UB-Suffix Series CMOS Gates

The UB Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired. The UB set of CMOS gates are inverting non-buffered functions.

Features

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Linear and Oscillator Applications
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacements for Corresponding CD4000 Series UB Suffix Devices
- Pb-Free Packages are Available

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

MARKING DIAGRAMS

PDIP-14 P SUFFIX CASE 646

SOIC-14 D SUFFIX CASE 751A

xx = Specific Device Code A = Assembly Location

WL, L = Wafer Lot
 YY, Y = Year
 WW, W = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			.,	- 55°C			25°C		125°C		
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ Vdc})$ $(V_O = 9.0 \text{ Vdc})$ $(V_O = 13.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.0 2.0 2.5	- - -	2.25 4.50 6.75	1.0 2.0 2.5	- - -	1.0 2.0 2.5	Vdc
$(V_O = 0.5 \text{ Vdc})$ $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	"1" Level	I _{IH}	5.0 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5	2.75 5.50 8.25	- - -	4.0 8.0 12.5	- - -	Vdc
Output Drive Current $ \begin{aligned} &(V_{OH}=2.5 \text{ Vdc})\\ &(V_{OH}=4.6 \text{ Vdc})\\ &(V_{OH}=9.5 \text{ Vdc})\\ &(V_{OH}=13.5 \text{ Vdc}) \end{aligned} $	Source	I _{OH}	5.0 5.0 10 15	- 1.2 - 0.25 - 0.62 - 1.8	- - -	- 1.0 - 0.2 - 0.5 - 1.5	- 1.7 - 0.36 - 0.9 - 3.5	1 1 1	- 0.7 - 0.14 - 0.35 - 1.1		mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		l _{in}	15	-	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	_	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	- - -	7.5 15 30	μAdc
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Gate C _L = 50 pF)		Ι _Τ	5.0 10 15		1	$I_{T} = (0.0)$	3 μA/kHz) f - 6 μA/kHz) f - 8 μA/kHz) f -	- I _{DD} /N	1	1	μAdc

^{2.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

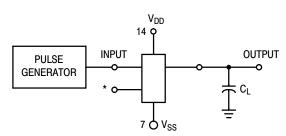
$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μH (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise Time	t _{TLH}					ns
$t_{TLH} = (3.0 \text{ ns/pF}) C_L + 30 \text{ ns}$		5.0	_	180	360	
$t_{TLH} = (1.5 \text{ ns/pF}) C_L + 15 \text{ ns}$		10	_	90	180	
$t_{TLH} = (1.1 \text{ ns/pF}) C_L + 10 \text{ ns}$		15	-	65	130	
Output Fall Time	t _{THL}					ns
$t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$		5.0	_	100	200	
$t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$		10	_	50	100	
$t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$		15	-	40	80	
Propagation Delay Time	t _{PLH} , t _{PHL}					ns
t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 30 \text{ ns}$		5.0	_	90	180	
t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 22 \text{ ns}$		10	_	50	100	
t_{PLH} , $t_{PHL} = (0.50 \text{ ns/pF}) C_L + 15 \text{ ns}$		15	_	40	80	

^{3.} The formulas given are for the typical characteristics only at 25°C.


^{4.} To calculate total supply current at loads other than 50 pF:

^{5.} The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14001UBCP	PDIP-14			
MC14001UBCPG	PDIP-14 (Pb-Free)	25 Units / Rail		
MC14001UBD	SOIC-14			
MC14001UBDG	SOIC-14 (Pb-Free)	55 Units / Rail		
MC14001UBDR2	SOIC-14			
MC14001UBDR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel		
	<u> </u>			
MC14011UBCP	PDIP-14			
MC14011UBCPG	PDIP-14 (Pb-Free)	25 Units / Rail		
MC14011UBD	SOIC-14			
MC14011UBDG	SOIC-14 (Pb-Free)	55 Units / Rail		
MC14011UBDR2	SOIC-14			
MC14011UBDR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}All unused inputs of AND, NAND gates must be connected to V_{DD} . All unused inputs of OR, NOR gates must be connected to V_{SS} .

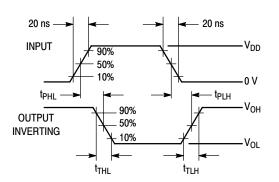
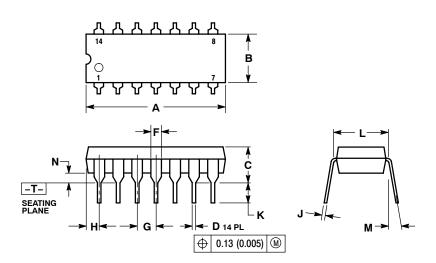



Figure 1. Switching Time Test Circuit and Waveforms

PACKAGE DIMENSIONS

PDIP-14 CASE 646-06 ISSUE P

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
М		10 °		10 °	
N	0.015	0.039	0.38	1.01	