

April 2009

HCPL0452, HCPL0453, HCPL0500, HCPL0501, HCPL0530, HCPL0531, HCPL0534 High Speed Transistor Optocouplers

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501

Dual Channel: HCPL0530 HCPL0531 HCPL0534

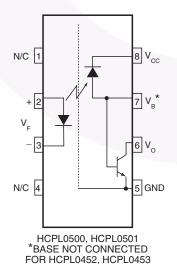
Features

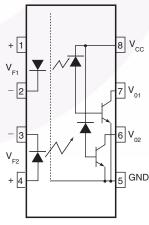
- High speed 1 MBit/s
- 15kV/µs minimum commone mode transient immunity at V_{CM} = 1500V (HCPL0453/0534)
- Open collector output
- Guaranteed performance over temperature: 0°C to 70°C
- U.L. recognized (File # E90700)
- VDE0884 recognized (file#136616)
 - approval pending for HCPL0530/0531/0453
 - ordering option V, e.g., HCPL0500V
- BSI recognized (file# 8661, 8662)
 - HCPL0452/0500/0501 only

Applications

- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling

Description


The HCPL05XX, and HCPL04XX optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor housed in a compact 8-pin small outline package.


A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor. The HCPL04XX devices do not have the base bonded out to a lead for additional noise margin. The HCPL053X devices have two channels per package for optimum mounting density.

Truth Table (positive Logic)

LED	Vo
ON	LOW
OFF	HIGH

Schematics

HCPL0530/HCPL0531/HCPL0534

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +85	°C
	Reflow Temperature Profile (Refer to page 11)		
EMITTER			
I _F (avg)	DC/Average Forward Input Current	25	mA
I _F (pk)	Peak Forward Input Current (50% duty cycle, 1ms P.W.)	50	mA
I _F (trans)	Peak Transient Input Current - ([≤1µs P.W., 300 pps)	1.0	А
V _R	Reverse Input Voltage	5	V
P _D	Input Power Dissipation	45	mW
DETECTOR			
I _O (avg)	Average Output Current (Pin 6)	8	mA
I _O (pk)	Peak Output Current	16	mA
V _{EBR}	Emitter-Base Reverse Voltage (HCPL0500/HCPL0501 only)	5	V
V _{CC}	Supply Voltage	-0.5 to 30	V
V _O	Output Voltage	-0.5 to 20	V
I _B	Base Current (HCPL0500/HCPL0501 only)	5	mA
P _D	Output power dissipation	100	mW

Electrical Characteristics ($T_A = 0$ to 70° C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER	1	1	1	1			
V _F	Input Forward Voltage	I _F = 16mA, T _A = 25°C	All		1.45	1.7	V
		I _F = 16mA				1.8	
BV _R	Input Reverse Breakdown Voltage	I _R = 10μA	All	5.0			V
$\Delta V_F / \Delta T_A$	Temperature Coefficient of Forward Voltage	I _F = 16mA	All		-1.6		mV/°C
DETECTO	R		•	•			
I _{OH} Logic High Output Current	Logic High Output Current	$I_F = 0mA, V_O = V_{CC} = 5.5V,$ $T_A = 25$ °C	All		0.001	0.5	μA
		$I_F = 0$ mA, $V_O = V_{CC} = 15$ V, $T_A = 25$ °C	All		0.005	1	
		$I_F = 0 \text{ mA}, V_O = V_{CC} = 15V$	All			50	
I _{CCL}	Logic Low Supply Current	$I_F = 16\text{mA}, V_O = \text{Open},$ $V_{CC} = 15\text{V}$	HCPL0452/3/ 0500/1		120	200	μA
			HCPL0530/1/4			400	
I _{CCH} Logic	Logic High Supply Current	I _F = 0mA, V _O = Open, V _{CC} = 15V, T _A = 25°C	All		0.01	1	μА
		$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 15$ V	HCPL0452/3/ 0500/1			2	
			HCPL0530/1/4			4	

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit
COUPLED			•				
CTR Cu	CTR Current Tranfer Ratio (Note 1)	, , ,	HCPL0500/0530	7	2.7	50	%
		$V_{CC} = 4.5V, T_A = 25^{\circ}C$	HCPL0452/3	19	27	50	
			HCPL0501/0531				/
		$I_F = 16mA, V_O = 0.5V,$	HCPL0500	5	30		
		$V_{CC} = 4.5V$	$V_{CC} = 4.5V$	HCPL0452/3	15	30	
			HCPL0501/0534				
V _{OL}	V _{OL} Logic Low Output Voltage	Logic Low Output Voltage I _F = 16mA, I _O = 1.1mA,	HCPL0500		0.18	0.4	V
		$V_{CC} = 4.5V, T_A = 25^{\circ}C$	HCPL0530			0.5	
		$I_F = 16\text{mA}, I_O = 3\text{mA},$	HCPL0452/3		0.25	0.4	
		$V_{CC} = 4.5V, T_A = 25^{\circ}C$	HCPL0501/0531/4				
	$I_F = 16\text{mA}, I_O = 0.8\text{mA},$ $V_{CC} = 4.5V$ $I_F = 16\text{mA}, I_O = 2.4\text{mA},$ $V_{CC} = 4.5V$	1 '	HCPL0500 HCPL0530		0.13	0.5	R)
			HCPL0452/3		0.23	0.5	
		$V_{CC} = 4.5V$	HCPL0501/0531/4				

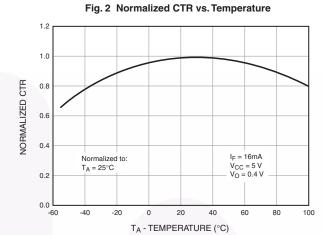
^{*}All typicals at $T_A = 25$ °C

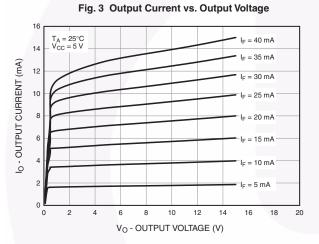
Electrical Characteristics (Continued) (T_A = 0 to 70°C unless otherwise specified)

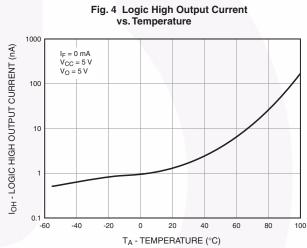
Switching Characteristics $TV_{CC} = 5V$)

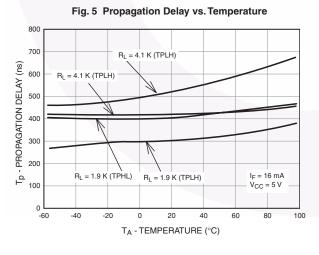
Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit
T _{PHL}	Propagation Delay Time to	$T_A = 25$ °C, $R_L = 4.1 k\Omega$, $I_F = 16 mA$ (Note 2) (Fig. 9)	HCPL0500/0530		0.45	1.5	μs
	Logic LOW	gic LOW $R_L = 1.9k\Omega, I_F = 16mA, T_A = 25^{\circ}C$ (Note 3) (Fig. 9)	HCPL0452/3		0.45	0.8	
			HCPL0501/0531/4				
		$R_L = 4.1$ kΩ, $I_F = 16$ mA (Note 2) (Fig. 9)	HCPL0500/0530			2.0	
		$R_L = 1.9k\Omega$, $I_F = 16mA$	HCPL0452/3			1.0	
		(Note 3) (Fig. 9)	HCPL0501/0531/4				
T _{PLH}	Propagation Delay Time to	$T_A = 25$ °C, $R_L = 4.1$ k Ω , $I_F = 16$ mA (Note 2) (Fig. 9)	HCPL0500/0530		0.5	1.5	μs
	Logic HIGH	$R_L = 1.9k\Omega$, $I_F = 16mA$, $T_A = 25^{\circ}C$	HCPL0452/3		0.3	0.8	
	(Note 3) (Fig. 9)	HCPL0501/0531/4					
		$R_L = 4.1$ kΩ, $I_F = 16$ mA (Note 2) (Fig. 9)	HCPL0500/0530			2.0	
	/	$R_L = 1.9k\Omega$, $I_F = 16mA$ (Note 3) (Fig. 9)	HCPL0452/3			1.0	
			HCPL0501/0531/4				
ICM _H I	M _H I Common Mode	T _A = 25°C (Note 4) (Fig. 10)	HCPL0500	1,000 10,000		V/µs	
	Transient Immunity at		HCPL0530				
	Logic HIGH		HCPL0452	1,000	10,000		
			HCPL0501/31				
			HCPL0534	15,000	40,000		
		$I_F = 16 \text{mA}, V_{CM} = 1500 V_{P-P}$ $R_L = 1.9 \Omega, T_A = 25 ^{\circ} \text{C}$ (Note 4) (Fig. 10)	HCPL0453	15,000	40,000		
ICM _L I	Common Mode	$I_F = 16\text{mA}, V_{CM} = 10V_{P-P}, R_L = 4.1k\Omega,$	HCPL0500	1,000	10,000		V/µs
	Transient Immunity at	T _A = 25°C (Note 4) (Fig. 10)	HCPL0530				
	Logic LOW	I _F = 16 mA, V _{CM} = 10 V _{P-P}	HCPL0452	1,000	10,000		
		$R_L = 1.9k\Omega$ (Note 4) (Fig. 10)	HCPL0501/31				
			HCPL0534	15,000	40,000		
		$I_F = 16$ mA, $T_A = 25$ °C, $V_{CM} = 1500 V_{P-P}$, $C_L = 15$ pF) (Note 4) (Fig. 10)	HCPL0453	15,000	40,000		

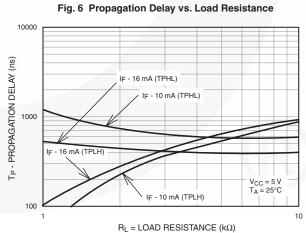
Isolation Characteristics

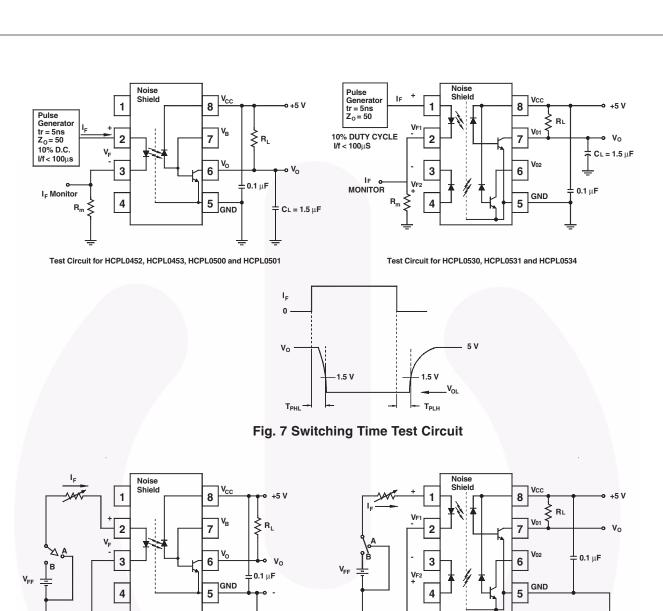

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	$f = 60 \text{ Hz}, t = 1.0 \text{ min.}, I_{I-O} \le 2\mu\text{A}$ (Note 5, 6)	2500			Vac _{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500V (Note 5)	10 ¹¹			
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 , f = 1.0MHz (Note 5)		0.2		pF

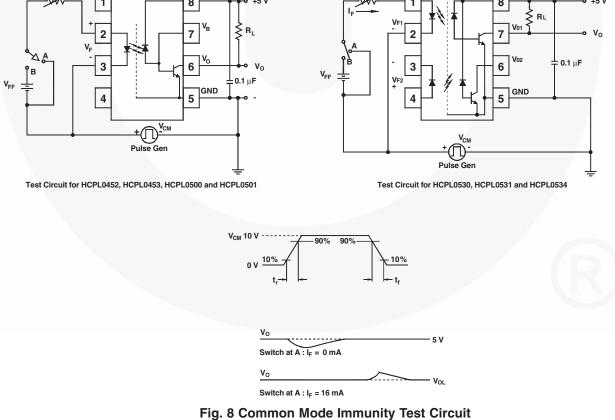

^{*}All typicals at $T_A = 25^{\circ}C$

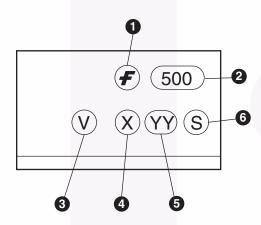

Notes


- 1 Current Transfer Ratio is designed as a ratio of output collector current, I_O, to the forward LED input current, I_F times 100%.
- 2. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and 6.1k Ω pull-up resistor.
- 3. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and 5.6 k Ω pull-up resistor.
- 4. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8$ V).
- 5. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 6. 2500 VAC RMS for 1 minute duration is equivalent to 3000 VAC RMS for 1 second duration.

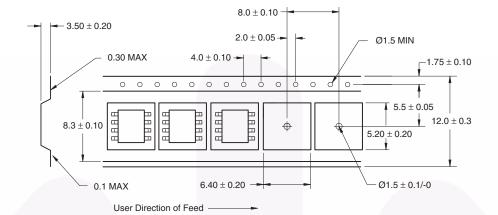

Typical Performance Curves



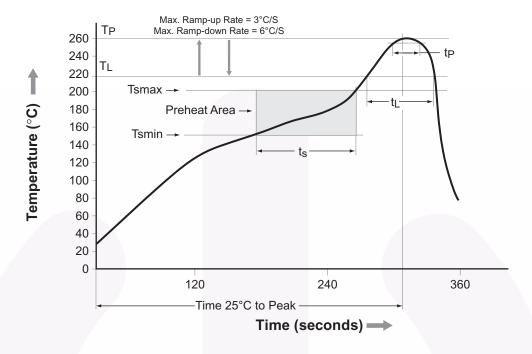




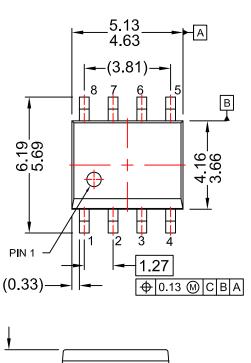
Ordering Information

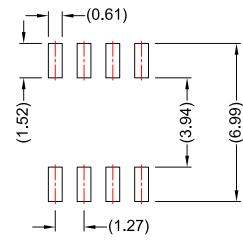

Option	Order Entry Identifier	Description
V	V	VDE 0884 (approval pending for HCPL0530, HCPL0531 & HCPL0534)
R2	R2	Tape and reel (2500 units per reel)
R2V	R2V	VDE 0884 (approval pending for HCPL0530, HCPL0531 & HCPL0534), Tape and reel (2500 units per reel)

Marking Infomation

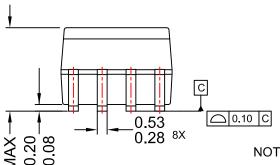


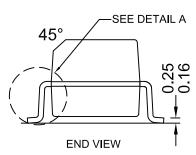
	Definitions
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)
4	One digit year code, e.g., '3'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code


Carrier Tape Specifications

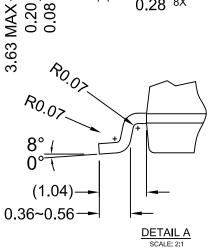


Reflow Profile




Profile Freature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds		
Ramp-up Rate (t _L to t _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t _L) Maintained Above (T _L)	60-150 seconds		
Peak Body Package Temperature	260°C +0°C / -5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate (T _P to T _L)	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

LAND PATTERN RECOMMENDATION



- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
- E) DRAWING FILENAME: MKT-M08Erev5

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOI TIM IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

ESBC™ MicroPak™ **-**® MicroPak2™ MillerDrive™ Fairchild® MotionMax™

Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* uSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XSTM. Xsens™ 仙童™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 176

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.