

PIC18(L)F27/47/57K42

PIC18(L)F27/47/57K42 Family Silicon Errata and Data Sheet Clarification

The PIC18(L)F27/47/57K42 family devices that you have received conform functionally to the current Device Data Sheet (DS40001919**C**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18(L)F27/47/57K42 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A3).

Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

- 1. Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB IDE project.
- 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
- 4. For MPLAB X IDE, select <u>Window > Dashboard</u> and click the **Refresh Debug Tool Status** icon ().
- Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, contact your local Microchip sales office for assistance.

The DEVREV/REVID values for the various PIC18(L)F27/47/57K42 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

Part Number	Device ID<13:0> ^{(1), (2)}	Revision ID for	Revision ID for Silicon Revision			
Part Number	Device ID<13:0>(*// (=/	A1	А3			
PIC18F27K42	6C40h	A001	A003			
PIC18F47K42	6BE0h	A001	A003			
PIC18F57K42	6B80h	A001	A003			
PIC18LF27K42	6D80h	A001	A003			
PIC18LF47K42	6D20h	A001	A003			
PIC18LF57K42	6CC0h	A001	A003			

- **Note 1:** The Revision ID is located in addresses 3FFFFCh-3FFFDh and Device ID is located in addresses 3FFFFEh-3FFFFFh.
 - 2: Refer to the "PIC18(L)F27/47/57K42 Memory Programming Specification" (DS40001886) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Madula	Facture	Item	Janua Cumamami	Affected F	Revisions ⁽¹⁾
Module	Feature	No.	Issue Summary	A1	A3
	SMBus 3.0	1.1	SMBus 3.0 logic levels.	Х	Х
Electrical Specifications	Min VDD Specification for A1 Rev	1.2	Device may not work properly at certain voltage levels and temperatures.	X	
Оресписацона	Min VDD Specification for LF Devices for A3 Rev	1.3	LF device may not work properly at certain voltage levels and temperatures.	Х	X
Direct Memory	DMA Reads from Data EEPROM	2.1	DMA reads from Data EEPROM does not operate.	Х	
Access (DMA)	DMA in Doze mode	2.2	DMA transfers may not work when CPU is in Doze mode.	Х	
Analog-to-	ADC Conversion in Fosc mode	3.1	ADC does not complete conversion successfully in Fosc mode.	Х	
Digital Converter with Computation (ADC2)	Burst Average mode Double Sampling	3.2	The ADC ² does not trigger the second conversion when operated in non-continuous double-sampling Burst Average mode.	Х	
	BRGS Select	4.1	BRGS Select feature not functional in DALI mode.		x
UART	Stop Bit Interrupt Flag	4.2	Stop Bit interrupt flag functionality not available.	Х	
	Autobaud	4.3	The first character after autobaud may be corrupted.	Х	Х
Nonvolatile Memory (NVM) Control	WRERR Bit Functionality	5.1	WRERR bit cannot be cleared in hardware after being set once.	Х	
Windowed Watchdog Timer (WWDT)	WWDT Operation in Doze mode	6.1	Window violation occurs when WWDT operated in Doze mode.	X	
Power-Saving Operation Modes	Low-Power Sleep mode	7.1	Low-power Sleep mode does not operate at 3.1v <vdd<3.3v.< td=""><td>х</td><td></td></vdd<3.3v.<>	х	
Program Flash Memory (PFM)	Endurance of PFM	8.1	Endurance of PFM is lower than specified.	Х	Х
Instruction Set	MOVFF/MOVSF Instruction	9.1	MOVFF/MOVSF may corrupt destination.	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A3).

1. Module: Electrical Specifications

1.1 SMBus 3.0

The SMBus 3.0 V_{IL} specification (Parameter D305) is temperature and V_{DD} dependent. Refer to the table below.

Temperature	VDD	D305 SMBus 3.0 VIL Specification
-40°C	1.8V	0.6V
-40°C	5.5V	0.8V
25°C	1.8V	0.6V
25°C	5.5V	0.8V
85°C	1.8V	0.6V
85°C	5.5V	0.7V
125°C	1.8V	0.5V
125°C	5.5V	0.7V

Work around

None.

Affected Silicon Revisions

A 1	А3			
Χ	Χ			

1.2 Min VDD Specification for A1 Rev

V_{DDMIN} for A1 rev has changed for temperatures below +25°C as shown below in **bold**.

PIC18LF	27/47/57k	(42	Standa	rd Opera	ting Cor	ditions	(unless otherwise stated)			
PIC18F2	PIC18F27/47/57K42									
Param. No. Characteristic			Min.	Typ.†	Max.	Units	Conditions			
Supply '	Supply Voltage									
D002	VDD		2.5 1.8 2.5 2.7	_ _ _	3.6 3.6 3.6 3.6	V V V	Fosc ≤ 16 MHz (-40°C to <+25°C) Fosc ≤ 16 MHz (≥+25°C to +125°C) Fosc > 16 MHz and Fosc ≤ 32 MHz Fosc > 32 MHz			
D002	VDD		2.5 2.3 2.5 2.7		5.5 5.5 5.5 5.5	V V V	Fosc ≤ 16 MHz (-40°C to <+25°C) Fosc ≤ 16 MHz (≥+25°C to +125°C) Fosc > 16 MHz and Fosc ≤ 32 MHz Fosc > 32 MHz			

Work around

None.

Affected Silicon Revisions

A1	А3			
Х				

1.3 Min VDD Specification for LF Devices for A3 Rev

V_{DDMIN} for A3 rev of LF devices has changed for temperatures below +25°C as shown below in **bold**.

PIC18LF	27/47/57	K42	Standa	rd Opera	ating Co	nditions	s (unless otherwise stated)
PIC18F2	27/47/57K	42					
Param. No. Sym. Characteristic			Min.	Typ.†	Max.	Units	Conditions
Supply '	Voltage						
D002	VDD		2.3 1.8 2.5 2.7		3.6 3.6 3.6 3.6	V V V	Fosc ≤ 16 MHz (-40°C to <+25°C) Fosc ≤ 16 MHz (≥+25°C to +125°C) Fosc > 16 MHz and Fosc ≤ 32 MHz Fosc > 32 MHz
D002 VDD			2.3 2.5 2.7		5.5 5.5 5.5	V V V	Fosc ≤ 16 MHz Fosc > 16 MHz and Fosc ≤ 32 MHz Fosc > 32 MHz

Work around

None.

Affected Silicon Revisions

A 1	А3			
Х	Х			

2. Module: Direct Memory Access (DMA)

2.1 DMA Reads from Data EEPROM

The DMA modules do not operate when configured to access the data EEPROM (i.e., SMR[1:0] = 1x). The destination gets written to 0×0.0 .

Work around

None. NVMCON reads work as described.

Affected Silicon Revisions

A1	А3			
Χ				

2.2 DMA in Doze Mode

When the CPU is operated in Doze mode, DMA transfers may not work as expected.

Work around

None.

Affected Silicon Revisions

A 1	А3			
Χ				

3. Module: Analog-to-Digital Converter with Computation (ADC²)

3.1 ADC Conversion in Fosc Mode

The ADCON0.GO bit remains set and the conversion does not complete successfully when configured to operate in Fosc mode (ADCON0.CS=0) with Fosc > 40 MHz.

Work around

Use ADCRC as the ADC clock source (ADCON0.CS=1).

Affected Silicon Revisions

A 1	А3			
Χ				

3.2 Burst Average Mode Double Sampling

When the ADC^2 is operated in Burst Average mode (MD = 0b011 in ADCON2 register) while enabling non-continuous operation and double-sampling (CONT = 0 in the ADCON0 register and DSEN = 1 in the ADCON1 register), the value in the ADCNT register does not increment beyond 0b1 toward the value in the ADRPT register.

Work around

When operating the ADC^2 in Burst Average mode with double-sampling, enable continuous operation of the module (CONT = 1 in the ADCON0 register) and set the Stop-on-Interrupt bit (SOI bit in the ADCON3 register). After the interrupt occurs, perform appropriate threshold calculations in the software and retrigger ADC^2 as necessary.

If the CPU is in Low-Power Sleep mode, alternatively the ADC^2 in non-continuous Burst Average mode can be operated with single ADC conversion (DSEN = 0 in the ADCON1 register) compromising noise immunity for lower power consumption by preventing the device from waking up to perform threshold calculations in the software.

Affected Silicon Revisions

A 1	А3			
Х				

4. Module: UART

4.1 Baud Rate Generator Speed Select

The Baud Rate Generator Speed Select feature (BRGS bit in the UxCON0 register) in DALI mode is not functional. The Baud Rate Generator always operates at normal speed with 16 baud clocks per bit in DALI mode.

Work around

None.

Affected Silicon Revisions

A 1	А3			
	Х			

4.2 Stop Bit Interrupt Flag

Stop Bit interrupt flag functionality is not available in the CERIF bit in revision A1.

Work around

Use Timer2 with HLT and connect the UART RX port to the timer Reset trigger. Set the time-out period to the desired Stop bit time (for DALI mode, this is equivalent to two Stop bits at 1200 baud = 1.66 ms). When the Stop bit is received, the timer times out notifying end of data.

Affected Silicon Revisions

A 1	А3			
Χ				

4.3 Autobaud

When the UART is configured as follows, then the first character received after autobaud may be corrupted:

- The UBRG registers are cleared.
- The BRGS bit is set (fast baud rate mode).
- The Stop bits are configured for two Stop bits (STP = 0blx).

Work around

- a) In asynchronous modes other than LIN: the transmitter should delay the first character by at least one character period after sending autobaud.
- In all asynchronous modes including LIN: Clear the BRGS bit to select the normal baud rate mode.

Affected Silicon Revisions

A1	А3			
Χ	Х			

5. Module: Nonvolatile Memory (NVM) Control

5.1 WRERR Bit Functionality

When a Reset is issued while an NVM high-voltage operation is in progress, the WRERR bit in the NVMCON1 register is set as expected. After clearing the WRERR bit, if a Reset reoccurs, the WRERR bit is set again regardless of whether an NVM operation is in progress or not.

Work around

None.

Affected Silicon Revisions

A 1	А3			
Χ				

6. Module: Windowed Watchdog Timer (WWDT)

6.1 WWDT Operation in Doze Mode

When the CLRWDT instruction is issued in Doze mode, a window violation error occurs in WWDT even though the window is open and armed.

Work around

Do not operate the WWDT in Doze mode.

Affected Silicon Revisions

A 1	А3			
Х				

7. Module: Power-Saving Operation Modes

7.1 Low-Power Sleep Mode in F Devices

The F device resets when waking up from Sleep while in Low-Power mode (VREGPM = 1 in VREGCON register) at 3.1V < VDD < 3.3V.

Work around

- a) If wake-up from Sleep is needed at 3.1V < VDD < 3.3V, operate the F device in Normal Power mode (VREGPM = 0).
- b) If wake-up from Sleep is needed at 3.1V < VDD < 3.3V, enable the Fixed Voltage Reference (EN = 1 in FVRCON register). This increases the current in Sleep mode by typically 7 μA.

Affected Silicon Revisions

	A1	А3			
ĺ	Χ				

8. Module: Program Flash Memory (PFM)

8.1 Endurance of PFM

The Flash memory cell endurance specification (Parameter MEM30) is 1K cycles.

Work around

None.

Affected Silicon Revisions

A 1	А3			
Х	Χ			

9. Module: Instruction Set

9.1 MOVFF/MOVSF Instruction

When the BSR points to the last bank of the SFR region (BSR=0x3F) and the low byte of the source or destination address of a MOVFF/MOVSF instruction equals the low byte of an indirect addressing operation register address (INDFx, POSTINCx, POSTDECx, PREINCx, PLUSWx), the operation will not be completed as expected. Either, one or more of the destination, FSR value, or location pointed to by the FSR will be corrupted, or the move will simply not occur.

Work around

Ensure that the BSR does not point to the last bank if the SFR region (BSR=0x3F) when MOVFF/MOVSF instruction is being executed.

Affected Silicon Revisions

A1	А3			
Χ	Х			

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001919**C**):

Note:	Corrections are shown in bold . Where
	possible, the original bold text formatting
	has been removed for clarity.

None.

APPENDIX A: DOCUMENT REVISION HISTORY

Rev B Document (3/2019)

Added silicone rev A3. Added Modules 1.3: Min V_{DD} Specification for LF Devices for A3 Rev, 2.2: DMA in Doze mode, 4: UART, 5: NVM Control, 6: WWDT, 7: Power Savings Operation Modes, 8: PFM, and 9: Instruction Set.

Updated Module 1.2: Min VDD Specification for A1 Rev. Updated Table 2.

Data Sheet Clarifications: Removed Module 1.

Rev A Document (01/2018)

Initial release of this document.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4310-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829 China - Shenzhen

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820