when the charger is disabled (CEN high).
20, 21	ВАТ	Battery Connection. Connect to a single-cell Li+ battery. The battery charges from SYS when a valid source is present at DC or USB. BAT powers SYS when neither DC nor USB power is present, or when the SYS load exceeds the input current limit. Both BAT pins must be connected together externally.

Pin Description (continued)

PIN	NAME	FUNCTION
22	CHG	Charger Status Output. Active-low, open-drain output pulls low when the battery is in fast-charge or prequal. Otherwise, CHG is high impedance.
23, 24	SYS	System Supply Output. SYS connects to BAT through an internal 50mΩ system load switch when DC or USB are invalid, or when the SYS load is greater than the input current limit. When a valid voltage is present at DC or USB, SYS is limited to 4.4V. When the system load (ISYS) exceeds the DC or USB current limit, SYS is regulated to 50mV below BAT, and both the powered input and the battery service SYS. Bypass SYS to GND with a 10μF X5R or X7R ceramic capacitor. Both SYS pins must be connected together externally.
25, 26	CS	$70m\Omega$ Current-Sense Input. Connect the step-down inductor from LX to CS. When the step-down regulator is on, there is a $70m\Omega$ current-sense MOSFET from CS to SYS. When the step-down regulator is off, the internal CS MOSFET turns off to block current from SYS back to DC.
27, 28	LX	Inductor Connection. Connect the inductor between LX and CS. Both LX pins must be connected together externally.
_	EP	Exposed Pad. Connect the exposed pad to GND. Connecting the exposed pad does not remove the requirement for proper ground connections to the appropriate pins.

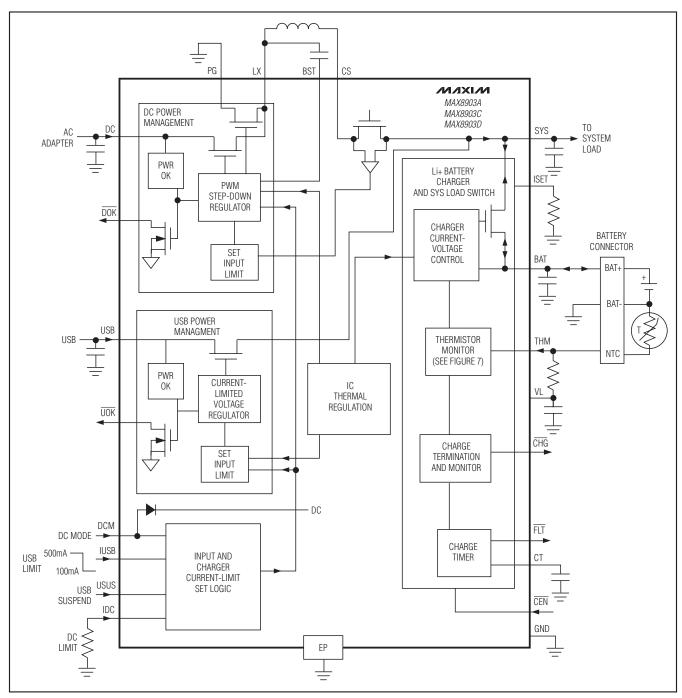


Figure 1. Functional Block Diagram

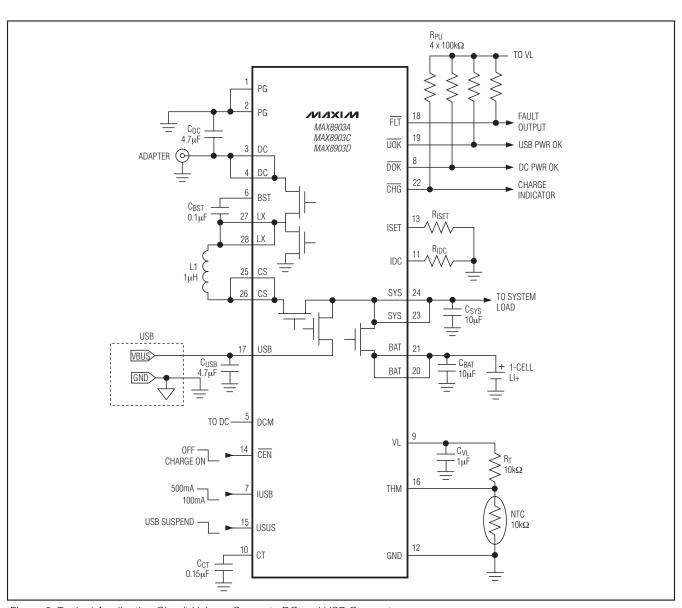


Figure 2. Typical Application Circuit Using a Separate DC and USB Connector

Circuit Description

The MAX8903A/MAX8903C/MAX8903D is a dual input charger with a 16V input for a wide range of DC sources and USB inputs. The IC includes a high-voltage (16V) input DC-DC step-down converter that reduces charger power dissipation while also supplying power to the system load. The step-down converter supplies up to 2A to the system, the battery, or a combination of both.

A USB charge input can charge the battery and power the system from a USB power source. When powered from USB or the DC input, system load current peaks that exceed what can be supplied by the input are supplemented by the battery.

The MAX8903A/MAX8903C/MAX8903D also manages load switching from the battery to and from an external power source with an on-chip $50m\Omega$ MOSFET. This switch also helps support load peaks using battery power when the input source is overloaded.

__ /N/XI/M

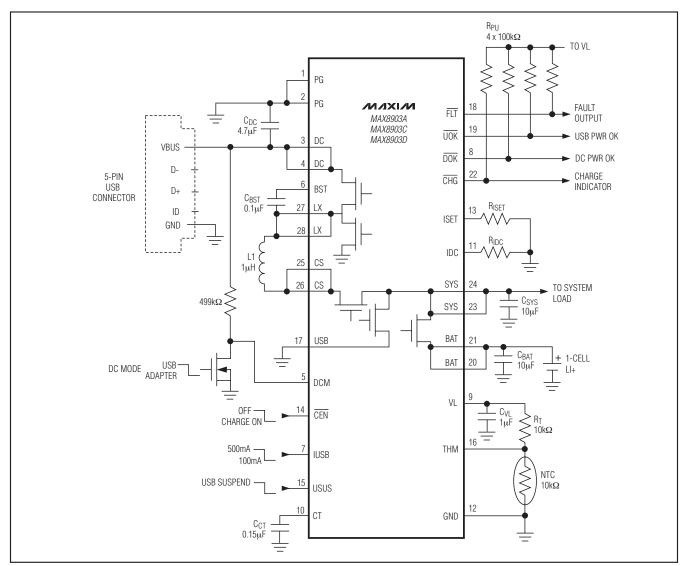


Figure 3. Typical Application Circuit Using a Mini 5 Style Connector or Other DC/USB Common Connector

As shown in Figure 1, the IC includes a full-featured charger with thermistor monitor, fault timer, charger status, and fault outputs. Also included are power-OK signals for both USB and DC. Flexibility is maintained with adjustable charge current, input current limit, and a minimum system voltage (when charging is scaled back to hold the system voltage up).

The MAX8903A/MAX8903C/MAX8903D prevent overheating during high ambient temperatures by limiting charging current when the die temperature exceeds +100°C.

DC Input—Fast Hysteretic Step-Down Regulator

If a valid DC input is present, the USB power path is turned off and power for SYS and battery charging is supplied by the high-frequency step-down regulator from DC. If the battery voltage is above the minimum system voltage (Vsysmin, Figure 4), the battery charger connects the system voltage to the battery for lowest power dissipation. The step-down regulation point is then controlled by three feedback signals: maximum step-down output current programmed at IDC, maximum charger current programmed at ISET, and maximum

Table 1. External Components List for Figures 2 and 3

COMPONENT (FIGURES 2 AND 3)	FUNCTION	PART
C _{DC} , C _{USB}	Input filter capacitor	4.7µF ceramic capacitor
C _V L	VL filter capacitor	1.0µF ceramic capacitor
C _{SYS}	SYS output bypass capacitor	10μF ceramic capacitor
C _{BAT}	Battery bypass capacitor	10µF ceramic capacitor
Сст	Charger timing capacitor	0.15µF low TC ceramic capacitor
R _{PU} (X4)	Logic output pullup resistors	100kΩ
THM	Negative TC thermistor	Philips NTC thermistor, P/N 2322-640-63103, 0k Ω ±5% at +25°C
R _T	THM pullup resistor	10kΩ
R _{IDC}	DC input current-limit programming resistor	$3k\Omega \pm 1\%$, for 2A limit
RISET	Fast-charge current programming resistor	1.2kΩ ±1%, for 1A charging
L1	DC input step-down inductor	1μH inductor with I _{SAT} > 2A

die temperature. The feedback signal requiring the smallest current controls the average output current in the inductor. This scheme minimizes total power dissipation for battery charging and allows the battery to absorb any load transients with minimum system voltage disturbance.

If the battery voltage is below VSYSMIN, the charger does not directly connect the system voltage to the battery and the system voltage (VSYS) is slightly above VSYSMIN as shown in Figure 4. The battery charger independently controls the battery charging current. VSYSMIN is set to 3.0V in the MAX8903A and 3.4V for MAX8903C/MAX8903D.

After the battery charges to 50mV above VSYSMIN, the system voltage is connected to the battery. The battery fast-charge current then controls the step-down converter to set the average inductor current so that both the programmed input current limit and fast-charge current limit are satisfied.

DC-DC Step-Down Control Scheme

A proprietary hysteretic current PWM control scheme ensures fast switching and physically tiny external components. The feedback control signal that requires the smallest input current controls the center of the peak and valley currents in the inductor. The ripple current is internally set to provide 4MHz operation. When the input voltage decreases near the output voltage, very high duty cycle occurs and, due to minimum off-time, 4MHz operation is not achievable. The controller then provides minimum off-time, peak current regulation. Similarly, when the input voltage is too high to allow 4MHz operation due to the minimum on-time, the con-

troller becomes a minimum on-time, valley current regulator. In this way, ripple current in the inductor is always as small as possible to reduce ripple voltage on SYS for a given capacitance. The ripple current is made to vary with input voltage and output voltage in a way that reduces frequency variation. However, the frequency still varies somewhat with operating conditions. See the *Typical Operating Characteristics*.

DC Mode (DCM)

As shown in Table 2, the DC input supports both AC adapters (up to 2A) and USB (up to 500mA). With the DCM logic input set high, the DC input is in adapter mode and the DC input current limit is set by the resistance from IDC to GND (R_{IDC}). Calculate R_{IDC} according to the following equation:

$R_{IDC} = 6000V/I_{DC-MAX}$

With the DCM logic input set low, the DC input current limit is internally programmed to 500mA or 100mA as set by the IUSB logic input. With the IUSB logic input set high, the DC input current limit is 500mA and the DC input delivers current to SYS through the step-down regulator. With the IUSB logic input set low, the DC input current limit is 100mA. In this 100mA mode, the step-down regulator is turned off and its high-side switch operates as a linear regulator with a 100mA current limit. The linear regulator's output is connected to LX and its output current flows through the inductor into CS and finally to SYS.

The DCM pin has an internal diode to DC as shown in Figure 1. To prevent current from flowing from DCM through the internal diode and to the DC input, DCM cannot be driven to a voltage higher than DC. The

circuit of Figure 3 shows a simple MOSFET and resistor on DCM to prevent any current from flowing from DCM through the internal diode to DC. This circuit of Figure 3 allows a microprocessor to drive the gate of the MOSFET to any state at any time.

An alternative to the simple MOSFET and resistor on DCM as shown in Figure 3 is to place a $1M\Omega$ resistor in series with the DCM input to the microprocessor. The microprocessor can then monitor the \overline{DOK} output and make sure that whenever \overline{DOK} is high DCM is also low. In the event that DCM is driven to a higher voltage than DC, the $1M\Omega$ series resistance limits the current from DCM through the internal diode to DC to a few μA .

USB Input—Linear Regulator

If a valid USB input is present with no valid DC input, current for SYS and battery charging is supplied by a low-dropout linear regulator connected from USB to SYS. The SYS regulation voltage shows the same characteristic as when powering from the DC input (see Figure 4). The battery charger operates from SYS with any extra available current, while not exceeding the maximum-allowed USB current. If both USB and DC inputs are valid, power is only taken from the DC input. The maximum USB input current is set by the logic state of the IUSB input to either 100mA or 500mA.

Power Monitor Outputs (UOK, DOK)

 $\overline{\text{DOK}}$ is an open-drain, active-low output that indicates the DC input power status. With no source at the USB pin, the source at DC is considered valid and $\overline{\text{DOK}}$ is driven low when: 4.15V < V_{DC} < 16V. When the USB voltage is also valid, the DC source is considered valid and $\overline{\text{DOK}}$ is driven low when: 4.45V < V_{DC} < 16V. The higher minimum DC voltage with USB present helps guarantee cleaner transitions between input supplies. If the DC power-OK output feature is not required, connect $\overline{\text{DOK}}$ to ground.

UOK is an open-drain, active-low output that indicates the USB input power status. UOK is low when a valid

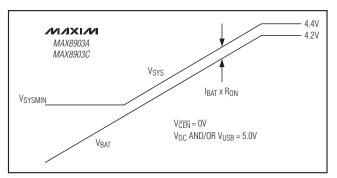


Figure 4. SYS Tracking V_{BAT} to the Minimum System Voltage

source is connected at USB. The source at USB is valid when $4.1V < V_{USB} < 6.6V$. If the USB power-OK output feature is not required, connect \overline{UOK} to ground.

Both the $\overline{\text{UOK}}$ and the $\overline{\text{DOK}}$ circuitry remain active in thermal overload, USB suspend, and when the charger is disabled. $\overline{\text{DOK}}$ and $\overline{\text{UOK}}$ can also be wire-ORed together to generate a single power-OK ($\overline{\text{POK}}$) output.

Thermal Limiting

When the die temperature exceeds +100°C, a thermal limiting circuit reduces the input current limit by 5%/°C, bringing the charge current to 0mA at +120°C. Since the system load gets priority over battery charging, the battery charge current is reduced to 0mA before the input limiter drops the load voltage at SYS. To avoid false charge termination, the charge termination detect function is disabled in this mode. If the junction temperature rises beyond +120°C, no current is drawn from DC or USB, and VSYS regulates at 50mV below VBAT.

System Voltage Switching

DC Input

When charging from the DC input, if the battery is above the minimum system voltage, SYS is connected to the battery. Current is provided to both SYS and the battery, up to the maximum program value. The stepdown output current sense and the charger current sense provide feedback to ensure the current loop demanding the lower input current is satisfied. The advantage of this approach when powering from DC is that power dissipation is dominated by the step-down regulator efficiency, since there is only a small voltage drop from SYS to BAT. Also, load transients can be absorbed by the battery while minimizing the voltage disturbance on SYS. If both the DC and USB inputs are valid, the DC input takes priority and delivers the input current, while the USB input is off.

After the battery is done charging, the charger is turned off and the SYS load current is supplied from the DC input. The SYS voltage is regulated to 4.4V. The charger turns on again after the battery drops to the restart threshold. If the load current exceeds the input limiter, SYS drops down to the battery voltage and the $50 m\Omega$ SYS-to-BAT PMOS switch turns on to supply the extra load current. The SYS-to-BAT switch turns off again once the load is below the input current limit. The $50 m\Omega$ PMOS also turns on if valid DC input power is removed.

USB Input

When charging from the USB input, the DC input stepdown regulator turns off and a linear regulator from USB to SYS powers the system and charges the battery. If the battery is greater than the minimum system

Table 2. Input Limiter Control Logic

POWER SOURCE	DOK	UOK	DCM***	IUSB	usus	DC STEP-DOWN OUTPUT CURRENT LIMIT	USB INPUT CURRENT LIMIT	MAXIMUM CHARGE CURRENT**
AC Adapter at DC Input	L	Х	Н	X	X	6000V/R _{IDC}		Lesser of 1200V/R _{ISET} and 6000V/R _{IDC}
	L	X	L	L	L	100mA	USB input off. DC input has priority.	Lesser of 1200V/R _{ISET} and 100mA
USB Power at DC Input	L	X	L	Н	Г	500mA		Lesser of 1200V/R _{ISET} and 500mA
	L	Χ	L	Χ	Н	USB suspend		0
USB Power at USB Input,	Н	L	Х	L	L		No DC input 500mA	
DC Unconnected	Н	L	Х	Н	L	No DC input		
	Н	L	Χ	Χ	Н		USB suspend	0
DC and USB Unconnected	Н	Н	X	Χ	Χ		No USB input	0

^{**}Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load exceeds the input current limit.

X = Don't care.

voltage, the SYS voltage is connected to the battery. The USB input then supplies the SYS load and charges the battery with any extra available current, while not exceeding the maximum-allowed USB current. Load transients can be absorbed by the battery while minimizing the voltage disturbance on SYS. When battery charging is completed, or the charger is disabled, SYS is regulated to 4.4V. If both USB and DC inputs are valid, power is only taken from the DC input.

USB Suspend

Driving USUS high turns off charging as well as the SYS output and reduces input current to $170\mu A$ to accommodate USB suspend mode.

Charge Enable (CEN)

When $\overline{\text{CEN}}$ is low, the charger is on. When $\overline{\text{CEN}}$ is high, the charger turns off. $\overline{\text{CEN}}$ does not affect the SYS output. In many systems, there is no need for the system controller (typically a microprocessor) to disable the charger, because the MAX8903A/MAX8903C/

MAX8903D smart power selector circuitry independently manages charging and adapter/battery power hand-off. In these situations, CEN may be connected to ground.

Soft-Start

To prevent input transients that can cause instability in the USB or AC adapter power source, the rate of change of the input current and charge current is limited. When an input source is valid, SYS current is ramped from zero to the set current-limit value in typically 50µs. This also means that if DC becomes valid after USB, the SYS current limit is ramped down to zero before switching from the USB to DC input. At some point, SYS is no longer able to support the load and may switch over to BAT. The switchover to BAT occurs when Vsys < VBAT. This threshold is a function of the SYS capacitor size and SYS load. The SYS current limit then ramps from zero to the set current level and SYS supports the load again as long as the SYS load current is less than the set current limit.

16 _______ /N/XI/M

^{***}There is an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1. If the DCM level needs to be set by a µP, use a MOSFET for isolation as shown in Figure 3.

When the charger is turned on, the charge current ramps from 0A to the ISET current value in typically 1.0ms. Charge current also soft-starts when transitioning to fast-charge from prequal, when the input power source is switched between USB and DC, and when changing the USB charge current from 100mA to 500mA with the IUSB logic input. There is no di/dt limiting, however, if RISET is changed suddenly using a switch.

Battery Charger

While a valid input source is present, the battery charger attempts to charge the battery with a fast-charge current determined by the resistance from ISET to GND. Calculate the RISET resistance according to the following equation:

RISET = 1200V/ICHGMAX

Monitoring Charge Current

The voltage from ISET to GND is a representation of the battery charge current and can be used to monitor the current charging the battery. A voltage of 1.5V represents the maximum fast-charge current.

If necessary, the charge current is reduced automatically to prevent the SYS voltage from dropping. Therefore, a battery never charges at a rate beyond the capabilities of a 100mA or 500mA USB input, or overloads an AC adapter. See Figure 5.

When V_{BAT} is below 3V, the charger enters prequal mode and the battery charges at 10% of the maximum fast-charge rate until the voltage of the deeply discharged battery recovers. When the battery voltage

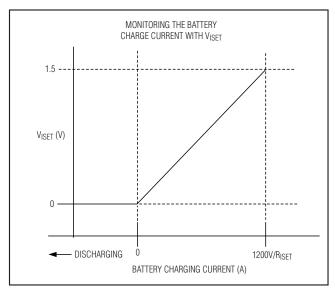


Figure 5. Monitoring the Battery Charge Current with the Voltage from ISET to GND

reaches 4.2V and the charge current drops to 10% of the maximum fast-charge current, the charger enters the DONE state. The charger restarts a fast-charge cycle if the battery voltage drops by 100mV.

Charge Termination

When the charge current falls to the termination threshold (I_{TERM}) and the charger is in voltage mode, charging is complete. Charging continues for a brief 15s top-off period and then enters the DONE state where charging stops.

Note that if charge current falls to ITERM as a result of the input or thermal limiter, the charger does not enter DONE. For the charger to enter DONE, charge current must be less than ITERM, the charger must be in voltage mode, and the input or thermal limiter must not be reducing charge current.

Charge Status Outputs

Charge Output (CHG)

CHG is an open-drain, active-low output that indicates charger status. CHG is low when the battery charger is in its prequalification and fast-charge states. CHG goes high impedance if the thermistor causes the charger to go into temperature suspend mode.

When used in conjunction with a microprocessor (μP), connect a pullup resistor between \overline{CHG} and the logic I/O voltage to indicate charge status to the μP . Alternatively, \overline{CHG} can sink up to 20mA for an LED charge indicator.

Fault Output (FLT)

FLT is an open-drain, active-low output that indicates charger status. FLT is low when the battery charger has entered a fault state when the charge timer expires. This can occur when the charger remains in its prequal state for more than 33 minutes or if the charger remains in fast-charge state for more than 660 minutes (see Figure 6). To exit this fault state, toggle CEN or remove and reconnect the input source.

When used in conjunction with a microprocessor (μP), connect a pullup resistor between \overline{FLT} and the logic I/O voltage to indicate charge status to the μP . Alternatively, \overline{FLT} can sink up to 20mA for an LED fault indicator. If the \overline{FLT} output is not required, connect \overline{FLT} to ground or leave unconnected.

Charge Timer

A fault timer prevents the battery from charging indefinitely. The fault prequal and fast-charge timers are controlled by the capacitance at CT (C_{CT}).

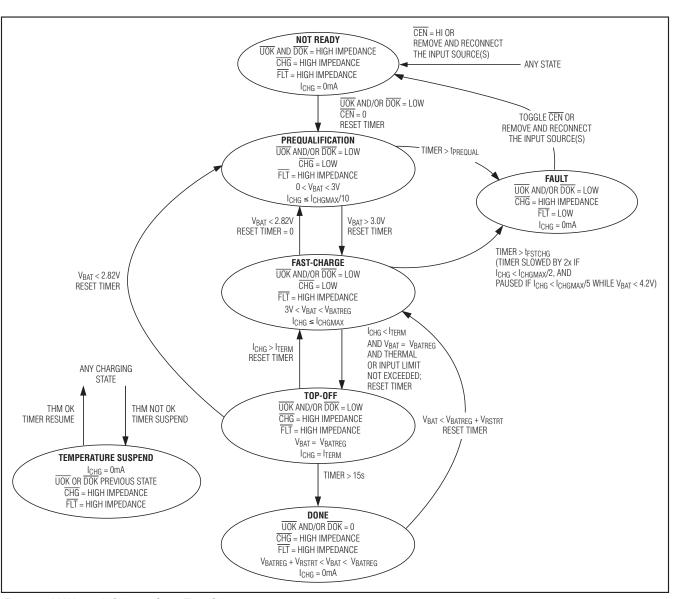


Figure 6. MAX8903A Charger State Flow Chart

$$t_{PREQUAL} = 33 min \times \frac{C_{CT}}{0.15 \mu F}$$

$$t_{FST-CHG} = 660 min \times \frac{C_{CT}}{0.15 \mu F}$$

$$t_{TOP-OFF} = 15s$$

While in fast-charge mode, a large system load or device self-heating may cause the MAX8903A/MAX8903C/MAX8903D to reduce charge current. Under these circumstances, the fast-charge timer is slowed by 2x if the

charge current drops below 50% of the programmed fast-charge level, and suspended if the charge current drops below 20% of the programmed level. The fast-charge timer is not affected at any current if the charger is regulating the BAT voltage at 4.2V (i.e., the charger is in voltage mode).

VL Regulator

VL is a 5V linear regulator that powers the MAX8903's internal circuitry and charges the BST capacitor. VL is used externally to bias the battery's thermistor. VL takes

18 ______ /I/XI/M

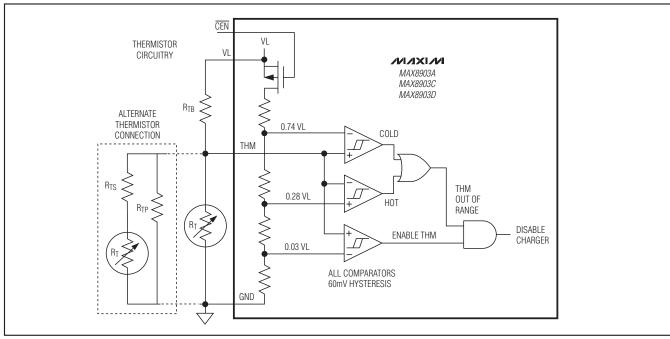


Figure 7. Thermistor Monitor Circuitry

Table 3. Fault Temperatures for Different Thermistors

Thermistor β (K)	3000	3250	3500	3750	4250
R_{TB} (k Ω) (Figure 7)	10	10	10	10	10
Resistance at +25°C ($k\Omega$)	10	10	10	10	10
Resistance at +50°C (kΩ)	4.59	4.30	4.03	3.78	3316
Resistance at 0°C (kΩ)	25.14	27.15	29.32	31.66	36.91
Nominal Hot Trip Temperature (°C)	55	53	50	49	46
Nominal Cold Trip Temperature (°C)	-3	-1	0	2	4.5

its input power from USB or DC. When input power is available from both USB and DC, VL takes power from DC. VL is enabled whenever the input voltage at USB or DC is greater than ~1.5V. VL does not turn off when the input voltage is above the overvoltage threshold. Similarly, VL does not turn off when the charger is disabled ($\overline{\text{CEN}}$ = high). Connect a 1µF ceramic capacitor from VL to GND.

Thermistor Input (THM)

The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system temperature. Charging is suspended when the thermistor temperature is out of range. The charge timers are suspended and hold their state but no fault is indicated. When the thermistor comes back into range, charging resumes and the charge timer continues from where it left off. Connecting THM to GND disables the thermistor monitoring function. Table 3 lists the fault temperature of different thermistors.

Since the thermistor monitoring circuit employs an external bias resistor from THM to VL (RTB, Figure 7), the thermistor is not limited only to $10 k\Omega$ (at $+25^{\circ}C$). Any resistance thermistor can be used as long as the value is equivalent to the thermistor's $+25^{\circ}C$ resistance. For example, with a $10 k\Omega$ at $+25^{\circ}C$ thermistor, use $10 k\Omega$ at RTB, and with a $100 k\Omega$ at $+25^{\circ}C$ thermistor, use $100 k\Omega$.

For a typical $10 k\Omega$ (at $+25^{\circ}C$) thermistor and a $10 k\Omega$ RTB resistor, the charger enters a temperature suspend state when the thermistor resistance falls below $3.97 k\Omega$ (too hot) or rises above $28.7 k\Omega$ (too cold). This corresponds to a 0°C to $+50^{\circ}C$ range when using a $10 k\Omega$ NTC thermistor with a beta of 3500. The general relation of thermistor resistance to temperature is defined by the following equation:

$$R_T = R_{25} \times e^{\left\{\beta \left(\frac{1}{T + 273^{\circ}C} - \frac{1}{298^{\circ}C}\right)\right\}}$$

where:

 $\mbox{R}\mbox{T} = \mbox{The resistance}$ in Ω of the thermistor at temperature T in Celsius

 R_{25} = The resistance in Ω of the thermistor at +25°C

 β = The material constant of the thermistor, which typically ranges from 3000K to 5000K

T = The temperature of the thermistor in °C

Table 3 shows the MAX8903A/MAX8903C/MAX8903D THM temperature limits for different thermistor material constants.

Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing RTB, connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β . For example, a +45°C hot threshold and 0°C cold threshold can be realized by using a thermistor with a β of 4250 and connecting 120k Ω in parallel. Since the thermistor resistance near 0°C is much higher than it is near +50°C, a large parallel resistance lowers the cold threshold, while only slightly lowering the hot threshold. Conversely, a small series resistance raises the hot threshold, while only slightly raising the cold threshold. Raising RTB lowers both the cold and hot thresholds, while lowering RTB raises both thresholds.

Note that since VL is active whenever valid input power is connected at DC or USB, thermistor bias current flows at all times, even when charging is disabled ($\overline{\text{CEN}}$ = high). When using a $10\text{k}\Omega$ thermistor and a $10\text{k}\Omega$ pullup to VL, this results in an additional 250µA load. This load can be reduced to 25µA by instead using a $100\text{k}\Omega$ thermistor and $100\text{k}\Omega$ pullup resistor.

Power Dissipation

Table 4. Package Thermal Characteristics

	28-PIN 4mm x 4mm THIN QFN			
	SINGLE-LAYER PCB	MULTILAYER PCB		
Continuous	1666.7mW	2286mW		
Power Dissipation	Derate 20.8mW/°C above +70°C	Derate 28.6mW/°C above +70°C		
θЈΑ	48°C/W	35°C/W		
θЈС	3°C/W	3°C/W		

Inductor Selection for Step-Down DC-DC Regulator

The MAX8903 step-down DC-DC regulator implements a control scheme that typically results in a 4MHz nominal switching frequency. When the input voltage decreases to a value near the output voltage, high duty cycle operation occurs and, due to minimum off-time constraints, 4MHz operation is not achievable. The regulator then provides a fixed minimum off-time, peak current regulation. Similarly, when the input voltage is too high to allow 4MHz operation due to minimum on-time constraints, the regulator becomes a fixed minimum ontime valley current regulator.

For a given maximum output voltage, the minimum ripple current condition occurs at the lowest input voltage provided that the minimum input voltage allows the regulator to maintain 4MHz operation. If the minimum input voltage dictates an off-time less than 100ns, then the minimum ripple condition occurs just before the regulator enters fixed minimum off-time operation. To allow the current-mode regulator to provide a low-jitter, stable duty factor operation, the inductor ripple current should be greater than 200mA in the minimum ripple current condition. The maximum allowed output inductance LOUT_MAX is therefore obtained using the equations (1) and (2) below.

(1)
$$T_{OFF} = 100 \text{ns if} \left(1 - \frac{V_{SYS(MAX)}}{V_{DC(MIN)}} \right) \times \frac{1}{4MHz} \le 100 \text{ns},$$

otherwise.

$$T_{OFF} = \left(1 - \frac{V_{SYS(MAX)}}{V_{DC(MIN)}}\right) \times \frac{1}{4MHz}$$

where TOFF is the minimum off-time, Vsys(MAX) is maximum charger output voltage, and VDC(MIN) is minimum DC input voltage.

(2)
$$L_{OUT_MAX} = \frac{V_{SYS(MAX)} \times T_{OFF}}{0.2A}$$

where Lout_MAX is the maximum allowed inductance.

To obtain a small-sized inductor with acceptable core loss, while providing stable, jitter-free operation, the actual output inductance L_{OUT}, is obtained by choosing an appropriate ripple factor K, and picking an available inductor in the range of the two values of inductance yielded by equations (3) and (4) which describe the maximum ripple current conditions in the minimum on-

_ /N/XI/N

time and minimum off-time modes. The recommended ripple factor ranges from (0.2 \leq K \leq 0.4) for (2A \geq IDC \geq 1A) designs.

(3)
$$L_{OUT_MIN_T_{OFF}} = \frac{V_{SYS(MAX)} \times T_{OFF}}{K \times I_{DC}}$$

where TOFF is the minimum off-time obtained from (1).

(4)
$$L_{OUT_MIN_T_{ON}} = \frac{\left(V_{DC(MAX)} - V_{SYS(MIN)}\right) \times T_{ON}}{K \times I_{DC}}$$

where $V_{DC(MAX)}$ is maximum input voltage, $V_{SYS(MIN)}$ is the minimum charger output voltage, and T_{ON} is the ontime at high input voltage, as given by the following equation:

(5)
$$T_{ON} = 70 \text{ns if } \left(\frac{V_{SYS(MIN)}}{V_{DC(MAX)}} \times \frac{1}{4 \text{MHz}} \right) \le 70 \text{ns},$$

otherwise,

$$T_{ON} = \frac{V_{SYS(MIN)}}{V_{DC(MAX)}} \times \frac{1}{4MHz}$$

The saturation current rating of the inductor must be greater than the maximum step-down output current programmed at the IDC pin plus one-half the maximum ripple current, as given by equation (6).

(6)
$$I_{SAT} > I_{DC} + \frac{IL_{RIPPLE_MAX}}{2}$$

where ISAT is the saturation current rating of the output inductor, IDC is the maximum step-down output current programmed at the IDC pin, and ILRIPPLE_MAX is the greater of the ripple currents obtained from (7) and (8).

(7)
$$IL_{RIPPLE_MIN_T_{OFF}} = \frac{V_{SYS(MAX)} \times T_{OFF}}{L_{OLIT}}$$

(8)
$$IL_{RIPPLE_MIN_T_{ON}} = \frac{\left(V_{DC(MAX)} - V_{SYS(MIN)}\right) \times T_{ON}}{L_{OUT}}$$

Table 5 gives recommended inductors for typical charger applications.

Example:

Table 5. Recommended Inductor Examples

DC INPUT VOLTAGE RANGE, CHARGING CURRENT	RECOMMENDED INDUCTOR	
4.5V to 5.5V, 2A	1μH inductor, 1072AS-1R0N, TOKO, DE2818 series, 3.2mm x 3mm x 1.8mm, 25mΩ, 2.6A	
4.5V to 5.5V, 1A	1.5μH inductor, MDT2520-CN1R5M, TOKO, 2.5mm x 2mm x 1.2mm, 95mΩ, 1.25A	
10.8V to 13.2V, 2A	1μH inductor, 1072AS-1R0N, TOKO, DE2818 series, 3.2mm x 3mm x 1.8mm, 25mΩ, 2.6A	
10.8V to 13.2V, 1A	2.2 μ H inductor, MDT2520-CN2R2M, TOKO, 2.5mm x 2mm x 1.2mm, 105m Ω , 1.20A	

$$\begin{split} &\text{VDC(MIN)} = 4.5\text{V, VDC(MAX)} = 5.5\text{V, VSYS(MIN)} = 3\text{V,} \\ &\text{VSYS(MAX)} = 4.2\text{V, R}_{\text{IDC}} = 3\text{k}\Omega, \text{ K} = 0.2, \text{IDC} = 2\text{A (maximum step-down output current)} \end{split}$$

From (1):

$$TOFF = 100ns$$

From (2):

$$L_{OUT_MAX} = \frac{4.2V \times 100ns}{0.2A} = 2.1 \mu H$$

From (3):

$$L_{OUT_MIN_T_{OFF}} = \frac{4.2V \times 100ns}{0.2 \times 2A} = 1.05 \mu H$$

From (5):

$$T_{ON} = \frac{3V}{5.5V} \times \frac{1}{4MHz} = 136ns$$

which is greater than the minimum on-time of 70ns. From (4):

$$L_{OUT_MIN_T_{ON}} = \frac{(5.5V - 3V) \times 136ns}{0.2 \times 2A} = 0.85 \mu H$$

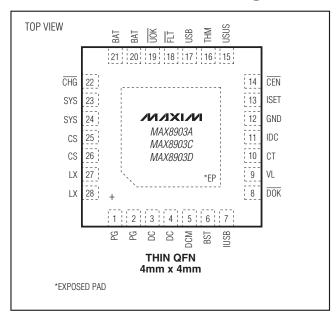
Choose Lout = 1μ H.

From (7):

$$IL_{RIPPLE_MIN_T_{OFF}} = \frac{4.2V \times 100ns}{1\mu H} = 420mA$$

From (8):

$$IL_{RIPPLE_MIN_T_{ON}} = \frac{(5.5V - 3V) \times 136ns}{1\mu s} = 341mA$$


From (6), the saturation current rating for the inductor:

$$I_{SAT} > 2A + \frac{0.420A}{2}$$

 $I_{SAT} > 2.21A$

PCB Layout and Routing

Good design minimizes ground bounce and voltage gradients in the ground plane, which can result in instability or regulation errors. The GND and PGs should connect to the power-ground plane at only one point to minimize the effects of power-ground currents. Battery ground should connect directly to the power-ground plane. The ISET and IDC current-setting resistors should connect directly to GND to avoid current errors. Connect GND to the exposed pad directly under the IC. Use multiple tightly spaced vias to the ground plane under the exposed pad to help cool the IC. Position input capacitors from DC, SYS, BAT, and USB to the power-ground plane as close as possible to the IC. Keep high current traces such as those to DC, SYS, and BAT as short and wide as possible. Refer to the MAX8903A/MAX8903C/MAX8903D Evaluation Kit for a suitable PCB layout example.

Pin Configuration

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	
28 TQFN-EP	T2844-1	<u>21-0139</u>	

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/08	Initial release	_
1	8/09	Added MAX8903C/MAX8903D to data sheet	1–20
2	11/09	Made various corrections	1–7, 9, 11–21

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.