12-stage binary ripple counter

74HC/HCT4040

FEATURES

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4040 are high-speed Si-gate CMOS devices and are pin compatible with "4040" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4040 are 12-stage binary ripple counters with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and twelve parallel outputs

(Q_0 to Q_{11}). The counter advances on the HIGH-to-LOW transition of \overline{CP} .

A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of $\overline{\text{CP}}$.

Each counter stage is a static toggle flip-flop.

APPLICATIONS

- Frequency dividing circuits
- · Time delay circuits
- · Control counters

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		LINIT
			НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	∇P to Q ₀		14	16	ns
	Q_n to Q_{n+1}		8	8	ns
f _{max}	maximum clock frequency		90	79	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

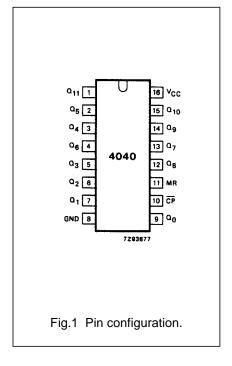
C_L = output load capacitance in pF

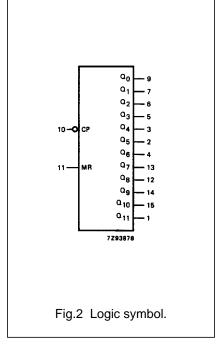
V_{CC} = supply voltage in V

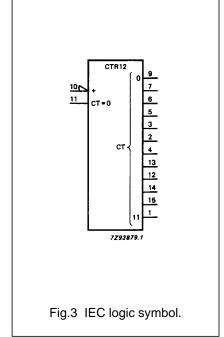
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


12-stage binary ripple counter


74HC/HCT4040

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8	GND	ground (0 V)
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q ₀ to Q ₁₁	parallel outputs
10	CP	clock input (HIGH-to-LOW, edge-triggered)
11	MR	master reset input (active HIGH)
16	V _{CC}	positive supply voltage

