

November 2009

FAN7361, FAN7362 High-Side Gate Driver

Features

- Floating Channel Designed for Bootstrap Operation to +600V
- Typically 250mA/500mA Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- V_{CC} & V_{BS} Supply Range from 10V to 20V
- UVLO Function for V_{BS}
- Output In-phase with Input Signal
- 8-SOP

Applications

- PDP Scan Driver
- Motor Control
- SMPS
- Electronic Ballast

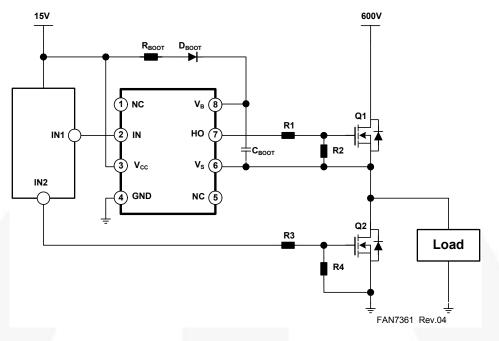
Description

The FAN7361/FAN7362, a monolithic high-side gate drive IC, can drive MOSFETs and IGBTs that operate up to +600V. Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to V_S =-9.8V(typ.) for V_{BS} =15V.

The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage. Output drivers typically source/sink 250mA/500mA, respectively, which is suitable for fluorescent lamp ballast, PDP scan driver, motor control, and so on.

Ordering Information

Part Number	Package	Operating Temperature Range	© Eco Status	Packing Method
FAN7361M ⁽¹⁾				Tube
FAN7361MX ⁽¹⁾	8-SOP	40°C 405°C PallC	Dalle	Tape & Reel
FAN7362M ⁽¹⁾		-40°C ~ 125°C	RoHS	Tube
FAN7362MX ⁽¹⁾				Tape & Reel


Note:

1. These devices passed wave soldering test by JESD22A-111.

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Typical Application Circuit

Figure 1. Typical Application Circuit

Internal Block Diagram

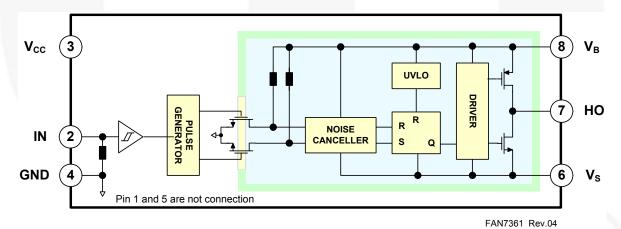


Figure 2. Functional Block Diagram

Pin Assignments

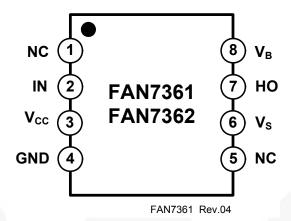


Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin	Name	Function/ Description
1	NC	No Connection
2	IN	Logic Input for High-Side Gate Driver Output
3	V _{CC}	Supply Voltage
4	GND	Logic Ground
5	NC	No Connection
6	V _S	High-Voltage Floating Supply Return
7	НО	High-Side Driver Output
8	V _B	High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Offset Voltage	V _B -25	V _B +0.3	
V _B	High-Side Floating Supply Voltage	-0.3	625	
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{CC}	Logic Fixed Supply Voltage	-0.3	25	
V _{IN}	Logic Input Voltage	-0.3	V _{CC} +0.3	
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
P _D ⁽²⁾⁽³⁾⁽⁴⁾	Power Dissipation		0.625	W
θ_{JA}	Thermal Resistance, Junction-to-Ambient		200	°C/W
T _J	Junction Temperature		+150	°C
T _S	Storage Temperature		+150	°C
T _A	Ambient Temperature	-40	+125	°C

Notes:

- 2. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- 3. Refer to the following standards:
 - JESD51-2: Integral circuits thermal test method environmental conditions Natural convection JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages
- 4. Do not exceed P_D under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _B	High-Side Floating Supply Voltage	V _S +10	V _S +20	7
Vs	High-Side Floating Supply Offset Voltage	6-V _{CC}	600	
V_{HO}	High-Side Output Voltage	V _S	V _B	V
V _{IN}	Logic Input Voltage GND V _{CC}			
V _{CC}	Logic Supply Voltage	10	20	

Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are referenced to V_S and are applicable to the respective output HO.

Symbol	Characteristics	Test Cond	dition	Min.	Тур.	Max.	Unit
V+	V _{BS} Supply Under-Voltage Positive Going	V _{BS} =Sweep	FAN7361	8.2	9.2	10.2	
V _{BSUV} +	Threshold	v _{BS} -3weep	FAN7362	7.6	8.6	9.6	
V	V _{BS} Supply Under-Voltage Negative	V -Swoon	FAN7361	7.4	8.6	9.2	V
V _{BSUV} -	Going Threshold	I V DC=2WEED	FAN7362	7.2	8.2	9.2	- V
V	V _{BS} Supply Under-Current Lockout	V _{BS} =Sweep	FAN7361		0.5		
V _{BSHYS}	Hysteresis	v _{BS} -3weep	FAN7362		0.4		
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V				10	
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V			50	80	۸
I _{QCC}	Quiescent V _{CC} Supply Current	V _{IN} =0V			30	75	μA
I _{PBS}	Operating V _{BS} Supply Current	C _L =1nF, f=10kHz			420	550	
V	Logic "1" Input Voltage		FAN7361	3.6			
V _{IH}	Logic 1 input voitage		FAN7362	2.9			
٧	Logic "0" Input Voltage		FAN7361			1.0	V
V_{IL}	Logic o input voltage		FAN7362			0.8	V
V _{OH}	High Level Output Voltage, V _B -V _{HO}	No load				0.1	
V _{OL}	Low Level Output Voltage, V _{HO} No load				0.1		
I _{IN+}	Logic "1" Input Bias Current V _{IN} =5V				50	90	
I _{IN-}	Logic "0" Input Bias Current	V _{IN} =0V			1.0	2.0	μA
I _{O+}	Output High Short Circuit Pulse Current	V _{HO} =0V, V _{IN} =5V, F	PW ≤ 10µs	200	250		mA
I _{O-}	Output Low Short Circuit Pulse Current V_{HO} =15V, V_{IN} =0V,PW \leq 10 μ s		400	500		IIIA	
Vs	Allowable Negative V _S Pin Voltage for IN Signal Propagation to HO	IN			-9.8	-7.0	٧

Dynamic Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, V_{S} =GND, C_{L} =1000pF and T_{A} = 25°C, unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay	V _S =0V		120	200	
t _{off}	Turn-off Propagation Delay ⁽⁵⁾	V _S =0V or 600V		90	180	ne
t _r	Turn-on Rise Time			70	160	ns
t _f	Turn-off Fall Time			30	100	

Note:

5. This parameter guaranteed by design.

Typical Characteristics

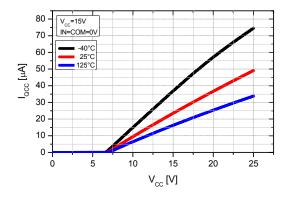


Figure 4. I_{QCC} vs. Supply Voltage

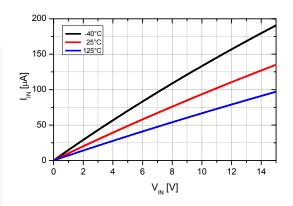


Figure 5. Input Bias Current vs. Input Voltage

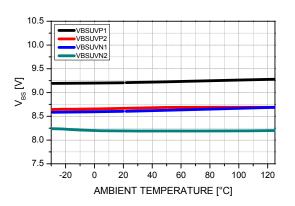


Figure 6. V_{BS} UVLO vs. Temp.

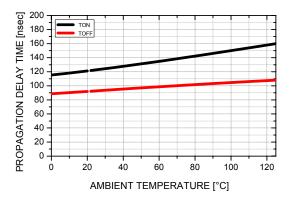


Figure 7. Turn On/Off Propagation Time vs. Temp.

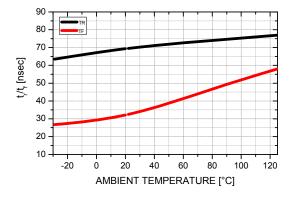


Figure 8. Rising/Falling Time vs. Temp.

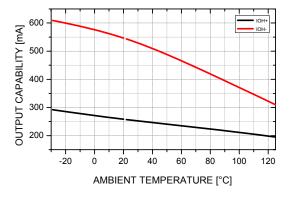


Figure 9. Output Sinking/Sourcing Current vs. Temp.

Switching Time Definition

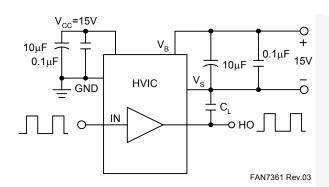
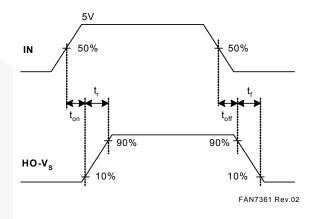
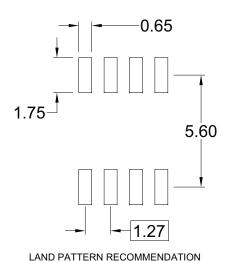
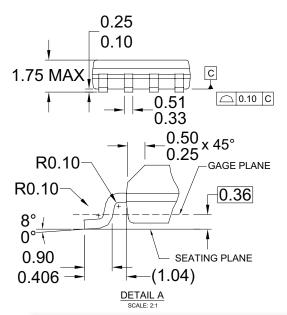
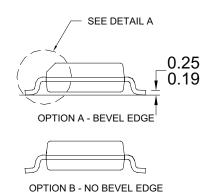


Figure 10. Switching Time Test Circuit


Figure 11. Input / Output Timing Diagram

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA, ISSUE C,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M
- E) DRAWING FILENAME: M08AREV13

Figure 12. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

FlashWriter[®]* Auto-SPM™ **FPSTM** Build it Now™ F-PFS™ CorePLUS™ FRFET®

Global Power Resource^{sм} CorePOWER™

CROSSVOLT" Green FPS™ CTL™

Current Transfer Logic™ EcoSPARK® EfficientMa×™ EZSWITCH™*

DEUXPEED™

Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™

Green FPS™ e-Series™

 $G max^{TM}$ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMa×™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT' QSTM Quiet Series™ RapidConfigure™

O_{TM}

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™-6 SuperSOT™-8

SupreMOS™ SyncFET™ Sync-Lock™

The Power Franchise® Wer franchise

TinyBoost™ TinyBuck™ TinýCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT*** μSerDes™

UHC Ultra FRFET™ UniFET™ VCXTM VisualMax™ XSTN

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THERBIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	uction Datasheet contains specifications on a product that is discontinued by Fairchild Semiconduct The datasheet is for reference information only.		

Rev. 143

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.