12-stage binary ripple counter ## 74HC/HCT4040 #### **FEATURES** · Output capability: standard I_{CC} category: MSI ## **GENERAL DESCRIPTION** The 74HC/HCT4040 are high-speed Si-gate CMOS devices and are pin compatible with "4040" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4040 are 12-stage binary ripple counters with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and twelve parallel outputs (Q_0 to Q_{11}). The counter advances on the HIGH-to-LOW transition of \overline{CP} . A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of $\overline{\text{CP}}$. Each counter stage is a static toggle flip-flop. ### **APPLICATIONS** - Frequency dividing circuits - · Time delay circuits - · Control counters #### **QUICK REFERENCE DATA** $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYPICAL | | LINIT | |-------------------------------------|---|---|---------|-----|-------| | | | | НС | нст | UNIT | | t _{PHL} / t _{PLH} | propagation delay | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | | | | | | ∇P to Q ₀ | | 14 | 16 | ns | | | Q_n to Q_{n+1} | | 8 | 8 | ns | | f _{max} | maximum clock frequency | | 90 | 79 | MHz | | Cı | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per package | notes 1 and 2 | 20 | 20 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$ #### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # 12-stage binary ripple counter # 74HC/HCT4040 ## **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--|-----------------------------------|---| | 8 | GND | ground (0 V) | | 9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1 | Q ₀ to Q ₁₁ | parallel outputs | | 10 | CP | clock input (HIGH-to-LOW, edge-triggered) | | 11 | MR | master reset input (active HIGH) | | 16 | V _{CC} | positive supply voltage |