SMINORDIC
NRF8001 Development Kit

User Guide v1.1

All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.
December 2011

S NOR nNRF8001 Development Kit User Guide

SEMICONDUCTOR

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications

Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details

For your nearest dealer, please see http://www.nordicsemi.com

Receive available updates automatically by subscribing to eNews from our homepage or check our
website regularly for any available updates.

Main office:

Otto Nielsens veg 12
7004 Trondheim
Norway
Phone: +47 72 89 89 00
Fax: +47 72 89 89 89
www.nordicsemi.com

DNV st
No- $03

NS-ENISO 9001 CERTIFICATED&IRM

Revision History

Date Version Description
December 2010 1.0
December 2011 1.1 + Added chapter 9 on page 27

* Removed section 8.1.3 “Porting ACI Transport Layer to another
application processor”

Revision 1.1 Page 2 of 29

http://www.nordicsemi.no

S ORD nNRF8001 Development Kit User Guide

SEMICONDUCTOR

Contents

1 INtroduction o ————— 4
1.1 Who should read this user guide?..............oooiiiiiiiiiiiiiiie e 4
1.2 Minimum reqUIrEMENTS.......ccoooiiiiieeeeeeeeee e 4
1.3 DocumMENtationcoooiiieee e 4
1.4 WIriting CONVENTIONSuuiiiiiiiiiiiiiiieeee e 4
2 Kit contentco 5
21 Hardware COmMPONENTScoooiiiiiiiiiie e 5
2.2 Software and documentation components..........ccccceeeeiiiiiiiiiiiiieeieennnes 6
3 LD ¢ T = 1= =1 U T o 7
3.1 NRFGO SUAIO ... 7
3.2 ST I | O PESREPPUPPRRR 8
3.3 Master Control Panel ... 8
3.4 Keil C51 compiler (not included in this Kit)ccoooiiiiiiiiiiiiiieeee 8
4 Programming the carrier board (NnRF2735).........cccoiiiiiimmmmemrrrnrnreeeceeee, 10
5 Testing the physical layer with Direct Test Mode.........cc.cooimmirmnciiinnneee. 11
5.1 Setting up the hardware for testing with Direct Test Mode 11
5.2 Testing the physical layer on your own product.............cccoovvviiiinnnn. 12
6 QLI o= TN 1 o1 = Y/ 13
6.1 Using lib_traces in COAecccuuiiiiiiiiiiiieeeeee e 14
6.2 Hardware SEIUDcooe e 15
6.3 Interpreting reSUISooo i 15
7 Hardware description ... 16
7.1 SCC modules (NRF2740 and NRF2741) ... 16
7.2 Carrier board module (NRF2735)coooiiiiiceiee e, 18
7.3 Master emulator (NRF2739)uuiiiiiiiiee e 22
7.4 Module schematics and PCB layouts..........cccccoeiiiiiiiiiiiiiiiiieee 22
8 SDK Software architecture............cooooiiiiiiiiiirserrrrrrrr s 23
8.1 ACTMOAUIES......ee e e e e 23
8.2 DISPALCNET . 24
9 Porting the SDK......... s e e e e e 27
9.1 Hardware Abstraction Layer (HAL) Modules.............cooooiiiiiiiiiiiiiinnee. 27
9.2 Y o] o] [T%= 11T o < R 28
9.3 Other MOAUIES......eeiiieieeeeeeee e 28
10 Troubleshooting.......ccccovvmmmmmimiei 29

Revision 1.1 Page 3 of 29

N NOR nNRF8001 Development Kit User Guide

SEMICONDUCTOR

1 Introduction

The nRF8001 Development Kit is your first step in implementing a Bluetooth® low energy product. It is
designed for use with the nRFgo Starter Kit, and contains all the necessary hardware to begin developing
an application. An SDK (Software Development Kit) consisting of firmware libraries, example applications
and computer tools also comes with this kit (available for download at www.nordicsemi.com, see the
Getting Started Guide for details).

This user guide describes a typical setup, how to use the hardware, and introduces you to the software
development tools.

1.1 Who should read this user guide?

This user guide is aimed at anyone who wants to develop a Bluetooth low energy product. This requires
knowledge of embedded software development and some hardware knowledge.

You may also be interested in this user guide if you are conducting radio peformance tests (see chapter 5
on page 11).

To fully understand this user guide, you will need knowledge of the Bluetooth low energy specification and
terminology.

Before you begin reading this user guide, you should read the nRF8001 Development Kit's Getting Started
Guide.

1.2 Minimum requirements

Below are the minimum requirements for the nRF8001 Development Kit:
* nRFgo Starter Kit

* Computer with 2 USB and 1 RS232 ports
* Windows XP and Windows 7

1.3 Documentation

The following documentation is recommended reading:

Document Description

nRF8001 Development Kit Getting | A step by step guide on how to get started with the Development Kit.
Started Guide

nNRF8001 Preliminary Product Defines the nRF8001 hardware and electrical specifications and
Specification describes the ACI (Application Controller Interface).

nRFgo Starter Kit User Guide Contains information about the nRFgo Motherboard (nRF6310).
nRFgo Studio help nRFgo Studio help documents the functionality of the nRFgo Studio.

1.4 Writing Conventions

This user guide follows a set of typographic rules that makes the document consistent and easy to read.
The following writing conventions are used:

+ Commands are written in Courier New.
» File names and User Interface components are written in bold.

« Cross references are underlined and highlighted in blue.

Revision 1.1 Page 4 of 29

http://www.nordicsemi.com
http://www.nordicsemi.com
http://www.nordicsemi.com

S NOR nRF8001 Development Kit User Guide

SEMICONDUCTOR
2 Kit content

The nRF8001 Development Kit consists of hardware and software components, firmware libraries, and
example applications.

2.1 Hardware components

NRF8001
nRF8200

nRF2741: nRF8001 module with SMA connector

j 5 nRF8200 samples n
k 1 patch cable o nRF2735: Carrier board with an nRF8200 application
processor
| nRF2739: Bluetooth low energy master p 5 nRF8001 samples
emulator
m nRF2740: nRF8001 module with PCB
antenna

Figure 1. Hardware components

For more information on the hardware modules see Chapter 7 on page 16.

Revision 1.1 Page 5 of 29

N ORD nNRF8001 Development Kit User Guide

SEMICONDUCTOR

2.2 Software and documentation components

The SDK (Software Development Kit) can be downloaded from a Nordic MyPage account at
www.nordicsemi.com. The SDK is delivered in the form of an installer file containing the following
components:

* nRFgo Studio v1.8: Computer software for setting up nRF8001. Also controls the nRFgo
Motherboard and programs the nRF8200 on the carrier board (nRF2735).

» SDK: Source code, compiled firmware, and API documentation

* Master Control Panel: Computer software for the master emulator (nRF2739)

* nRFprobe: a debugger plugin for Keil C51

¢ nRF8001 Development Kit User Guide

Revision 1.1 Page 6 of 29

http://www.nordicsemi.com

N ORD nNRF8001 Development Kit User Guide

3 Typical setup

The Development Kit is designed for use with the nRFgo Starter Kit. Figure 2. shows the relationship
between the Development Kit hardware and software components and the nRFgo Starter Kit.

.) Generate
D ﬁ —Written for—m e D

Master Control Panel SDK Keil pvision (PK51) nRFgo Studio
| (Source code) |

[[7] nRF8001 Development Kit

: nRFgo Starter Kit

use

— — —sgoguop) — — — —

. — — —souy— — — —

Application Controller
Interface (physica

nRFgo
Motherboard

nRF8001) |

I
SCC module (with ".\D

\ ."_ _— — — — — amEauwy padlof- — — — —

master emulator

o
e
=
=

B

{=2
=3
Q

-

@

-4}

=

a
[
m
o
o

carrier board
(with nRF8200)

Figure 2. Typical setup

3.1 nRFgo Studio

Before you can start writing any application code for your Bluetooth low energy product you need to decide
what kind of user data your product needs to transfer. For interoperability with products from other vendors
you need to follow set formats specified by Bluetooth. These formats are defined in Bluetooth low energy
services and profiles and decide how, for instance, a temperature sensor reports its data. From the
Bluetooth menu in nRFgo Studio you can choose and combine the necessary services for your product:

» Setting the static parameters for nRF8001:

+ Setup of GATT services, profiles: lets you decide which Bluetooth low energy profiles you
want to include. The GATT Services view allows you to select the services you want to
include in your application. You can also define your own services and characteristics.

* GAP setup: lets you tune the parameters of the Generic Access Profile (GAP), for example,
timing parameters.

» Hardware setup: lets you select and configure the nRF8001 hardware features you want to
use. Make the appropriate choices according to your product design.

Revision 1.1 Page 7 of 29

S o 0 R D I c nNRF8001 Development Kit User Guide

MICONDUCTOR

When you have the setup you want, you can generate source files containing the setup code. The files
generated by nRFgo Studio are used by the ACI library (lib_aci) in the SDK to configure nRF8001 before
use. This allows you to focus on the application code rather than spending time ensuring the Bluetooth
setup details are correct.

You can also conduct Bluetooth low energy tests and program the hardware from the Bluetooth menu in
the nRFgo Studio:

+ Testing the RF PHY using Direct Test Mode.
* Programming nRF8200 and controlling the nRFgo Motherboard.

Please see the nRFgo Studio's online help for detailed instructions.

3.2 SDK

The SDK contains source code for developing applications on the application processor (hnRF8200). It
includes working examples, and contains libraries that are portable to other microcontroller platforms. The
examples are written in C, delivered precompiled, and can be programmed on nRF8200 using nRFgo
Studio. Project files for Keil pVision (IDE) are also delivered with the SDK.

More details on the SDK code can be found in chapter 8 on page 23 and the SDK's online help file (all
source code is documented in this online help file).

3.3 Master Control Panel

The Master Control Panel is used with the master emulator (nRF2739) to create a Bluetooth low energy
peer device for nRF8001. With the Master Control Panel you can:

» scan for advertisers
¢ connect with nRF8001
* send/receive data

Two additional components are installed in conjunction with the Master Control Panel:

« Visual C++ 2008 Redistributables: Files needed for the Master Control Panel, unless .Net v3.5 has
already been installed
» Drivers for the master emulator (Usb2Spi)

3.4 Keil C51 compiler (not included in this kit)

The source code is written in C and developed using the Keil PK51 Professional Developer's Kit. You can
buy this kit from Keil or download the C51 Evaluation Software at www.keil.com.

To debug software for the application processor (nRF8200) you must also install nRFprobe, the debugger
plugin for products from Nordic Semiconductor. The debugger integrates with Keil's uVision IDE.
Download nRFprobe from www.nordicsemi.com/update.

The SDK installer checks for existing installations of Keil's C51 compiler on the default installation path. If
an installation is found, the following files are copied onto the compiler's include path:

« stdint.h
+ stdbool.h
» Header files with register definitions

Revision 1.1 Page 8 of 29

http://www.keil.com
http://www.nordicsemi.com/update

NRF8001 Development Kit User Guide N No Ic

These files are necessary for compiling the examples in the SDK. If you installed the SDK first, you can run
the installer again:

1. On the Choose components page, deselect all items except Software Development Kit.
2. Complete the installation.

Note: The Keil C51 compiler must be installed prior to installing the nRFprobe program.

Revision 1.1 Page 9 of 29

N RDIC nNRF8001 Development Kit User Guide
> SEMIC

ONDUCTOR

4 Programming the carrier board (nRF2735)

The carrier board (nRF2735) features a microcontroller (nRF8200) that is used for the application
firmware. In order to test your own applications or examples from the SDK, you need to program the carrier
board. This chapter descripes how to program the carrier board from nRFgo Studio.

Make sure the ON/OFF switch (89) on the nRFgo Motherboard is turned off.

Plug the carrier board (nRF2735) onto the nRFgo module connector on the nRFgo Motherboard.
Connect the nRFgo Motherboard to your computer using a USB cable.

Turn the nRFgo Motherboard power on by switching S9 to ON.

Start the nRFgo Studio from the Windows Start menu - Programs - Nordic Semiconductor -
nRFgo Studio.

In nRFgo Studio, select Motherboards in the Device Manager pane and then select

Module - nRF8200.

7. Select the file you want to download to nRF8200 for programming.

8. Click the Program button.

a0~

o

& nRFgo Studio g@]@l

Fil= Wiew Help
Features
[2,45Hz
= Front-End Tests
Tx carrier wawe oukput

% Programming nRFModule on Board O @

Programming Advanced settings

R conskant carrierLO leakage -
TR channel sweep File to program: _nity_application_nrfSZDD.hex L]
R sensikivity A
(= Bluetooth MY data: | @ [Erowse, ..] [Edit My data,.,
nRFE001 Configuration
Dispatcher
Trace Translator
Direct Test Mode

Device Manager x
(= Matherboards |

=
=

nRF ISP Motherboard connector
Bootloaders

Program l [Yerify] [Read] [nRF Reset

Log x
'(c') Nordic Semiconductar AS4 2010

Figure 3. nRFgo Studio after the carrier board has been successfully programmed

Revision 1.1 Page 10 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

5 Testing the physical layer with Direct Test Mode

To test the RF performance of the physical (PHY) layer of the Bluetooth low energy stack in nRF8001 you
can use the Direct Test Mode (DTM) interface. This interface is compliant with the description in the
Bluetooth Specification, Version 4.0, Volume 6, Part F. It can be used for performance testing, tuning your
prototypes and compliance testing.

The DTM is accessed through a dedicated UART interface on nRF8001. This interface is only available
when the nRF8001 is in test mode. Please see the nRF8001 Preliminary Product Specification for
information on the interface and how to enter test mode.

The DTM is designed for use with Bluetooth test equipment. If you don't have a Bluetooth tester you can
access the interface using this Development Kit and using nRFgo Studio to run the tests.

5.1 Setting up the hardware for testing with Direct Test Mode

1. Mount the nRF8001 SCC module (either nRF2740 or nRF2741) and the carrier board (nRF2735)
onto the nRFgo Motherboard.

2. Connect the patch cable between P15 on the nRFgo Motherboard and P2 on the nRF8001 SCC
module (nRF2740 or nRF2741). Make sure the RXD/TXD labels match for each wire.

3. Connect the nRFgo Motherboard to your computer using a USB cable. Make sure switch $11 is

ON.

Connect a serial cable from RS232 to the serial port on your computer.

You are now ready to begin testing with Direct Test Mode in nRFgo Studio.

o~

UsSB

connection .
Serial

connection
(RS232)

nRFgo
Motherboard

. Connect the SCC module and the TXD/RXD
pins (P15)

Patch cable

Figure 4. Hardware setup for testing with Direct Test Mode

Revision 1.1 Page 11 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

5.2 Testing the physical layer on your own product

The DTM (Direct Test Mode) must be available on your product so that it can be qualified as a Bluetooth
low energy product. This means that your application must have a way of setting the nRF8001 in test mode
and have connections to the UART interface.

set_in_test_mode is a simple demo example showing how nRF8001 is put into the test state. This is the
software that is installed from the Direct Test Mode GUI. From the source code you can see how the ACI
command Test is used to set the device in test mode.

Revision 1.1 Page 12 of 29

NRF8001 Development Kit User Guide

>

©

ORD

EMICONDUCTO

R

6 Trace library

The nRF8001 SDK has a trace library, called lib_traces, which allows you to trace the execution of your
application code. This is useful for debugging, analyzing errors, or to get a better understanding of how the

firmware behaves.

Tracing is a common debugging technique, and the trace library implements the functions that allow you to

trace. The trace messages are sent through the UART interface, and you can observe them using the
computer’s serial port. nRFgo Studio can read the trace messages and translate them to a readable

format. The messages are displayed in a list in the order they arrive, giving you a possibilty to observe the
execution of the code. In a radio system this is preferrable to the in-circuit debugger, since you only control

one end.

The library is designed to send three-byte codes instead of message texts. This is to minimize the
transmission time so that the function does not interfere with timing in the application. When the
development is finished, it is also possible to disable the functions completely without touching the code.

Using the Trace Translator in nRFgo Studio you can convert these coded messages into a readable

format.

I nRFgo Studio Q@gl

File View Help
Features

=2, 4GHz
B Front-End Tests
TX carrier wave output
R constant cartier/LO leakage
TafRx channel sweep
Rz sensitivity
= Bluetoath
nRF3001 Configuration
Dispatcher
Trace Translator
Direct Test Mode

Device Manager
=} Motherboards
= Board 0
Module - RRF8200
nRF I5P Motherboard connector
Bootlnaders

Log
The flash memory on board 0 was wverified

werifying the: Flash memory on board 0
The flash memory on board 0 was werified

x

Erowse

Disconnect From UART

Time:

16:40:12.174

16:40:12.174
16:40:12.159
16:40:12.143
16140121258
16:40:12.1258
164012.112
16:40:12.09
16:40:12.09
16:40:12.081
16:40:12.065
16:40:12.065
16:40:12.049
16:40:12.049

(o Jm

Code:

150

e
o h o
14 0
130
ol f o
o f o
ol f o
o f o
ol f o
o f o
ol f o
o f o
ol f o
o f o
ol f o

C:fsvncheckoutsfubluesdkstrunk/source_codefprojects/battery_demo

Translated kext

LOG_INFO: receveid event pipe status (0x0

LOG_INFO: connected :0x0

LOG_INFO: advertising :0:0

LOG_INFO: received event device started standby :0x0
LOG_INFO: battery wait start skd_by event :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0
LOG_INFO: battery send host_configuration message :0x0

Programming board O with file C:jsvncheckoutsjubluesdl/trunkfsource_codefprojectsibattery_demojbuildfbattery_demo_nrf8200 hex starts

Figure 5. Trace translator in nRFgo Studio

Revision 1.1

Page 13 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

6.1 Using lib_traces in code

The following example shows how to use one of the functions in lib_traces:

#include "lib/lib_traces.h"
#include "info_codes.h"
#include "error_codes.h"

void main(void)

{
LIB_ TRACES LOG_INFO(INFO_CODE MAIN STARTED);
while(1);

¥

The functions are declared in lib_traces.h, which must be included in your source files. The file is located in
the "lib" folder in the SDK. The message codes are defined in the files info_codes.h and error_codes.h.
These files are project specific and should be located with the application code.

LIB_TRACES_LOG_INFO() is a macro from the trace library. It takes one parameter: A one-byte
information code. INFO_CODE_MAIN_STARTED is defined in info_codes.h as follows:

#define INFO_CODE_MAIN_STARTED 0x04 // Main started

As result the following three bytes will be sent over the UART: 0xC0 0x04 0x00

» 0xCO: The message type is "Info code"
* 0x04: Value of INFO_CODE_MAIN_STARTED
* 0x00: Optional parameter, not used in this example.

To send the message the compile option DEBUG_ENABLE must be set to CODED_TRACES. Setting
DEBUG_ENABLE to NO_TRACES will deactivate the trace functions.

Revision 1.1 Page 14 of 29

NRF8001 Development Kit User Guide N ORD

6.2 Hardware setup

The only difference from a normal setup is that the UART interface must be connected to the PC:

1. Connect a serial cable from the RS232 connector on the Motherboard to the PC's serial port.
2. Make a connection from the UART header (P15) to the application processor’'s UART pins. The
UART pins from the nRF8200 can be found on header P8 on the Motherboard; P0.3 (TXD) and

P0.4 (RXD).
nRFgo Studio
Use Trace translator
USB
connection Serial
connection
(RS232)
nRFgo
Motherboard
‘ Make a connection between the UART
l—- . interface of the application processor
IR (nRF8200) and the TXD/RXD pins (P15)
[
‘ |
| Port pins, buttons, and LEDs |
Figure 6. Trace library setup
6.3 Interpreting results

An easy way to view the trace is to use the Trace translator in nRFgo Studio. The Trace translator will read
the messages from the serial port and interpret them according to the coding definitions. It will also add a
timestamp. A timestamp for the example in section 6.1 will be:

Time Code Translated text
13:55:04.342 0C 04 00 Main started

The description text is the text in the comment in the info_code.h:
#define INFO_CODE_MAIN_STARTED 0x04 // Main started
It is therefore important that nRFgo Studio can access the same info_codes.h and error_codes.h that were

used when compiling the firmware.
Note: Do not use the timestamp for time measurements if accuracy is required.

Revision 1.1 Page 15 of 29

NRF8001 Development Kit User Guide x ORD

7 Hardware description

This appendix describes the SCC (Single Chip Connectivity) modules, carrier board and master emulator.

7.1 SCC modules (nNRF2740 and nRF2741)

The two SCC modules (nRF2740 and nRF2741) are identical except nRF2740 has an antenna and
nRF2741 has an SMA connector:

®

@® UART test interface RXD @ nRF8001
® UART test interface TXD ® PCBantenna

® Connector P1, ACl interface to the carrier board (nRF2735), ® SMA connector
located on the bottom side of the SCC modules

Figure 7. nRF2740 and nRF2741 top sides

Note: Gerber files for the core circuitry PCB layout are available for download from
www.nordicsemi.com.

Revision 1.1 Page 16 of 29

http://www.nordicsemi.com

NRF8001 Development Kit User Guide N

©

ORD

EMICONDUCTO

R

711

Studio.

71.2

For further details about signal description please see the nRF8001 Preliminary Product Specification.

Solder bridge SB1

By default, solder bridge SB1 is shorted. Opening the SB1 solder bridge enables use of the nRF8001
internal step-down DC/DC converter. This feature is enabled from the Bluetooth menu in the nRFgo

Connector P1

Pin number

Connector P1

GND

VCC_nRF

ACTIVE

Not in use

SCK

MOSI

MISO

RDYN

OIO|N[O| OB WDN|—

REQN

-
o

RESET

Table 1. Pinout for connector P1

713 Connector P2
This connector is used for the Direct Test Mode interface, which is treated in more detail in chapter 5 on
page 11.
Pin number | Connector P2
1 TXD
2 RXD
Table 2. Pinout for connector P2
Revision 1.1 Page 17 of 29

NRF8001 Development Kit User Guide N ORD

7.2 Carrier board module (nRF2735)

The carrier board (nRF2735) contains an application processor (hnRF8200) which controls the nRF8001
module and interfaces with the application circuitry.

Note: Connectors P1 and P2 interface with the nRFgo Motherboard and are located on the bottom
side of the carrier board, see Figure 9. on page 19.

e 2C”34V -0

2008.42
10000002

SEMICONDUCTOR. _
nRF2735

@® nRF8200 (® P3: Connector for direct access to analog inputs on nRF8200
® P5: Connector to SCC @ P4: Jumper for measuring current of SCC modules
modules (nRF2740/nRF2741) (nNRF2740/nRF2741)

Figure 8. nRF2735, top side

All available nRF8200 I/O pins are routed to the carrier board connectors P1 and P2. Connectors P1 and
P2 connects the carrier board to the nRFgo Motherboard. When the carrier board is plugged into the nRF
module socket on an nRFgo Motherboard, the nRF8200 1/Os can be accessed from general purpose 1/0

port connectors P8 and P10 on the nRFgo Motherboard.

Development Kit Port
P0.x P1.x
nRF8200 P0.x? P1.x°
nRFgo Motherboard 1/O header P8 P10

a. Except P0.0, P0.1, P0.2 and PO.6.
b. Except P1.4, P1.5, P1.6 and P1.7.

Table 3. Pinouts for nRF8001 Development Kit

Revision 1.1 Page 18 of 29

NRF8001 Development Kit User Guide

>

ORD

EMICONDUCTOR

7.21 Connectors P1 and P2

Connectors P1 and P2 connect the carrier board to the nRFgo Motherboard.

Vext

Vext

GND
Not in use
Not in use
Not in use

Not in use

GND
TCK
TDI
GND
Board ID
GND
Spare3
Not in use
Not in use
Not in use
Not in use
GND

GND

© N 0 w

13
15
17
19
21
23
25
27
29
31

33
35
37
39

U
N

o o N

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

VTG
VTG
GND
Not in use
Not in use
Not in use
Not in use
GND
TDO
TMS
GND
GND
GND
Spare4
Not in use
Not in use
Not in use
Not in use
GND

GND

Vece

Vce
GND
Not in use
Not in use
nRF P0.4

Not in use

GND
MOSI
CSN
GND
SCL
PROG
Sparel
nRF P1.0
nRF P1.2
Not in use
Not in use
GND

GND

© N O w

25
27
29
31
33
35
37
39

Ryl
—_

o o N

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

VTG_nRF
VTG_nRF
GND
Not in use
nRF P0.3
nRF P0.5
nRF P0.7
GND
MISO
SCK
GND
SDA
nRF Reset
Spare2
nRF P1l.1
nRF P1.3
Not in use
Not in use

GND
GND

Figure 9. Carrier board module connectors - P2 and P1 as seen through mounted carrier board

Revision 1.1

Page 19 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

Pin Connector P2 Connector P1
numbers
Name Function Name Function
1,3 Vext Power supply output for circuitry vce nRFgo Motherboard
on nRFgo Motherboard. main power supply
2,4 VTG Connected to vext. VTG nRF |Target power supply for nRF8200
on the carrier board module and
nRF device on SCC module(s)
(nRF2740/nRF2741)
56 GND Ground GND Ground
7-14 Not in use |[NC PO.x nRF8200 device port 0
15-16 GND Ground GND Ground
17 -20 | TCK,TDI, |nRFprobe HW debugger JTAG |MOSI,MISO,|nRFgo Motherboard
TDO, TMS |interface. csN sck? | main MCU SPI control
interface
21-22 GND Ground GND Ground
23 Board 1DP|Prototype kit ID scL? 2-wire clock from nRFgo
Motherboard main MCU
24 GND Ground spA? 2-wire data from nRFgo
Motherboard main MCU
25-26 GND |Ground progP | NRFgo Motherboard main MCU
b | program enable and reset control
nRF_RST of the carrier board module
27 -28 Spare x |Reserved Spare x |Reserved
29-36 | Notinuse |[NC Pl.x nRF8200 device port 1
37 -40 GND Ground GND Ground

a. nRFgo Motherboard main MCU control interfaces only. nRF8200 device SPI and 2-wire interfaces are
available in the nRF8200 device ports (pins 7 - 14 or 29 - 36).
b. Used by nRFgo Motherboard only.

Table 4. Description of the carrier board P2 and P1 connector pins

7.2.2 Connector P5

This connector (® in Figure 8. on page 18) contains the ACI interface of nRF8001 and connects the SCC
module (either nRF2740 or nRF2741) to the application processor on the carrier board. For detailed signal
descriptions please see the nRF8001 Preliminary Product Specification.

Pin number | Connector P5
GND
VCC_nRF
ACTIVE
CSN
SCK
MOSI
MISO
RDYN
REQN
RESET

OO N OO B WIN|—~

-
o

Table 5. Pinout for connector P5

Revision 1.1 Page 20 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

7.2.3 Connector P3 - analog inputs

Direct access to the nRF8200 analog inputs is available from connector P3 (see Figure 8.). To avoid any
noise from the nRFgo Motherboard, the 0 Ohm resistors must be removed from the inputs that are directly
connected to external analog circuitry.

Pin number | Connector P3

GND
PO.
PO.
PO.
P1l.
PO.
P1l.
Pl.

ON| OO | W DN~
RN N|o|ul|bh|lw

Table 6. Pinout for connector P3
Note: It is important that you only remove the 0 Ohm resistors on the pins that you use for high
quality analog input. Pay special attention to pins that are also used for the nRF8200
programming and HW debug interfaces.

7.2.4 Jumper P4

This jumper supplies voltage to a connected SCC module (nRF2740/nRF2741). By replacing this jumper
with an ampere meter it is possible to measure the current drawn by the nRF8001 device on the SCC
module (nRF2740/nRF2741) in any operating mode.

Details on the nRF8001 static and dynamic current consumption can be found in the nRF8001 Product
Specification.

For details on how to perform dynamic current consumption measurements, please read the white paper
'RF Performance Test Guidelines', available from www.nordicsemi.com.

7.2.5 Solder bridges SB1 and SB2

By default all available I/O pins of nRF8200 are routed to general purpose /O port connectors (P8 and
P10) on the nRFgo Motherboard. Alternatively, you can connect the 2-wire interface of nRF8200 to a
separate 2-wire bus on the nRFgo Motherboard, giving you access to the nRFgo display module fitted in
the extension port of the nRFgo Motherboard.

To make this connection you need to short the solder bridges SB1 and SB2 (also marked SDA and SCL)
on the carrier board.

Note: Shorting the solder bridges does not remove the connection to the general purpose port
connectors. Make sure you don't have any conflicts between this bus connection and the
circuitry attached to the relevant port connector.

Revision 1.1 Page 21 of 29

http://www.nordicsemi.com
http://www.nordicsemi.com

NRF8001 Development Kit User Guide x ORD

7.3 Master emulator (nRF2739)

The master emulator (nRF2739) is a dongle that enables you to control and monitor the traffic with
nRF8001. When the master emulator is combined with the Master Control Panel it gives you a peer device

for nRF8001 that you can use to test the wireless connection.

nRFgo

NORDIC

SEMICONDUCTOR
nRF2739

@ USB connector ® LED

Figure 10. Master emulator (nRF2739)

7.4 Module schematics and PCB layouts

You can download nRF8001 Development Kit hardware schematics and PCB layout files from
www.nordicsemi.com.

Revision 1.1 Page 22 of 29

http://www.nordicsemi.com

NRF8001 Development Kit User Guide N ORD

8

SDK Software architecture

Application

Application specific module(s)

(One or several modules defining the .
application) Dispatcher
(lib_dispatcher)

Services API
Peripheral (Seriess)
el ACl library
(lib_aci)

ACI transport layer
(lib_aci_tl)

Single Chip Connectivity device

Figure 11. Block diagram of the SDK source code

Figure 11. illustrates the main components of the SDK source code. Understanding these main
components is important for using the source code correctly and efficiently:

8.1

ACI library: Provides an API for the ACI protocol which lets you send ACI commands, and decode
ACI events.

ACI transport layer: Handles the physical transport and hardware dependencies. The transport
layer must be rewritten for the microcontroller that is used with nRF8001. Provided the interface of
the transport layer remains unchanged the ACI library can be used as is.

Services: A module that contains the server setup and access to the ACI channels. Each
application has a services module which depends on the ACI library.

Dispatcher: This is the base module for the message driven architecture used in the SDK's
examples. The Dispatcher code is generated automatically from a tool integrated in nRFgo Studio.
Application: This block represents the files that implement the application; the code that defines the
behavior. The SDK contains examples. Your development should mainly occur within this block.
Peripherals: Hardware modules written for demonstration purposes. If you are using a third party
microcontroller then use source code from the MCU vendor.

ACI modules

ACl is the interface for nRF8001. The SDK has two modules that handle the AClI communication. One
handles the physical transport and the other implements the protocol.

Revision 1.1 Page 23 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

811 ACllibrary (lib_aci)

This library implements the ACI protocol and lets you send commands, and receive events. Please refer to
the nRF8001 Preliminary Product Specification for protocol details. The ACI library gives you:

* An API for AClI commands
» Decoding of ACI events
* Flow control implementation

The ACI library does not have hardware dependencies, and can be used by any microcontroller with a C
compiler. The ACI library requires the ACI Transport Layer, described in the following section.

8.1.2 ACI transport layer (hal_aci_tl)

The ACI Transport Layer module is a Hardware Abstraction Layer (HAL) for the ACI physical transport. It
handles the SPI communication, and the hand-shake signals. Because of the hardware dependencies this
module must be ported to your target microcontroller.

8.2 Dispatcher

All the examples are built around a message dispatcher. Modules that must communicate with each other
post messages to the dispatcher. The dispatcher then forwards the message to the correct receiver.

Revision 1.1 Page 24 of 29

NRF8001 Development Kit User Guide o R D
SEMICONDUCTOR

8.21 Using the dispatcher

The following is the essential code that sets up and starts the dispatcher:

The lib_dispatcher_dispatch() function will go through a message queue and call subscriber functions.
Each message has a message handle that defines which subscriber function should be called from the
message.

Subscriber functions are defined as the main part of the application and must be declared in the following
form:

void function_handle (void);

Messages are added to the queue by calling lib_dispatcher_post_msg():

There is also an alternative declaration which allows arguments to be passed to the subscriber functions.
Use the compile option —-D POST_WITH_DATA to use this alternative. In this case there the subscriber
functions must be declared as follows:

void function_handle (uint8_t size, uint8_t *buffer);

And messages are added to the queue by calling lib_dispatcher_post_msg() with the following parameters:

Using parameters requires more code space than not using them.

The lib_dispatcher_dispatch() will handle messages as long as there are messages in the queue. When
the queue is empty it will enter power down mode.

Revision 1.1 Page 25 of 29

NRF8001 Development Kit User Guide N NORDIC

SEMICONDUCTOR

The SDK example applications are designed for low power consumption and will mostly be in low power
mode. On wake-up the ISR of the wake-up source will perform the critical processing and post a message
to the dispatcher using lib_dispatcher_post_msg(). When the ISR is exited the lib_dispatcher_dispatch()
will handle the message and call the subscriber functions. When there are no more messages the
dispatcher goes back to power down mode.

8.2.2 Configuring the Dispatcher

For setting up the dispatcher we recommend using the Dispatcher Tool in nRFgo Studio. The tool lets you
define the relationship between handles and subscribers through a graphical user interface.

The Dispatcher Tool generates a configuration file that the dispatcher will include at compile time. See the
nRFgo Studio help file for complete reference of the dispatcher library, and the Dispatcher Tool chapter to
see how the configuration file is generated.

8.2.3 Creating stack space for reentrant functions

The functions used by the dispatcher are called from interrupt and must, therefore, be declared as
reentrant. When using the dispatcher you must enable stack space. This is done by editing the
startup.a51 file.

When creating a new project in Keil’'s pVision you will be asked if you want to include startup.a51 in your
project. Answer Yes to that question. You can also include the file later by manually copying from
C:\Kei\C51\LIB to your source directory.

The code sample below shows the modified lines in startup.a51: XBPSTACK is set to 1 to enable stack
space in XDATA. XBPSTACKTOP defines the size of the stack.

; <h> Stack Space for reentrant functions in the LARGE model.

; <q¢> XBPSTACK: Enable LARGE model reentrant stack

; <i> Stack space for reentrant functions in the LARGE model.

XBPSTACK EQU 1 ; set to 1 if large reentrant is used.

; <0> XBPSTACKTOP: End address of LARGE model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.

XBPSTACKTOP EQU 0x03FF +1 ; default OFFFFH+1

; </h>

8.24 Hardware dependencies

The dependencies are related to power down mode. The code for entering power down mode is found in
hal_power.c. This file must be ported when using a third-party application processor.

Revision 1.1 Page 26 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

9 Porting the SDK

The SDK is designed for easy porting to any application controller. This chapter gives more information
about how to do the porting and the minimum necessary steps.

9.1 Hardware Abstraction Layer (HAL) Modules

To port the SDK to an application controller, you must re-implement the HAL modules you need for your
application. However, we recommend that you do not modify the API itself, but only re-implement the
functions that are already defined. This will avoid modifications to the application code.

The functionalities you need to port are:

» /O configurations, in particular for the SPI lines, RDYN line, REQN line and lines connected to the
LEDs.

» SPI master module: you need to configure this according to the Application Controller Interface
(ACI) specification, see the nRF8001 Product Specification, chapter 7.1. for a description of this
interface.

Note: Make sure that the connections are good if you are using the SCC module (nRF2740 and
nRF2741) with a third party application processor development kit.

9.1.1 hal_platform.h

This file gathers all includes and register access that are specific to nRF8200. It also contains a macro to
declare variable in specific area of the memory (for data retention during deep sleep modes) and to
configure interrupt handlers for nRF8200. This file has to be re-implemented for a new application
controller using equivalent functionality on the new application controller.

9.1.2 hal_aci_tl/hal_aci_tl_bb

To communicate with nRF8001 you need to re-implement at least the hal_aci_tl (ACI transport Layer). This
module implements the communication interface between the application processor and the nRF8001, the
ACI transport layer. To verify your implementation, you can use the aci_tl_demo project which checks bi-
directional data transfer and integrity of the data. See the aci_tl_demo project for more information.

The hal_aci_tl_bb file is the same behavior without using the SPI drivers (‘bit banging’ implementation).

9.1.3 hal_io.h

This file contains macros to configure and access Input/Output lines. It has to be re-implemented on a new
application controller.

9.1.4 hal_power

This module contains functions to handle the different “sleep modes” of the nRF8200. You will also find in
this file functions to handle one timer. This module has to be re-implemented according to the new
application controller’s “sleep modes” features and timer capabilities.

9.1.5 hal_uart

This module offers functionalities to interface the serial port (UART) of the nRF8200. In the SDK, this is
used only to allow sending debug information through the UART (see paragraph 6 Trace library). This
module needs to be re-implemented to work on a new application controller.

Revision 1.1 Page 27 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

9.2 Applications

Each application has parts which need to be ported or partially re-implemented since they are dependent
on the application behavior and its interaction with the user (LEDs, Buttons, ...). This depends on which pin
is connected to which type of interface. These definitions and configurations are in the ‘system.c’ and
‘system.h’ files.

9.3 Other modules

The ‘LIB’ modules are designed to be as portable as possible, so you should be able to use them as is.
The same is true for the ‘services’ modules.

Revision 1.1 Page 28 of 29

NRF8001 Development Kit User Guide N ORD

SEMICONDUCTOR

10 Troubleshooting

The nRF8001 on the SCC module (nRF2740 and nRF2741) does not respond when | try to contact it.
What has happened?
* Verify that the jumper P4 on the nRF2735 is connected.
The drop-down menu in the Master Control Panel displays no serial number. What has happened?
« Verify that the Master Control Panel software and the driver for USB2SPI have been installed and

that the master emulator (nRF2739) has been plugged into a USB port on your computer.

LED DO on the master emulator (nRF2739) does not light up when | plug in the USB cable. What has
happened?

» Verify that the Master Control Panel software and the driver for USB2SPI have been installed and
that the master emulator (nRF2739) has been plugged into a USB port on your computer.

Revision 1.1 Page 29 of 29

	Contents
	1 Introduction
	1.1 Who should read this user guide?
	1.2 Minimum requirements
	1.3 Documentation
	1.4 Writing Conventions

	2 Kit content
	2.1 Hardware components
	2.2 Software and documentation components

	3 Typical setup
	3.1 nRFgo Studio
	3.2 SDK
	3.3 Master Control Panel
	3.4 Keil C51 compiler (not included in this kit)

	4 Programming the carrier board (nRF2735)
	5 Testing the physical layer with Direct Test Mode
	5.1 Setting up the hardware for testing with Direct Test Mode
	5.2 Testing the physical layer on your own product

	6 Trace library
	6.1 Using lib_traces in code
	6.2 Hardware setup
	6.3 Interpreting results

	7 Hardware description
	7.1 SCC modules (nRF2740 and nRF2741)
	7.1.1 Solder bridge SB1
	7.1.2 Connector P1
	7.1.3 Connector P2

	7.2 Carrier board module (nRF2735)
	7.2.1 Connectors P1 and P2
	7.2.2 Connector P5
	7.2.3 Connector P3 - analog inputs
	7.2.4 Jumper P4
	7.2.5 Solder bridges SB1 and SB2

	7.3 Master emulator (nRF2739)
	7.4 Module schematics and PCB layouts

	8 SDK Software architecture
	8.1 ACI modules
	8.1.1 ACI library (lib_aci)
	8.1.2 ACI transport layer (hal_aci_tl)

	8.2 Dispatcher
	8.2.1 Using the dispatcher
	8.2.2 Configuring the Dispatcher
	8.2.3 Creating stack space for reentrant functions
	8.2.4 Hardware dependencies

	9 Porting the SDK
	9.1 Hardware Abstraction Layer (HAL) Modules
	9.1.1 hal_platform.h
	9.1.2 hal_aci_tl/hal_aci_tl_bb
	9.1.3 hal_io.h
	9.1.4 hal_power
	9.1.5 hal_uart

	9.2 Applications
	9.3 Other modules

	10 Troubleshooting

